
CEAI, Vol.18, No. 2, pp. 37-47, 2016 Printed in Romania

On the Security of a Backup Technique for
Database Systems based on Threshold

Sharing

Ruxandra F. Olimid, Dragoş Alin Rotaru

University of Bucharest, Romania
(e-mail: ruxandra.olimid@fmi.unibuc.ro, r.dragos0@gmail.com)

Abstract: Preserving data privacy is a challenging task, especially when long-term storage and
fault-tolerance are required. Long-term storage systems based on secret sharing appear as an
alternate solution to the traditional technique of data encryption and backup restore. Alouneh
et al. (2013) propose such a method, which they claim to be both secure and efficient. We show
their assertion is false and exemplify some vulnerabilities of their construction, which arise
natural from the deterministic behavior of their system.

Keywords: data storage; distributed databases; fault tolerance; system security; attacks.

1. INTRODUCTION

As electronic data volume increases daily, the necessity
for storage becomes more important. Part of the data is
sensitive and hence must be kept secret, sometimes for
long periods of time (decades or even centuries). Such
data might include classified military information, legal
documents or health records: a military file might remain
classified for centuries, a will should be kept secret until
the owner’s death, while the medical record of a patient
could be preserved secret even after his death.

Preserving information confidentiality for long time peri-
ods is a challenging task due to multiple threats encoun-
tered, like large-scale disasters, component faults, attacks
or human error (Baker et al. (2006); Storer et al. (2006)).
This is especially true nowadays, when organizations tend
to move their data in the cloud to decrease the costs
required to set up and maintain a data-center; data is thus
stored and processed beyond the close control of the owner.

A long-term storage system must satisfy (at least) the
following properties:

• Secure long-term storage. Data must be available
to qualified parties only; it should be infeasible for
unauthorized parties to access the data or even partial
information about the data through long periods of
time (years or decades);
• Availability. Data must remain accessible to autho-

rized users even in case of possible failures. Since the
data is stored for long periods of time, hardware or
software crashes are unavoidable, so the system must
provide redundancy to survive such losses;
• Data integrity. Data must be certified as original,

in the sense that the system attests the data to be
unchanged and unmodified.

The traditional solution to provide data confidentiality
is encryption. However, encryption is not theoretically
secure, being vulnerable to an adversary with unbounded

computational power. In practice, guidelines for proper us-
age of encryption systems are published yearly to prevent
usage of vulnerable algorithms or insufficient key length.
Thus, an encrypted file can be practically infeasible at the
moment is encrypted, but broken in only a few hours or
days after 50 years. A possible realization of large-scale
quantum computers would make many crypto-algorithms
insecure.

An alternative to the traditional solution are storage sys-
tems that use secret sharing, a cryptographic technique
that assures both perfect secrecy and redundancy. Wylie
et al. (2000); Subbiah and Blough (2005); Storer et al.
(2009) are only a few examples from literature that pro-
pose and analyze such solutions.

The current paper analysis the security of the recent
proposal of Alouneh et al. (2013), a long-term system
that uses Shamir’s secret sharing. We show the proposal is
insecure: an adversary can disclose some information about
the type and content of the stored data. The weaknesses
are caused by a flaw in the design: the algorithm is
deterministic, hence the construction breaks one of the
basic rule of security. For completeness, we indicate the
correct way to use secret sharing to avoid determinism
and show that practical results validate it.

The paper is organized as follows. Next section introduces
secret sharing and briefly reviews the related work on long-
term storage systems based on secret sharing. Section 3
compares encryption based and secret sharing based stor-
age systems. Section 4 presents the proposal of Alouneh
et al. (2013). Section 5 presents the theoretical vulnerabil-
ities of the system. Section 6 analyzes the practical results.
Section 7 reviews the correct usage of secret sharing to
avoid the presented vulnerabilities. Last section concludes.

2. SECRET SHARING AND RELATED WORK

Secret sharing is a cryptographic primitive introduced
independently by Blakley (1979) and Shamir (1979): a



38 Control Engineering and Applied Informatics

Fig. 1. A (2, 4)-secret sharing scheme used for file splitting

secret is split into multiple parts, called shares such that
later the secret can be recovered from any qualified set of
shares. If the scheme is perfect, then an unqualified set of
shares gives no information about the secret. Hence, even if
an attacker gains access to some shares, he learns nothing
about the secret data. The particular case of secret sharing
that requires at least k out of n shares for reconstruction
is called threshold secret sharing. Remark that threshold
secret sharing provides fault-tolerance by construction for
up to n− k unavailable shares.

Fig.1 exemplifies a (2, 4)-secret sharing: an original docu-
ment (e.g.: a curriculum vitae) is split into four shares such
that any two shares are enough for reconstruction and a
single share leaks no information about the document; the
scheme provides fault-tolerance: reconstruction remains
possible if one or two shares are lost.

Several systems were developed on top of secret sharing to
provide survivable information storage. Popular examples
includes the constructions of Wylie et al. (2000); Subbiah
and Blough (2005) and Storer et al. (2009).

Wylie et al. (2000) introduced PASIS, a decentralized
storage system that offers features like data redundancy,
self-maintenance and securing storage. PASIS depends on
clients that collect data based on filenames and send it to
multiple storage nodes. The system is built on (k, n)-secret
sharing and permits to rebuild lost shares in a secure way.

Subbiah and Blough (2005) proposed GridSharing as a
system that introduces a fault model based on byzantine
and leakage-only crashes. It uses a secret sharing scheme
based on XOR operations and server replication. The XOR
scheme for n participants and a secret file S consists
in generating n shares s1, s2, . . . , sn such that s1 ⊕ s2 ⊕
. . . ⊕ sn = S. Unlike PASIS, GridSharing is built on a
all-or-nothing secret sharing and thus requires additional
replication mechanisms to achieve fault resilience.

Storer et al. (2009) combines the principles of GridSharing
and PASIS by adding a pluggable type of independent au-
thorization domains and the possibility of secure migration
to new storage nodes. Their system, called POTSHARDS
uses two levels of secret sharing (the all-or-nothing XOR
scheme and the threshold scheme of Shamir (1979)), ap-
proximate pointers and RAID (Redundant Array of In-
dependent Disks) distributed algorithms to recover faulty
data. For a survey on RAID, we invite the reader to
address the work of Chen et al. (1994).

Other examples of systems that use secret sharing or
information dispersal include the work of Rhea et al.
(2001) (OceaneStore), Haeberlen et al. (2005) (Glacier),
Masinter and Welch (2006), Huhnlein et al. (2009) and
Resch and Plank (2011) (AONT-RS). Most of them were
experimentally tested or included in commercial systems:
OceaneStore prototype was made publicly available as
Pond prototype WebSite (2015f); Glacier was used as the
storage layer for ePOST serverless email system WebSite
(2015g); AONT-RS was implemented in Cleversafe prod-
ucts, which currently provide commercial data storage
solutions WebSite (2015b).

We invite the reader to refer to the original papers for more
details or to the work of Storer et al. (2006, 2009); Braun
et al. (2014) for a more comprehensive list of systems that
use secret sharing as a building block for secure storage.

3. ENCRYPTION VS SECRET SHARING

In the literature there exist two distinct approaches to
secure storage: (1) by using encryption and (2) by using
secret sharing. Subbiah and Blough (2005) and Storer et al.
(2009) compare these solutions in the preliminaries of their
papers.

The traditional method to build long-term storage systems
uses encryption - to preserve data secrecy - and backup
techniques - to allow data recovery in case of failure. Fig.2
illustrates this solution in its basic form.

To achieve information confidentiality, data is not stored
in clear, but encrypted: each time data is inserted in
the database, it is first encrypted (using a cryptographic
strong key) and then stored. When an authorized party
reads from the database, data is decrypted using the corre-
sponding key. Under the assumption of secure encryption,
decryption is computationally infeasible in the absence of
the correct key; hence, data remains inaccessible to all
unqualified entities. This keeps the information hidden
from an adversary even if he gains physical access to the

Fig. 2. Database storage architecture using encryption and
backup techniques



Control Engineering and Applied Informatics 39

Fig. 3. Database storage architecture using secret sharing
techniques

database. Efficient encryption algorithms exist (e.g. AES),
so the solution is fast and practical.

To achieve fault-tolerance, backup or other replication-
based techniques are used. Periodically, full and incremen-
tal backups replicate data to a distinct physical location.
In case of failure, the system performs data recovery from
backup.

Secret sharing-based systems represents an alternative so-
lution that provides data secrecy and reliability simul-
taneously, by splitting the information among multiple
storage points, located in different physical locations. Fig.3
illustrates this technique.

To write information, a controller located on the client-
side splits the data S into n (n > 2) shares and stores each
share to a different node. Reconstruction is later possible
from at least k out of n (k ≤ n) shares, where k is chosen
accordingly to the system requirements. Hence, when an
authorized user wants to read information, the authorized
client-side application recovers k or more shares and re-
builds the data. The solution provides perfect secrecy for
an adversary that gains access to less than k storage nodes:
when the adversary discloses data from less than k storage
nodes, he gains no information about the secret data. Since
the nodes are located in distinct physical locations and
protected by different security mechanisms, it is unlikely
for an adversary to access k or more nodes, for k properly
chosen.

Fault-tolerance is achieved by construction for k < n: the
system remains available for up to n− k nodes failures.

Secret sharing-based techniques might be more desirable
due to some advantages they provide over encryption-
based solutions:

• Encryption is computationally secure, which means
that it can only provide confidentiality against a com-
putational limited adversary; an attacker with un-
bounded computational power can break the secrecy
and hence access the data. On the other hand, secret
sharing can be theoretically secure, which means that
an adversary cannot break its security, regardless the
computational power; Shamir (1979) is an example of
perfect threshold secret sharing. Theoretical security
is important for long-storage systems, since the data
must be kept secret for decades or even centuries,

Fig. 4. Fault-tolerance using secret sharing techniques

during which an assertive adversary can permanently
try to break it and eventually succeed.

• Encryption-based techniques must deal with lost or
compromised keys; it should also periodically change
the keys and hence the key management becomes
difficult, in special in case of fine granted access since
the number of keys becomes large (note that the keys
must be stored securely and reliable). In contrarily,
secret sharing permits data reconstruction without
any external information, but only from the shares
stored in the nodes.

• Verifiable secret sharing achieves data consistency, by
attesting the veridity of the shares, and hence of the
information that is read from the database (Subbiah
and Blough (2005)). Encryption cannot achieve this
by default - additional mechanisms must be used.

However, secret sharing is not a perfect solution. First, it
combines security and data redundancy, which is some-
times undesirable. Second, it should allow share renewal
to prevent information disclosure, since the attacker can
gain access to enough storage nodes in time. Third, theo-
retically secure secret sharing might require large compu-
tational overhead; Subbiah and Blough (2005) and Braun
et al. (2014) analyze their practical limitations.

Nevertheless, encryption and secret sharing are not dis-
joint solutions. Constructions that combine encryption
and secret sharing exist. An example is CloudSeal, intro-
duced by Xiong et al. (2012), which integrates symmetric
encryption and threshold secret sharing along with other
mechanisms like proxy-based re-encryption and broadcast
revocation to deliver secure storage services in public
clouds.

4. THE DATABASE STORAGE SYSTEM

Alouneh et al. (2013) proposed a database partitioning
technique with fault-tolerance that they claim to be both
efficient and secure. Their proposal is based on the secret
sharing scheme of Shamir (1979) and hence maintains the
advantages of a (k, n)-threshold secret sharing: the data



40 Control Engineering and Applied Informatics

is split into n shares such that at least k shares allow
reconstruction.

Fig.5 explains shares computation and distribution. With-
out loss of generality, we assume binary data, after a
proper encoding of any electronic document. First, the
controller on the client-side splits the binary data into k-
bytes blocks, where k is the minimum number of available
storage nodes for data recovery. Second, each byte of the
block is used as a coefficient of a polynomial in the finite
field GF (256). Last, a share i is computed as the value of
the polynomial in i, i = 1, . . . , n.

Input: S a binary file from the original database,
n the number of the storage nodes, k the threshold
required for file recovery

Output: n binary files distributed to multiple storage
nodes

Shares Computation: The application on client-
side:

• breaks S into k-bytes blocks;

• pads the last block to k-bytes;

• feeds all bytes of a block into the coefficients of a
polynomial f(x) = ak−1x

k−1 + . . . + a1x + a0;

• calculates n values f(1), . . . , f(n);

• repeats the procedure for all blocks of the file S.

Shares Distribution: The application on the client-
side securely distributes the values f(i) to the storage
node i, i = 1, ..., n.

Fig. 5. Alouneh et al. (2013) - Distribution phase

Input: (At least) k binary files stored in distinct nodes

Output: S the binary file of the original database

Shares Computation: The application on the client-
side:

• reads the corresponding values f(i) from k dis-
tinct nodes;

• performs Lagrange interpolation and recovers the
coefficients of the polynomial f(x) = ak−1x

k−1 +
. . . + a1x + a0;

• builds a block of the original file as the concate-
nation of the coefficients;

• repeats the procedure for all blocks of the file S.

Fig. 6. Alouneh et al. (2013) - Reconstruction phase

At reconstruction, each block is rebuilt by polynomial
interpolation, from any set A of at least k shares:

f(x) =
∑
i∈A

f(i)
∏

j∈A,j 6=i

x− j

i− j
(1)

From the security of Shamir (1979), less than k shares
reveal no information about S. Fig.6 explains the recon-
struction in detail. Again, all computation is performed in
GF (256) using the irreducible polynomial x8 + x4 + x3 +
x+1, since all coefficients are bytes, but we omit to specify
this every time, since it is obvious from the context.

The main difference from the usual usage of Shamir’s
scheme in other storage systems is the selection of the
polynomial. While in general the polynomial is randomly
and uniformly chosen such that its free term represents the
data to be shared, Alouneh et al. (2013) use the original
data to feed in all the coefficients of the polynomial. This
approach considerably diminishes the dimension of the
shares, since each share only requires 1/k from the original
storage (every k bytes of the original file describe the
polynomial f and a share i consists in f(i)).

However, the system presents an important drawback: it
is deterministic (i.e. it always generates the same set of
shares for a given input S); hence, contrary to authors
claim, the system is insecure. We will motivate this in the
next section.

5. VULNERABILITIES

Alouneh et al. (2013) claim that their proposal is both
efficient and secure. More precisely, they affirm that data
confidentiality is inherited from the original sharing algo-
rithm. In fact, this is not true, because of the way the
scheme is used: the polynomial is not randomized, but
uniquely determined from the shared data. This means
the sharing is deterministic, i.e. a given file always splits
into the same shares. Hence, Alouneh et al. (2013) break
a basic rule of security: to employ randomness.

The deterministic behavior of the system leads to multiple
vulnerabilities and simple attacks. We illustrate next two
classes of weaknesses caused by the deterministic nature
of the algorithm when the shares are computed in order:
file type detection and file content detection. Both vulner-
abilities can be exploit by an adversary that gains access
to at least one storage node, regardless the threshold k.

Other gaps that exist in the original article might lead to
new attacks. For example, Alouneh et al. (2013) does not
specify the padding; it is well-known that a bad-chosen
padding can lead to system’s vulnerabilities.

5.1 File type detection

In computing, a short sequence of bytes placed at the be-
ginning of the file (the file’s signature or header) identifies
its format. Table 1 exemplifies the first 4 bytes of some
of the most popular file types. More file signatures can be
found online at WebSite (2015d).

Without loss of generality, let’s consider the case of a
pdf file. Independently of the content, the first 4 bytes
of the file are 25 50 44 46. This means that for k ≤ 4,



Control Engineering and Applied Informatics 41

Table 1. File signatures

File Type First 4 bytes of header

doc D0 CF 11 E0
gif 47 49 46 38
pdf 25 50 44 46
png 89 50 4E 47
rar 52 61 72 21
wav 52 49 46 46
zip 50 4B 03 04

Table 2. The shares of the first block (k = 2)

File Type Node 1 Node 2 Node 3 Node 4 Node 5
(i = 1) (i = 2) (i = 3) (i = 4) (i = 5)

doc 31 85 154 193 14
gif 14 213 156 120 49
pdf 117 133 213 126 46
png 217 41 121 210 130
rar 51 144 241 205 172
wav 27 192 137 109 36
zip 27 198 141 103 44

the polynomial f(x) that corresponds to the first block is
always the same; hence, if the node index i is fixed, the
first share always equals a same value f(i), regardless the
content of the pdf file that is stored.

In consequence, an adversary that gains access to a single
storage node can group the sets of shares based on the
value of the first share; all sets of shares within the same
group correspond to the same file type.

In addition, under the same assumption that the nodes
maintain the same index i and the adversary gains knowl-
edge of both i and k, the adversary can determine (with
good probability) the file type from the value of the first
share. The assumption seems plausible, since k is not secret
and i must be known for reconstruction, so it can leak.

To exemplify, an adversary can distinguish (with high
probability) between doc, gif, pdf, png, rar, wav and zip
files. Table 2 lists the shares for k = 2 and n = 5. If the
adversary gains access to the first node and reads the share
31, then he learns it corresponds to a doc file; similarly,
if he gains access to the third node and reads 121, then
he learns it corresponds to a png file. If the first node is
vulnerable and the adversary reads 27 , he knows the file
is either wav or zip; however, he can distinguish between
wav and zip files when disclosing data in any other node i,
i = 2, . . . , 5, since the values of the shares that correspond
to the two file types are distinct.

5.2 File content type detection

Multiple documents follow a specific template; such exam-
ples include contracts, invoices, financial documents and
curriculum vitae. Since some of the data within these
files remains unchanged and only the filled in information
differs, the ratio of common shares can be high. Hence,
when the attacker gains access to a database node that
contains shares of distinct documents, he can determine
the file content type by analogy.

The particular content of file is also easy revealed from a
single set of shares. For example, a file containing lots of
repeating bytes leads to the existence of duplicate blocks
of data and hence duplicate polynomials. In consequence,
the shares repeat periodically. Even worst, the existence
of all-zeros blocks lead to zero value for all shares.

6. IMPLEMENTATION AND RESULTS

To show the applicability of our observations in practice,
we have implemented the proposal of Alouneh et al. (2013)
and run some test cases.

For implementation, we used Python 3.0 programming
language, under ArchLinux OS. Python is a dynamic pro-
gramming language available under open source license
(WebSite (2015h)). Serializing the data for inter-process
communication was done with the Ceralizer package Web-
Site (2015a), while the shares distribution was plotted
using the Matplotlib package (Hunter (2007); WebSite
(2015e)).

The original work of Alouneh et al. (2013) skips to mention
any padding method; hence, we choose a simple and
standardized method for padding: pad the last block with
80 00 00 . . . 00 until the size of the block reaches k-bytes.
We mention the padding method for completeness only,
since padding does not affect our results - the analysis is
performed on the header, respectively the beginning of the
shared files.

6.1 File type detection

Again, we consider the file types from Table 1.

We now extend the analysis we performed in Subsection
5.1 for k = 2 and increase the index i until two shares
become equal. Let fl be the 1-degree polynomial that
corresponds to the first block of the file type listed on
line l; similarly, let fc be the 1-degree polynomial that
corresponds to the first block of the file type listed on
column c. Table 3 lists the maximum i such that fl(i) 6=
fc(i). Value −1 denotes no collision exists for i, i =
1, . . . , 255 (i.e. 6 ∃1 ≤ i ≤ 255 s.t. fl(i) = fc(i)).

It is immediate that the first diagonal can be ignored, since
for k ≤ 4 all shares are equal. Also, note that Table 3 lists
0 for (wav,zip) pair, since fwav(1) = fzip(1) = 27 as results
from Table 2.

Tables 4 and 5 list the results for k = 3, respectively k = 4.
We remark that k ≥ 5 requires more than four bytes in the
header; however, such values for k are more rarely used in
practice and we ignore them in our analysis.

Under the exact description of Alouneh et al. (2013) given
in Fig.5 a storage node i, i = 1, . . . , n always receives f(i)
as a share (i.e. the shares are computed in order and a node
i always receive the value of the polynomial evaluated at
i). This means that an adversary that gains access to a
single storage node i can distinguish between any two file
types with probability 1 if i is less than the value listed
in the table. For example, an adversary that gains access
to a single storage node in a storage system using k = 2
can distinguish between doc and gif files with probability
1 if i ≤ 169. Since n > 169 is totally impractical, the file



42 Control Engineering and Applied Informatics

Table 3. Maximum value of i s.t. the shares of
the first block are distinct (k = 2)

File Type doc gif pdf png rar wav zip

doc - 169 194 209 170 206 110
gif 169 - 133 137 75 -1 133
pdf 194 133 - -1 115 151 133
png 209 137 -1 - 229 147 195
rar 170 75 115 229 - -1 42
wav 206 -1 151 147 -1 - 0
zip 110 133 133 195 42 0 -

Table 4. Maximum value of i s.t. the shares of
the first block are distinct (k = 3)

File Type doc gif pdf png rar wav zip

doc - 63 -1 -1 -1 -1 -1
gif 63 - -1 -1 -1 -1 -1
pdf -1 -1 - 164 -1 119 -1
png -1 -1 164 - 143 122 129
rar -1 -1 -1 143 - 143 -1
wav -1 -1 119 122 143 - 172
zip -1 -1 -1 129 -1 172 -

Table 5. Maximum value of i s.t. the shares of
the first block are distinct (k = 4)

File Type doc gif pdf png rar wav zip

doc - -1 38 95 1 95 98
gif -1 - -1 -1 167 -1 -1
pdf 38 -1 - 12 11 119 70
png 95 -1 12 - 243 95 148
rar 1 167 11 243 - -1 94
wav 95 -1 119 95 -1 - -1
zip 98 -1 70 148 94 -1 -

detection works. As a result of the high values obtained
and the multitude of −1, an adversary can distinguish with
high probability between the considered file types (except
wav and zip for k = 2, as already explained).

The file type detection remains feasible under the weaker
assumption that the storage nodes are not indexed in a
row, but arbitrary, as long as they maintain the same
index for multiple sharings, i.e. the client-side application
computes n values f(i1), . . ., f(in), for distinct i1, . . . , in,
but maintains ij associated to node j. Under this scenario,
value −1 corresponds to an attack that succeeds with
probability 1 when the adversary gains access to a single
storage node. Value −1 is most frequent for k = 3,
indicating the low security of the system.

6.2 File content type detection

We now consider the scenario of content detection and
show how an adversary is able to distinguish if two shares
stored in a single node correspond to documents with
similar content or not. The attack only assumes that the
adversary gains access to a single storage node, regardless
the threshold k.

For the experiment, we used three PDF files, available
online at WebSite (2015c):

(1) Europass Curriculum Vitae - BG, Bulgaria;

(2) Europass Curriculum Vitae - DK, Denmark;

(3) Europass Mobility - RO, Romania.

The first two files follow the European CV template in
Bulgarian and Danish. We note that the language of
the template also differs, not only the content - which
makes the adversary’s guess even harder. The third file
has completely different content than the first two, being
an Europass Mobility document in Romanian language.

To demonstrate the file content detection vulnerability of
Alouneh et al. (2013), we give the three files as input
to the (2, 4) storage system. This experiment represents
a practical implementation of the scenario described in
Fig.1.

Fig.7, Fig.8, Fig.9 and Fig.10 plot the first 2000 shares for
each of the three files, as they are stored in the databases
in storage nodes 1, 2, 3 and respectively 4. Notice that
we assume the index i is fixed, hence for each figure, all
polynomials are evaluated at the same i.

An adversary that gains access to a single storage node,
learns the view of the shares for the given database.
Without loss of generality, suppose the adversary discloses
the shares in Fig.7. He can easily notice that the first two
files have many common shares and hence have similar
content, while they differ from the third file. We emphasize
that the adversary must not disclose all the shares to
gain this knowledge, since he can conclude this with good
probability from only several shares that correspond to the
common data, which exist due to the template of the files;
in this particular case, the adversary can conclude with

Fig. 7. Database 1: Plot of the shares for the first 2000
blocks



Control Engineering and Applied Informatics 43

Fig. 8. Database 2: Plot of the shares for the first 2000
blocks

Fig. 9. Database 3: Plot of the shares for the first 2000
blocks

Fig. 10. Database 4: Plot of the shares for the first 2000
blocks

good probability if he only gains access to several shares
within the range 0− 500.

The difference between the first two and the third subplots
visually holds for all four databases, hence the adversary
succeeds regardless which node is vulnerable.

A second scenario illustrates the pattern of the shares
values for a file that contains periodically repeating in-
formation. Let the picture in Fig.11 be the input of the
(2, 4) storage system.

Same as before, Fig.12, Fig.13, Fig.14 and Fig.15 plot
the shares that are stored in the four distinct located
databases. It is visually clear that several values repeat
very often; this implies a repeating pattern in the original
file. Hence, under the assumption that the adversary
gains access to at least one storage node (regardless the
threshold of the scheme), he learns if the file contains a
repeating pattern.

Fig. 11. A pattern-repeating image



44 Control Engineering and Applied Informatics

Fig. 12. Database 1: Plot of the shares for the first 2000
blocks

Fig. 13. Database 2: Plot of the shares for the first 2000
blocks

Fig. 14. Database 3: Plot of the shares for the first 2000
blocks

Fig. 15. Database 4: Plot of the shares for the first 2000
blocks

To conclude, we emphasize that all vulnerabilities pre-
sented in the current section are caused by the deter-
ministic behavior of the system. In general, a randomized
long-storage system based on secret sharing combat such
weaknesses, as we will show in the next section.

7. CORRECT USAGE OF SECRET SHARING

Alouneh et al. (2013) adopt threshold secret sharing in an
untraditional way to gain efficiency: they use the original
data to feed in all the coefficients of the polynomial. But
this approach ruins security, as we have shown in the
previous section. The traditional usage of Shamir’s secret
sharing, which consists in feeding only the free coefficient
from the input and randomly select the other coefficients,
eliminates the deterministic behavior of the system and
hence the presented vulnerabilities.

We omit the full description of the algorithms that im-
plement the traditional approach to avoid repetition. The
distribution phase is the one in Fig.5, except that a polyno-
mial f(x) is randomly picked for each byte of data: the free
coefficient is the data itself, while the others are randomly
chosen. The reconstruction phase remains similar to the
one in Fig.6, except that it recovers a single byte of data
(the free coefficient) from one polynomial interpolation.

It is immediate that under this settings, the system be-
comes non-deterministic and hence both attacks exploited
in the previous section become useless. For completeness,
we implemented the randomized algorithms and run the
experiments for file content type detection under the same
test cases. Note that 2000 blocks in the experiments in
Section 6.2 correspond to 4000 bytes of data (k = 2)
and hence we now plot 4000 shares to consider the same
amount of bytes shared from the original file.

Fig.16, Fig.17, Fig.18 and Fig.19 plot the first 4000 shares
for each of the three files (Europass Curriculum Vitae -

Fig. 16. Database 1: Plot of the shares for the first 4000
bytes



Control Engineering and Applied Informatics 45

Fig. 17. Database 2: Plot of the shares for the first 4000
bytes

Fig. 18. Database 3: Plot of the shares for the first 4000
bytes

Fig. 19. Database 4: Plot of the shares for the first 4000
bytes

BG, Bulgaria, Europass Curriculum Vitae - DK, Denmark,
Europass Mobility - RO, Romania) as they are stored in
the databases in storage nodes 1, 2, 3 and respectively
4. In comparison to the system proposed by Alouneh
et al. (2013), the graphics reveal no information about the
related content of the original files.

The same result holds for the second scenario, when there
is no pattern in the shares values obtained by sharing the
strong repeating pattern file from Fig.11. Same as before,
Fig.20, Fig.21, Fig.22 and Fig.23 plot the shares that are
stored in the four distinct located databases. It is visually
clear that none of the set of shares indicates a repeating
pattern in the original file.

Fig. 20. Database 1: Plot of the shares for the first 4000
bytes



46 Control Engineering and Applied Informatics

Fig. 21. Database 2: Plot of the shares for the first 4000
bytes

Fig. 22. Database 3: Plot of the shares for the first 4000
bytes

Fig. 23. Database 4: Plot of the shares for the first 4000
bytes

8. CONCLUSION

Alouneh et al. (2013) recently introduced a secret sharing-
based technique for long-term storage, which they claim
to be both efficient and secure. We proved their assertion
is false and reveal some vulnerabilities that are caused
by the deterministic behavior of the construction. Both
vulnerabilities assume the adversary gains access to at
least one storage node, regardless the threshold of the
system.

First, we remarked that an adversary can distinguish
between common file types or even learn the format or
a stored file with non-negligible probability.

Second, we observed that an adversary can distinguish
between distinct documents templates, which are stored in
the system or he can determine if a file contains repeated
patterns.

Finally, to show the applicability of our claims, we im-
plemented the construction of Alouneh et al. (2013) in
Python and run some test cases. For file type detection,
we considered seven widely spread file types (doc, gif, pdf,
png, rar, wav, zip), but our analysis can be applied to
other types as well; for content detection, we used publicly
available filled-in templates and a pattern-repeating black-

and-white image. All conducted test cases supported our
theoretical observations.

For completeness, we present the traditional way to use
secret sharing in storage systems and emphasize that
randomization eliminates the presented attacks.

ACKNOWLEDGEMENTS

Ruxandra F. Olimid was supported by the strategic grant
POSDRU/159/1.5/S/137750, ”Project Doctoral and Post-
doctoral programs support for increased competitiveness
in Exact Sciences research” cofinanced by the European
Social Found within the Sectorial Operational Program
Human Resources Development 2007-2013.

REFERENCES

Alouneh, S., Abed, S., Mohd, B.J., and Kharbutli, M.
(2013). An efficient backup technique for database
systems based on threshold sharing. JCP, 8(11), 2980–
2989.

Baker, M., Shah, M.A., Rosenthal, D.S.H., Roussopoulos,
M., Maniatis, P., Giuli, T.J., and Bungale, P.P. (2006).
A fresh look at the reliability of long-term digital stor-
age. In Proceedings of the 2006 EuroSys Conference,
221–234.

Blakley, G.R. (1979). Safeguarding cryptographic keys.
In Proceedings of the 1979 AFIPS National Computer
Conference, 313–317.

Braun, J., Buchmann, J.A., Mullan, C., and Wiesmaier,
A. (2014). Long term confidentiality: a survey. Des.
Codes Cryptography, 71(3), 459–478.

Chen, P.M., Lee, E.K., Gibson, G.A., Katz, R.H., and Pat-
terson, D.A. (1994). RAID: high-performance, reliable
secondary storage. ACM Comput. Surv., 26(2), 145–185.

Haeberlen, A., Mislove, A., and Druschel, P. (2005).
Glacier: Highly durable, decentralized storage despite
massive correlated failures. In Proceedings of the 2nd
Conference on Symposium on Networked Systems De-
sign & Implementation - Volume 2, NSDI’05, 143–158.

Huhnlein, D., Korte, U., Langer, L., and Wiesmaier, A.
(2009). A comprehensive reference architecture for
trustworthy long-term archiving of sensitive data. In
New Technologies, Mobility and Security (NTMS), 2009
3rd International Conference on, 1–5.

Hunter, J.D. (2007). Matplotlib: A 2D graphics environ-
ment. Computing in Science and Engineering, 9(3), 90–
95.

Masinter, L. and Welch, M. (2006). A system for long-
term document preservation. In Archiving Conference,
volume 2006, 61–68. Society for Imaging Science and
Technology.

Resch, J.K. and Plank, J.S. (2011). AONT-RS: Blending
security and performance in dispersed storage systems.
In Proceedings of the 9th USENIX Conference on File
and Stroage Technologies, FAST’11, 14–14.

Rhea, S., Wells, C., Eaton, P., Geels, D., Zhao, B., Weath-
erspoon, H., and Kubiatowicz, J. (2001). Maintenance-
free global data storage. Internet Computing, IEEE,
5(5), 40–49.

Shamir, A. (1979). How to share a secret. Commun. ACM,
22(11), 612–613.

Storer, M.W., Greenan, K.M., and Miller, E.L. (2006).
Long-term threats to secure archives. In Proceedings



Control Engineering and Applied Informatics 47

of the 2006 ACM Workshop On Storage Security And
Survivability, 9–16.

Storer, M.W., Greenan, K.M., Miller, E.L., and Voruganti,
K. (2009). POTSHARDS - A secure, recoverable, long-
term archival storage system. TOS, 5(2).

Subbiah, A. and Blough, D.M. (2005). An approach for
fault tolerant and secure data storage in collaborative
work environments. In Proceedings of the 2005 ACM
Workshop On Storage Security And Survivability, 84–
93.

WebSite (2015a). Cerealizer package. Last accessed: July,
2015.
https://pypi.python.org/pypi/Cerealizer.

WebSite (2015b). Cleversafe. Last accessed: July, 2015.
http://www.cleversafe.com/.

WebSite (2015c). Europass - download examples. Last
accessed: July, 2015.
http://www.europass.cedefop.europa.eu/ro/home.

WebSite (2015d). File signatures - 512 file signatures. Last
accessed: July, 2015.
http://www.filesignatures.net/.

WebSite (2015e). Matplotlib package. Last accessed: July,
2015.
https://pypi.python.org/pypi/matplotlib.

WebSite (2015f). Oceanestore. Last accessed: July, 2015.
http://www.oceanstore.org/.

WebSite (2015g). Oceanestore. Last accessed: July, 2015.
http://www.epostmail.org/.

WebSite (2015h). Python programming language - official
website. Last accessed: May, 2015.
https://www.python.org/.

Wylie, J.J., Bigrigg, M.W., Strunk, J.D., Ganger, G.R.,
Kiliççöte, H., and Khosla, P.K. (2000). Survivable
information storage systems. IEEE Computer, 33(8),
61–68.

Xiong, H., Zhang, X., Yao, D., Wu, X., and Wen, Y.
(2012). Towards end-to-end secure content storage and
delivery with public cloud. In Proceedings of the Second
ACM Conference on Data and Application Security and
Privacy, CODASPY ’12, 257–266.


