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Abstract: In this paper, we present a novel approach for depth estimation in image-based visual servoing.
Depth information are directly used in the control law to generate control signal, i.e. the screw velocity of
the robot end-effector. Because rough estimates of depth values are not enough, we are motivated to this
proposal. This approach employs a particle filter algorithm to estimate the depth of the image features on-
line. A Gaussian probabilistic model is employed to model depth distribution. A set of depth particles is
drawn in the current camera frame. The image measurements are used to recover the 3D samples. These
samples are propagated to the next frame and projected into the image space. The maximum likelihood
of 3D samples is the most probable to be the real-world 3D point. The mean value and the variance of
the depth distribution are obtained from the maximum likelihood. The variance values converge to very
small value within a few iterations. This gives high level of stability to the image-based visual servoing
system. The simulation experiments show that the mean value goes very close to the real value of the
depth in a few iterations. The depth is considered as the mean value of estimated distribution.
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1. INTRODUCTION

Since vision provides non-contact measurements of the envi-
ronment, cameras are considered as a useful sensor for robot
applications. Shirai and Inoue demonstrated in their seminal
work on robot vision control (Shirai and Inoue (1973)), that
closing the control loop of the robot using visual feedback has
more effect than increasing the accuracy of the individual parts
of the robot vision system (Borangiu (2004); Corke (2011)).
Using visual feedback to close the loop of position control
of the end effector of robot arm is now referred to as visual
servoing. This is achieved by processing a visual feedback and
minimizing an appropriate error function. The visual feedback
can be image features (2D) or object pose (3D) with respect to
the camera frame.

Visual servoing systems can be classified, based on the visual
information used in the control law, into three methods, i.e.
position-based, image-based, and hybrid (or 2 1

2 D) visual servo-
ing. In image based visual servoing, 2D visual information are
extracted from both image space and depth map. In position-
based visual servoing, 3D information about the pose of the
object frame with respect to the camera frame are estimated.
In this case, complete information about the 3D model of the
object are needed. The error function is selected as the differ-
ence between the current pose and the desired one of the object
frame. In contrast, Image-based visual servoing computes the
velocity from the error function of the image space features
and the image Jacobian (Hutchinson et al. (1996); Chaumette
and Hutchinson (2006); Abdul Hafez (2014)). Image Jaco-
bian needs information from both image space and depth map.
Therefore, it is crucial to use depth estimate to boost the image
based visual servoing efficiency.

Hybrid approaches are different in the manner in which image
space information are used in the control law. The method
proposed in (Malis and Chaumette (2002)) uses information
from one point of an image, and works properly for any rough
approximation of the depth value of this point. On contrary,
hybrid methods like (Deguchi (1998)) and the partitioned ap-
proach proposed in (Corke and Hutchinson (2001)) use the
full information available in the image, and as a consequence,
they strongly depend on the depth estimates. Stability analysis
of image-based and hybrid methods except the one proposed
in (Malis and Chaumette (2002)) depends on the depth estima-
tion accuracy.

It was common in the literature that a rough estimate of the
depth is enough to come out with a stable control law in image-
based visual servoing. Malis and Rives proved analytically and
using simulation experiments in (Malis and Rives (2003a)) that
the robustness domain of image-based visual servoing with
respect to depth estimation is not so wide. They agreed that
special care should be taken to the depth estimation step for
a stable control law. Later, they proposed in (Malis and Rives
(2003b)) an affine reconstruction method to recover the depth
from a pure translation motion as an off-line step in the image-
based visual servoing.

In this paper, a method that employs a Gaussian particle filter
to estimate the depth of the image point online is presented.
Initially, we draw particles (samples) of the depth from the
visible regions in the current camera frame. These samples
are then propagated to the next frame with some level of
uncertainty. Sample images provide a likelihood density of
the drawn samples. The sample that maximizes the density
function of the likelihood is the most probable candidate to be
the 3D correspondence of the measured image feature. This
point is then assigned to the estimate of the mean of the
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model distribution. The variance is the weighted sum of the
distances of the mean to other samples. After some iteration the
distribution converges to a Gaussian with a sharp peak i. e., a
variance value smaller than the threshold set in Malis and Rives
(2003a). One can note that particle filters give an estimates of
the full 3D description at the selected feature points.

There are several works in the literature that consider the
problem of depth (or structure) estimation. For example, the
work proposed by Collewet and Chaumette in (Collewet and
Chaumette (2008)) focuses on the way to achieve accurate vi-
sual servoing tasks when the shape of the object being observed
as well as the desired image are unknown. Another example is
the IBVS scheme which is proposed in (Chen et al. (2006))
for a camera mounted on a nonholonomic mobile robot via an
on-line estimation of a constant unknown parameters, i.e. the
height of the object points and the depth of the target plane
at the desired pose, respectively. The reconstruction phase is
based on the measurement of the 2D motion in a region of
interest and on the measurement of the camera velocity. The
work presented in (Luca et al. (2007)) recasts the problem into
the nonlinear observer framework, which provides techniques
to estimate unmeasurable time-varying states of known dynam-
ical systems. More recently, a method was presented in (Mao
et al. (2012)) to estimate the image Jacobian for visual serv-
ing process. Estimates of the Jacobian’s elements include the
depth of the features. Authors utilise on-lines support vector
regression to estimate the depth and other parameters of the
servoing process. An active estimation strategy is proposed
in (Robuffo Giordano et al. (2014)) in which a monocular cam-
era tries to determine whether a set of observed point features
belongs to a common plane, and what are the associated plane
parameters. It is proposed in (Abdul Hafez and Cervera (2014))
to use particle filter to estimate the relative motion of the cam-
era. This motion is represented by the relative pose between the
initial and current cameras. They showed that motion estima-
tion is accurate and can be used for structure computation.

Particle filters play an important role in variable tracking for
robotics. There are many real-time implementation of these
algorithms (Davison (2003)). A tutorial on particle filters for
mobile robot localization (Rekleities (2004)) discusses a va-
riety of computational and conceptual issues related to these
algorithms. An adaptive real-time particle filters for robot lo-
calization is presented in (Kwok et al. (2003)).

Our method employs Gaussian particle filtering for online
estimation of the depth of the image point. The concept of
this method is to draw particles (samples) from the depth
distribution in the current camera frame. These samples are
propagated to the next frame with some level of uncertainty
and projected to the image. Sample images provide a likelihood
density of the drawn samples. The sample that maximizes
the density function of the likelihood is the most probable
candidate to be the depth of the measured image point feature.
This value is assigned to the estimate of the mean of the depth
distribution. The variance of the distribution is computed as the
weighted sum of the squared difference of the samples from
the mean. After a few iteration the distribution converges to
a Gaussian density function with a sharp peak i. e. a variance
value smaller than an accepted threshold. The current estimate
of the distribution is used for drawing a set of particles again.
The process is repeated in the next iteration.

Fig. 1. Block diagram for Dynamic look-and-move visual ser-
voing system.

2. THEORETICAL BACKGROUND

2.1 Projective Camera Model

A camera maps the 3D world to a 2D image. A general projec-
tive camera is represented by an arbitrary homogeneous (3× 4)
matrix of rank 3. The general projective camera K maps world
points X to image points x according to x = f(X) = KX .
The matrix K includes internal parameters, i.e. the camera’s
focal length and the skew angle, and the external parameters
which specify the camera’s position and orientation in the
world Hartley and Zisserman (2003). As the matrix K is in-
vertible, the function f−1(x) exists. The 3D coordinates of the
point X can be recovered, and hence the depth Z is extracted.

2.2 Control Schemes in Visual Servoing

The term “visual servoing” was introduced by Sanderson and
Weiss in (Sanderson and Weiss (1980)). Their taxonomy poses
two fundamental concerns:

(1) Is the vision system providing input to the robot’s joint-
level controller, or does the visual controller directly com-
pute the joint-level inputs?

(2) Is the error signal defined in 3D Cartesian space or directly
in 2D image space?

Addressing each of the above concerns, provides a method of
classifying the vision-based robot control systems. The follow-
ing classification arises from the first concern:

(1) Dynamic look-and-move systems: As illustrated in Fig-
ure 1, these systems provide a set-point as input to the
joint-level robot controller. Then, internal controller uses
the joint feedback to stabilize the robot arm and regulate
the joint to the desired value that is the set-point provided
by the visual controller.

(2) Direct visual servoing systems: As illustrated in Figure 2,
these systems use vision alone to stabilize the arm. The
visual servo controller directly compute the joint inputs.
The visual servo controller here eliminates the internal
robot controller.

As pointed out by Hutchinson et al. (Hutchinson et al. (1996)),
nearly all of the proposed systems adopt the dynamic look-
and-move approach. This is mainly due to two reasons: (i) the
low sampling rate available from vision system makes direct
control of the robot’s joints more complex, and (ii) most of
robot systems already have an interface for accepting Cartesian
velocity or incremental position command. However, the 1 ms
hierarchical vision system, presented in 2003 as a high speed
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Fig. 2. Block diagram for Direct visual servoing system.

visual servoing system by Namiki et al. (Namiki et al. (2003))
uses the direct visual servoing system to control the joint of the
arm.

To avoid the confusion of the term visual servoing introduced
by Sanderson and Weiss (Sanderson and Weiss (1980)), one
may pay attention to the fact that the term visual servoing
now is widely used to describe all types of closed-loop vision
robot control systems, including the dynamic look-and-move
systems (Hutchinson et al. (1996)).

Addressing the second concern shows the three main classes
based on whether the error is represented in the 3D space or in
the image space.

(1) Position-based Visual Servoing (PBVS): In this approach,
the features are extracted from the image and used in
conjunction with a CAD model of the target object to
know the position and direction (pose) of the object with
respect to the camera.

(2) Image-based Visual Servoing (IBVS): In this approach,
The features are extracted from the image and used di-
rectly to estimate the control signal using image Jaco-
bian. This approach may reduce the errors due to sensor
modeling and camera calibration, but it presents a signifi-
cant challenge since the resulting system is nonlinear and
highly coupled.

(3) Hybrid Visual Servoing: Hybrid systems combine the
two previous approaches. The error to be minimized is
specified both in the image and pose space.

Reader may refers to Abdul Hafez (2014) for more detailed
information about the three main classes Image-based Visual
Servoing (IBVS), Position-based Visual Servoing (PBVS), and
Hybrid Visual Servoing.

2.3 Image-based Visual Servoing

The problem of visual servoing is that of positioning the end-
effector of a robot arm such that a set of current features S
reaches a desired value S∗. In image-based visual servoing,
the set S can be composed of the coordinates of points that
belong to the target object. Other kind of geometric features
like straight line segments, angles, or spheres can be also used.
Consider the error function

e(S) = S − S∗. (1)
where S is a vector represents the current set of features and S∗

is a vector represents the desired set of features.

By differentiating this error function with respect to time, with
the desired features S∗ remaining constant, we get

de

dt
=
dS

dt
= (

∂S

∂P
)
dP

dt
= LSV, (2)

where e(S) is a (2N × 1) error vector between the image
coordinates (u, v) of N points. The velocity

V =
dP

dt
= (vT , ωT )T (3)

is the camera velocity, v is translational velocity and ω is
rotational velocity. The pose vector

P = (x, y, z, α, β, γ) (4)
is a (6 × 1) vector. For exponential convergence of the mini-
mization process, i.e.

de(S)

dt
= −λe(S), (5)

and using a simple proportional control law, the required veloc-
ity of the camera can be shown to be (Hutchinson et al. (1996))

V = −λL+
S e(S). (6)

The (2N × 6) matrix LS is called the image Jacobian. Image
Jacobian relates the changes in the image space to the changes
in the Cartesian space (Hutchinson et al. (1996)).

Assuming a perspective projection model with a unit focal
length, the interaction matrix LSi for each point (u, v) is given
by Hutchinson et al. (1996):

LSi
=

 −1

Z
0

u

Z
uv −(1 + u2) v

0
−1

Z

v

Z
1 + v2 −uv −u

 . (7)

For a set of N points, the set of features is Si, i = 1, ..., N , the
interaction matrix LS is

LS =
[
LS1 , . . . , LSN

]T
, (8)

where LS1 and LSN
are the interaction matrices given in (7)

and correspond to points 1 and N respectively. The Jacobian
matrix, as shown in (Malis and Rives (2003a)), can be written
as

Ls =
1

Z
A(U, V ) +B(U, V ), (9)

where U and V are the image coordinate vector of all points.
One can note that an estimate of the depth is necessary in the
camera frame for image-based visual servoing.

It was assumed that a rough estimation of the depth is enough
for a stable control law in image-based visual servoing. How-
ever, it was shown in (Malis and Rives (2003a)) that the stability
range with respect to the depth estimation is not so much wide.

2.4 Dynamic State Model of 3D Point in Visual Servoing
System

The velocity V computed in equation (6) is the control input to
robot arm controller. The actual velocity V̂ that represents the
uncertainty and delay in robot arm dynamics can be represented
by adding a term of noise to the computed velocity V .

V̂ = V +N (µv, qI6×6) = (v̂T , ω̂T )T ,

where µv is a (6× 1) mean vector, and q is a random variable.
Let the velocity at the time instance t be V̂t. This velocity will
drive the robot arm from the pose Pt at the time instance (t) to
the pose Pt+1 at the time instance (t + 1). The transformation
Tt+1,t = (R, t) between the current pose and the pose at the
next time instance is computed from the velocity as

R = I3×3 + [ω]×.∆t, (10)
t = v.∆t, (11)
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Fig. 3. Block diagram of the model estimation. The prediction
and update stages are the core of the pose/model algorithm

where ∆t is the time interval between successive visual servo-
ing iterations.

Let us consider the 3D point Xt in the instance frame of a
perspective camera. This point is projected to the image point
xt using the the camera matrix K. This 3D point Xt is mapped
to the point Xt−1 in the camera frame at the previous time
instance (t− 1) through the transformation Tt,t−1 as

Xt = Tt−1,tXt−1. (12)
This is the dynamic model of the 3D point motion in visual
servoing.

3. BAYESIAN OBJECT MODEL ESTIMATION FROM
KNOWN POSE

3.1 Model State Vector

In object model estimation, as it is shown in Figure 3, the state
vector X represents the 3D coordinates of the object points.
The measurement data are the image points x corresponding to
the 3D points X and the odometry data of the arm represented
by the control u commanded to the arm controller. Bayes filters
estimate the probability density function over the state space
conditionally to the measurement data i.e. image points and
control command. This probability is called the belief of the
state vector and denoted as π(Xt).

π(Xt) = p(Xt | x0...t, u0...t). (13)
Without loss of generality, we assume that the image measure-
ments and the control commands arrive alternatively. In other
words, the control command ut−1 is the motion during the time
interval [t − 1, t] while the current image measurements at the
time t is xt. Based on these assumptions, the belief π(Xt) can
be written as
π(Xt) = p(Xt | xt, ut−1, xt−1, ut−2, xt−3, . . . , x0). (14)

The belief π(Xt) is estimated recursively using Bayes filter.
The initial belief π(X0) represents the initial knowledge about
the system state. This initial knowledge is given by a probability
function computed using a given 3D model of the scene. This
function is assumed to be uniform in the absence of any initial
knowledge. In the estimation of an object model, the initial
belief is a uniform distribution over the 3D coordinate space
of the object points.

To derive the recursive update equation, we use Bayes rule to
write Equation (14) as

π(Xt) =
p(xt | Xt, ut−1, . . . , x0) p(Xt | ut−1, . . . , x0)

p(xt | ut−1, . . . , x0)
.

(15)
By employing the Markov assumptions and integrating over the
state Xt−1 at time t − 1, we get the update equation in Bayes
filter (Bolic (2004)) as

π(Xt) = α p(xt | Xt)

∫
p(Xt | Xt−1, ut−1) π(Xt−1)dXt−1.

(16)
Starting from initial belief or a given knowledge about the
system state, we have a recursive estimator about the object
model that is partially observable. To implement Equation (16),
we need to know the two density functions: the probability
p(Xt | Xt−1, ut−1), which is nothing but the estimate of the
next state density or the motion model of the system as in
Eq (12), and the density p(xt | Xt), which is the sensor model.

In particle filters the belief π(X) is represented by a set of M
weighted samples {Xm

t }Mm=1,
π(Xt) ≈ {Xm

t , w
m
t }m=1,...,M . (17)

Here, Xm
t is a sample of the random variable Xt, and wm

t are
a non negative parameters called the importance factors, these
importance factors are normalized in a such a way that they sum
to one. Finally, the non-normalized importance factor w∗(m)

t
is directly obtained from the probability density of the sensor
model as

w
∗(m)
t = p(xt | Xm

t ). (18)

The normalized importance factors w∗(i)
t are computed in such

a way that its summation is equal to 1.

Let us consider the case of estimating a Gaussian distribution
function. This is usually referred to as Gaussian particle fil-
tering. It operates by approximating the desired densities as a
Gaussian (Bolic (2004)). Here, only the mean and the variance
are propagated along the time. In fact, Gaussian particle filter-
ing is a Gaussian filter in which particle filter based method is
used to obtain the estimate of the mean and the covariance of the
concerned densities recursively. Propagation of the mean and
the covariance simplifies the implementation of Gaussian parti-
cle filter. Owing to the normalization process, particle filter is an
unbiased filter subject to the number of particles. The smaller
particle set, the higher the bias is. To determine the suitable
number of samples, a technique which sets an adaptive number
of samples is adopted. This technique observes the summation
of the non normalized weights. When this summation exceeds
a certain threshold, the number of samples is decreased.

3.2 Model Estimation and Uncertainty Propagation Using
Particles

This subsection describes how Gaussian particle filtering can
be used for depth or model estimation from controlled motion.
The estimation process draws samples from the depth density
in the current iteration for a selected point features, then predict
the correspondences to these samples in the next iteration. Pro-
jecting these samples into the next image produces likelihoods
which are used to estimate mean and variance of the updated
density of the depth. After a few iterations, the variance will
converge to a suitable value and the mean will converge to the
real value of the depth.

Consider the image point x = (u, v), which is a projection
of the 3D point X . The measurement x of this image point
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can be corrupted by noise and errors. This corruption can be
represented by a Gaussian distribution with zero mean and
variance Σx. This results in a random variable with probability
distribution (Flandin and Chaumette (2001)) given by

p(x | X) =
1

(2π|Σx|1/2)
exp[(−1

2
(x−KX)T Σ−1

x (x−KX))].

(19)
Given a probability distribution p(Z) = N (Z; Z̄, σZ) of the
depth, the uncertainty in the image measurements can be back-
projected to the Cartesian space using the function F−1. A
probability density function of the 3D pointX that corresponds
to the image point measurement x is obtained. This function is
p(X | x) = N (X; X̄,ΣX) and the parameters X̄ and ΣX are
computed as follows Flandin and Chaumette (2001)

X̄ = [Z̄ū, Z̄v̄, Z̄]T , ΣX = JT
F

(
Σx 0
0 σZ

)
JF . (20)

Here, the matrix JF is the Jacobian of the inverse of the
back-projection function (Flandin and Chaumette (2001)) and
defined as

JF =
∂F−1

∂X

∣∣∣
X̄

=

(
1/Z̄ 0 −ū/Z̄
0 1/Z̄ −v̄/Z̄
0 0 1

)
. (21)

The parameters of the 3D point distribution are given by a set
of M samples (particles). These samples can be drawn of the
3D points {X}Mm=1, which is recovered completely from the
image measurement x and the function F−1(x). When camera
moves from the pose Pt−1 to the pose Pt, the 3D point Xt−1

will be transformed to Xt using the transformation Tt,t−1. In
case of a probabilistic model of the 3D point, the transformed
uncertainty is given as

X̄t = Tt,t−1(X̄t−1), ΣX(t) = JT ΣX(t−1)J, (22)

where J = ∂T−1

∂X |X̄ , is the Jacobian of the function T−1
t,t−1 that

is obtained from the first order approximation.

Let us draw a set of M 3D point samples (particles) {Xm}Mm=1
from the density function p(Xt | Xt−1) = N (Xt; X̄t,ΣXt),
as it shown in Figure 4, and project it to the image space get-
ting the particles {xmt }Mm=1. To estimate the parameter vector
Xt given the measurement xt, we define the function X̄ =

X̂t(xt). This function assigns a 3D point sample Xm
t to the

measurement xt, where this 3D point maximizes the density
p(xt | Xm

t ) in the current camera frame at the instance t. In
fact, this function is nothing but the maximum likelihood of the
density p(xt | Xm

t ) and is written as

X̄t = X̂ = arg max
Xm

t

{p(xt | Xm
t )}, (23)

ΣXt =

M∑
m=1

wm
t (Xm

t − X̄t)(Xm
t − X̄t)

T . (24)

The 3D point X̂ is assigned to the mean of the new distribution
X̄ , while the variance ΣXt will be computed using a set of
weights proportional to the density values p(x | Xm) along
the samples {Xm}Mm=1. The normalized weights wm

t are given
by

wm
t = w

∗(m)
t /

M∑
m=1

w
∗(m)
t . (25)

These weights w∗(m)
t are the likelihoods of the samples Xm

t
with respect to the measurement xt and computed as

Fig. 4. Geometric description of one step of the particle-based
depth estimation process.
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w
∗(m)
t = p(xt | Xm

t )

w
∗(m)
t = (2πσ2)−1/2 exp(−(dmt )2/2σ2),

(26)

where dmt is the distance between the image measurement
point xt and the projection of Xm

t that is the particle m at
the time instance t. The variance σ is a function of the image
noise variance. By repeating this process recursively from one
visual servoing iteration to another, the mean X̄ and variance
converge to an accurate value. Figure (4) shows the geometrical
description of the previous estimation steps. The 3D sample
whose image is the nearest to the image measurements is
assigned as a mean. In this way, Gaussian particle filter is
employed for the estimation of not only the depth distribution
but the 3D model. The steps of the algorithm are summarized
in Algorithm 1

4. RESULTS AND DISCUSSION

We conduct our experiments in simulation platform built using
Matlab environment (Corke (2011)). The expected disturbances
like image measurement error, tracking error, calibration error
are properly modeled in the considered simulation platform.
The considered system is eye-in-hand visual servoing system
where the camera is mounted on the robot arm and observing
only the target object. This system is called Endpoint open-
loop (EOL) (Hutchinson et al. (1996)). Even though we imple-
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Algorithm 1 Model/depth target estimation algorithm from visual servoing motion using particle filter.
1: Input:
2:

3:

p(xt−1) % The measurement density at time t− 1 in the previoous image.
p(xt) % The measurement density at time t in the current image.
X̄t−1 = µXt−1

% The mean of the depth distribution at time t− 1.
ΣXt−1

% The variance of the depth distribution at time t− 1.
4:
5:
6: Output:
7:

8:
X̄t % The mean of the updated belief of the 3D point depth.
ΣXt % The variance of the updated belief of the 3D point depth.

9:
10:
11: Prediction stage

12:

p(Xt−1 | xt−1) = N (Xt−1; X̄t−1,ΣX(t−1)) % Using the back-projection in Equation 20.
Compute p(Xt | Xt = Xm

t−1, xt) % Using the transformation Tt,t−1

that is the estimate of the relative camera pose.
Draw the particles {Xm

t }
M
m=1 % Using the previous depth distribution

N (Xm
t−1;µXt−1

,ΣXt−1
)

13:
14:
15: Update stage stage

16:

Generate the image particles {xmt }
M
m=1 % By projecting the particle

{Xm
t }

M
m=1 to the image space at time t.

Calculate the weights w∗(m)
t = p(xt | Xm

t ) % As in Equation (26).
Normalize the weights wm

t = w
∗(m)
t /

∑M
m=1 w

∗(m)
t % To form a distribution.

Compute the updated estimates:
X̄t = X̂ = arg maxXm

t
{w∗(m)

t = p(xt | Xm
t )}, % The mean of the model distribution

ΣXt =
∑M

m=1 w
m
t (Xm

t − X̄t)(Xm
t − X̄t)

T %The variance of the model distribution
17:
18: return X̄t , ΣXt
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Fig. 6. The percentage error in the depth estimates, during
visual servoing process, using particles with respect to the
real value of the depth.

mented our particle filter proposal using Matlab, we believe that
it runs at frame rate not less that 15 frame/second speed using
C/C++ particle filter implementation. See for example results
reported from our C++ based tracking and servoing work using
particle filter (Abdul Hafez and Cervera (2014)).

In the simulation experiments, we used a set of 3D points Xi,
i = 1, ..., N , for verifying the performance of our algorithm.
These points belong to an object in the scene. The task is that
the robot arm has to move from initial position to a desired
position given as a desired image of the object. The image
point coordinates are considered as features. Since we have N

points, the total number of features is 2N . With assumption
that enough number of features are extracted and tracked, there
is no considerable importance for the remaining parts/shape of
the object. The camera is modeled as a perspective camera with
focal lengths fx = fy = 1000m, unit aspect ratio, and zero
skew. Dimensions of the images is 512 × 512 pixels. Since
we are working using simulation framework, we do not have
camera calibration problem here which is usually solved as
in (Abdul Hafez and Cervera (2014)).

We conducted experiments for a positioning task using image-
based visual servoing. The task is repeated for three different
depth estimations, coarse, bad, and using particle filters depth
estimation. Figure 5 shows a comparison of the error between
the image point coordinates in the image space. It shows how
the norm of the error using particle filters converges to zero
while in case of coarse and bad estimation it converges to two
fixed values depending on the amount of error in the depth
estimation. Figure 6 shows the absolute percentage of error
in the depth estimation along the time. One can note that it
converges to around 1% and that is an accurate estimate as
mentioned in Malis and Rives (2003a).

4.1 Sensitivity to image noise

The first experiment is carried out with four points from a non-
planar object. Different levels of noise are introduced to the
image space. We observe the variance of the depth distribution.
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Fig. 7. The variance σz of the depth Z within 5 frames and as
a function of the noise amount in the image, and the depth
is measured in cm. The amount of noise introduced in the
image is 5 pixels in (a, b, c, d), and 15 pixels in (e, f, g, h).
The norm of the depth error in the first row, the variance
is in the second row, the image trajectory is in the third,
while the pixel error is in the last row. The target positions
of the features in the image space are marked by +.

Plot of the variance in addition to the estimated Gaussian
densities, image space trajectories, features error are drawn in
Fig 7.

The estimated distribution (mean value and variance) in pres-
ence of a 5 pixels and 15 pixels image noise are shown in
Fig 7, (a and b) and (e and f) respectively. It is clear that
the convergence time of the depth distribution is proportional
to the amount of the noise. This could cause a local minima.
In general, it can almost affect the convergence time and the

trajectories in the image and Cartesian spaces, but it finally
converge to its desired pose. This is depicted in Fig 7, (c, d),
and (g, h) that shows the image trajectories (the desired feature
positions are marked as +) and the feature error convergence.

4.2 Effect of the number of samples

The second experiment concerns with the number of samples
used in the particle filter. The experiment is repeated four times
with four different number of particles. Figure 8 depicts the
effect of the number of samples used in the particle filter. It
affects the final state of the estimated distribution variance.
The final state value is slightly increased. The effect of the
noise term that was introduced in the image is decreased by
increasing the number of samples. It can be concluded that
the robustness to image noise is directly related to the number
of particles in the estimation process. It can be noted that the
suitable number of samples for the depth estimation is 100
samples. This is a trade-off between the convergence speed and
the steady state error of the depth estimate.

4.3 Evaluation of the depth value

The essential objective of this work is to estimate the depth
value Z of the image features used in the image-based visual
servoing control law. The probabilistic framework of the depth
estimation gives multiple choices to the value of the depth Z
substituted in the interaction matrix within the control law.
Firstly, substituting the mean µz value of the probability density
function of the depth estimation. The mean value converges
very close to the real value in the second or third iteration.
This gives a high accuracy in the evaluation of the depth value.
The image trajectories, features error, velocity of the camera,
and the norm of the difference vector between the real depth
and the evaluated value are shown for this case in Fig. 9 ( a, c,
e, g). Secondly, after estimating the mean and variance of the
distribution, generate a random sample of it and substitute in
the control law. A larger variance final value is obtained by this
method. The convergence time is a little longer. However, the
second method looks more reasonable than the first one. The
image trajectories, features error, velocity of the camera, and
the norm of the difference vector between the real depth and
the evaluated value are shown for this case in Fig. 9 (b, d, f, h).

We can conclude that the depth estimation of the features’ depth
is useful for visual servo control. It provides a kind of stability
with respect to the depth estimates and the image noise. The
convergence time of the estimation process can be affected
directly by the image noise but it finally converges. Increasing
the number of samples is not always useful, an optimal choice
should be done to avoid large steady state error.

5. CONCLUSION AND FUTURE WORK

Image-based visual servoing is a simple and effective method
comparing with other visual servoing method like position-
based and hybrid visual servoing. The need to an estimation of
the depth value of the image features used in the control law is
the only weak point of it. It was proved that a rough estimation
of the depth does not give a guarantee to the stability of the
system, and the stability domain is not so wide. Estimating the
depth distribution using particle filters gives a fine estimation
of the depth. The simulation shows that the visual servoing
system is stable even in presence of a considerable amount of
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Fig. 8. This Figure shows the variance of the depth σz and as a function of the number of samples 50, 100, 1000, and 10000
samples in figures a, b, c, d respectively.
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Fig. 9. This Figure shows the image trajectory, features error, screw velocity, and the norm of the difference between the estimated
Z and the real value in (a, c, e, g) respectively, depth is measured in cm and velocity in m/sec and rad/sec. Using the time
estimated mean as a depth value in the control law and generating random sample of estimated distribution in (b, d, f, h).

image noise. Hundred samples are more than enough to get
a good estimation of the depth in visual servoing. This gives
the applicability of the algorithm in the real-time application of
visual servoing. The fine estimation of the depth increases the
stability domain of the system with respect to the error in the
depth estimation.

In future, we plan to merge the 3D estimation, represented by
the depth of the image features, with the 2D information avail-
able in the image in such a way to improve and overcome the
disadvantages of image-based visual servoing like the camera
trajectory in the Cartesian space.
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