CEALI, Vol.18, No. 1, pp. 68-77, 2016

Printed in Romania

VMXHAL: A Versatile Virtualization
Framework for Embedded Systems

Lucian Mogosanu * Mihai Carabas* Razvan Deaconescu *
Laura Gheorghe * Valentin Gabriel Voiculescu **

* Faculty of Automatic Control and Computers, University
POLITEHNICA of Bucharest, Splaiul Independentei nr. 813, Sector 6,
Bucuresti, 060042 (e-mail: lucian.mogosanu, mihai.carabas,
razvan.deaconescu, laura.gheorghe@cs.pub.ro)

** VirtualMetriz, Inc., 16738 Zumagque Street, PO Box 569, Rancho
Santa Fe, CA 92067 (e-mail:gabi@uirtualmetriz.com)

Abstract: Given the continuous evolution of hardware capabilities for embedded systems,
the idea of virtualization becomes practical. Virtualization on embedded systems provides the
running of multiple types of applications on the same platform and reduction in hardware and
power consumption costs through consolidation of existing functionality. We present a versatile
virtualization framework, VMXHAL, that we designed, implemented and deployed on embedded
systems, ranging from development boards to fully fledged hand-held devices. VMXHAL uses a
reduced Trusted Computing Base of only 25,000 lines of code (compared to Xen’s 150,000 lines
of code), comprising a thin layer L4 microkernel and a minimal set of management applications.
The thin layer design provides versatility allowing both baremetal (or native) applications and
paravirtualized operating systems. As proof of concept, we built a virtualized dual-Android
setup: two Android operating systems running simultaneously on a Galaxy Nexus phone, on

top of our virtualization framework.

Keywords: Operating systems, Embedded systems, Virtualization, Microkernel, Security,

Android.

1. INTRODUCTION

Embedded systems have known continuous advances in
recent years, from small devices to fully fledged handsets.
There has been constant development both in terms of
hardware and applications. Current high-end embedded
hardware such as System-on-Chips (SoCs) found in hand-
held devices provide quad-core CPUs and gigabytes of
RAM to the user. From a software perspective, Google
Play Store gathers millions of applications designed for
mobile devices.

Given the continuous evolution of hardware capabilities
for embedded systems, the idea of virtualization becomes
practical. Benefits of virtualization on embedded devices
include reducing power and hardware costs through con-
solidation, preserving legacy code, enhancing security and
availability through application isolation, as shown in (In-
tel Embedded Alliance, 2011). (Heiser, 2011) describes
how virtualization use cases include running multiple op-
erating systems and run-time environments on the same
embedded system, securing communication devices, medi-
cal devices, automotive infotainment, smart home servers.

With the current state of capabilities for embedded sys-
tems, there are several projects out there that tackle the
use of virtualization in the embedded world. (Heiser and
Leslie, 2010), the Integrity Multivisor®, (Lackorzynski
et al., 2004), and (Hwang et al., 2008) use virtualization

1 http://www.ghs.com/

technology in order to run virtualized operating systems
(mostly Linux and Android) on top of high-end embedded
hardware.

However, current approaches provide little support for
dynamic management and control of virtual machines (or
domains) running on top of embedded hardware; where
that is happening (Hwang et al., 2008), the hypervisor is
rather large, meaning an extensive weight on the Trusted
Computing Base. At the same time, though drivers repre-
sent most of the operating system code and are the cause
of a large number of failures, existing solutions provide
little support for isolating device drivers and I/O manage-
ment functionality from other components, as described
by (Ryzhyk et al., 2009).

We present VMXHAL, a versatile virtualization frame-
work that we have designed, implemented and deployed
on embedded systems, ranging from development boards
to fully fledged hand-held devices. Our framework provides
a thin virtualization layer of around 25,000 lines of code
with dynamic management features and isolation of I/O
device drivers.

VMXHAL is based on a minimal core, an L4 microker-
nel acting as a hypervisor, also providing support for
baremetal (or native) applications. For dynamic control
and domain management we designed a resource man-
agement mechanism, called ResourceControl, into the mi-
crokernel. We use it to implement SecDom0, a native

CONTROL ENGINEERING AND APPLIED INFORMATICS

69

application that provides resource management policies,
while retaining the goal of a minimal Trusted Computing
Base. On top the L4 microkernel, we add VirtOps, an
infrastructure based on the Linux kernel providing device
driver virtualization and isolation without compromising
critical system functionality. We use paravirtualization to
enable Linux-based operating systems to run on top of
the microkernel, ensuring support for platforms that offer
limited hardware virtualization features.

As proof of concept, we built a virtualized dual-persona
Android setup: two Android operating systems running
simultaneously on a Galaxy Nexus phone, on top of
our virtualization framework. Moreoever, the framework
is deployed and runs on Pandaboard, using the same
OMAP4 SoC as Galaxy Nexus, on Beagleboard, using
OMAP3, and on the ARMv5 gumstix emulator. We are
currently in the process of porting it on a Nexus 4 phone.

The contributions of this paper are as follows:

e We present a novel virtualization framework design
that provides versatility through a thin virtualization
layer, dynamic control features and isolation of 1/0
device drivers. It allows running both baremetal ap-
plications and paravirtualized operating systems.

e We describe ResourceControl a resource management
mechanism that allows implementing SecDom0. Sec-
Dom0 provides dynamic management of virtual ma-
chines (domains).

e We show how we use VirtOps, a Linux-based infras-
tructure, for providing I/0 virtualization to domains
running on top of VMXHAL.

e We present a dual-persona Android setup consisting
of two Android operating systems running on top of
the the framework and the challenges of getting them
to run. The two Androids run on a Galaxy Nexus
phone with current effort to bring them to a Nexus 4
phone.

The rest of the paper details the architecture, design
principles, implementation details and evaluation of the
framework. Section 2 briefs the most important concepts
used throughout our work. Section 3 presents the architec-
ture and design principles of the virtualization framework
with Section 4 showing some of the technical challenges we
have faced. Evaluation of the framework is shown in the
form of the Dual Android phone in Section 5 and potential
use cases in Section 6. We present similar approaches in
Section 7 and provide final remarks in Section 8.

2. BACKGROUND

This section highlights the concepts required to describe
our framework. In the first part we define microkernels
and place them in the context of embedded systems. The
second part discusses virtual machines and mechanisms
used by microkernels to meet virtualization criteria.

2.1 Microkernels

Microkernels are a particular choice with respect to op-
erating systems kernel design: they are built under the
assumption that a kernel should only manage components
that are absolutely needed to run a computer system.

Microkernels also focus less on functionality and more on
mechanisms, thus providing a separation between mech-
anism and policy. Usually they implement minimal func-
tionality, comprising Inter-Process Communication (IPC)
mechanisms, scheduling and abstractions for virtual mem-
ory and execution. This design philosophy is aimed to-
wards reliability, separating critical components from the
rest of the system.

While microkernels are more general-purpose than tradi-
tional Real-Time Operating Systems (RTOS), their min-
imal design approach makes them well-suited to run on
modern embedded systems such as mobile phones or au-
tomotive platforms. Their versatility allows them to run
dedicated tasks and general-purpose applications at the
same time, while isolating the former from the latter.

Early examples of microkernels are given in (Hansen,
1970; Wulf et al., 1974; Cheriton, 1984; Accetta et al.,
1986). Later microkernels, named second-generation mi-
crokernels, are described by (Tanenbaum et al., 1987) and
(Liedtke, 1995). The L3 and L4 microkernels were built
by Jochen Liedtke in the 1990s to illustrate that some of
the limitations of earlier microkernels can be eliminated by
design, the main problem addressed being performance.

Subsequent rewrites led to the so-called “L4 family”: a
number of derivatives designed on the same principles as
L4, with the goals of performance and security in mind.
We use an L4 microkernel to implement our framework.
Other modern microkernels based on L4 are presented in
Section 7.

2.2 Virtualization

Virtualization defines a software component called a hy-
pervisor, that acts as an extended hardware abstraction
for multiple virtual machines (VMs) and is responsible
for management tasks such as virtual machine scheduling.
Depending on the nature of the hypervisor, virtualization
architectures are divided into two distinct types. Type I
hypervisors, also called baremetal hypervisors, run on the
top of the host, turning it into a dedicated virtualization
environment. Type II hypervisors, known as hosted hyper-
visors, run as privileged components of a general-purpose
operating system and often use the operating system’s
interface to achieve virtualization.

Microkernel-based hypervisors, dubbed microvisors (Heiser
and Leslie, 2010), are type I hypervisors, relying on the
microkernel interface to manage VMs. Since microkernels
offer only a minimal set of mechanisms, they only virtu-
alize a subset of the physical machine’s hardware, namely
processors and memory. Guest operating systems running
on top of microkernels access 1/O devices either by running
most of the native drivers or by implementing a set of
stub drivers that communicate with native microkernel
applications or other virtual machines.

Most microvisors achieve isolation by implementing sup-
port for containers known as protection domains, as shown
in (Ruocco, 2008; Lackorzynski and Warg, 2009). VMX-
HAL implements a similar mechanism called secure do-
mains (SecDoms), providing isolation between guest oper-
ating systems as well as native applications. Secure access
to kernel objects is often implemented by microkernels

CONTROL ENGINEERING AND APPLIED INFORMATICS

Linux VM
Linux
user space
1/0 server
VirtOps VirtOps Linux kernel Baremetal
server <& client . .
SecDom0 < application
T A A A

A 4

ResourceControl

| Hardware

L4 Microkernel

Fig. 1. Architectural diagram of the virtualization frame-
work

using interfaces based on capabilities (Shapiro et al., 1999;
Elkaduwe et al., 2008).

Given that hardware-assisted virtualization has yet to be-
come mature on most embedded architectures (Mijat and
Nightingale, 2014), microkernel-based hypervisors usually
rely on paravirtualization to run guest operating systems:
modify the guest operating system to replace privileged in-
structions with microkernel mechanisms. Guest user space
applications run unmodified on the physical processor,
trapping into the microkernel when privileged operations
(synchronous or asynchronous interrupts) are executed.
The microkernel then forwards the trap through an IPC
to the guest kernel, which is modified to treat operations
such as system calls and interrupts as IPC messages.
Thus they are able to meet another criterion required for
virtualization.

Finally, since most instructions on general-purpose em-
bedded system architectures are unprivileged instructions,
guest operating system performance is generally similar to
that of its native counterpart. Many of the performance
improvement efforts done in microvisors have achieved
significant benefits (Wiggins et al., 2003).

3. ARCHITECTURE

The general architecture of our virtualization framework
is outlined in Figure 1 and consists of the following:

e an L4 microkernel running in privileged mode

e a user space resource management application called
SecDom0, implementing resource allocation policies
and runtime management functionality for secure
domains

e an I/0 server secure domain, with direct hardware
access capabilities, offering device driver functionality
to other secure domains

e one or more Virtual Machines, particularly Linux-
based operating systems

e one or more baremetal applications, running natively
(without operating system support) on top of the L4
microkernel

We will describe the components mentioned above in the
rest of this section.

The L4 microkernel acts as a hypervisor, providing mini-
mal mechanisms such as thread scheduling, address space
management, IPC or resource control. Isolation between

components is achieved through SecDoms: each user space
application (virtual machine or native application) runs
in its own SecDom, being able to access only its own
resources.

Microkernel resources are seen by user space entities as
capabilities. While a particular capability is normally ac-
cessible only to threads inside a SecDom, the application
designer can define inter-SecDom capabilities to imple-
ment communication with trusted drivers and other fea-
tures such as virtual interrupts.

User space components are built using a set of L4 libraries
providing access to the microkernel API. These are used
by a more high-level interface that consists of a C library
and a subset of the functionalities specified by the POSIX
standard, containing for example the POSIX Threads
library.

The microkernel only provides mechanisms for multiplex-
ing access to the hardware resources, but there isn’t any
mechanism for explicit resource management. Questions
such as “How much memory needs to be allocated for an
operating system?” and “How many threads can exist in
the system for a secure domain?” cannot be answered by
the microkernel.

Resources are hard-coded at build time and can’t be
changed while the system is running, as the microkernel
doesn’t expose any interface to modify those values. As
such, there is a need for a service running above the
microkernel to take care of resource allocation for secure
domains and for barebone applications running on top of
microkernel.

8.1 SecDom0

In order to provide resource management, we propose
a solution that creates a new special secure domain,
called SecDom0. SecDom0 will be the only Secure Domain
started at the beginning of the world?; the rest of the
system will be controlled by this management component.
The total available resources are granted to SecDom0,
which will further allocate them to each new operating
system instance on demand. This solution resembles that
proposed by (Barham et al., 2003), with the difference
that the management domain is much thinner in the
implementation presented in this paper, as Xen uses a
modified Linux kernel as DomainO (this is their own
appellation). The Xen hypervisor consists of 150,000 lines
of code ® , while our virtualization layer comprises of 25,000
lines of code.

Before describing SecDom0, we list the resources provided
by the microkernel. These resources are coupled to the
hardware components. For example, a CPU is a resource
that may not be partitioned, but a thread is a resource
that enables CPU sharing.

In order for a secure domain (e.g. operating system in-
stance) to run on top of the microkernel, the following
resources are required:

e an initial address space

2 beginning of the world - after the microkernel starts
3 http://wiki.xen.org/wiki/Xen_Overview

CONTROL ENGINEERING AND APPLIED INFORMATICS

71

e a capability list
e an initial thread to bootstrap the secure domain
e physical memory chunks/segments available

Providing the hardware abstractions presented above, Sec-
Dom0 can boot up any secure domain by allocating these
resources, but particular steps need to be taken. The
SecDom0 action flow is as follows:

(1) An executable file in ELF format is generated by the
programmer/user for a secure domain

(2) The ELF file is enriched with information about oper-
ating system resource requirements. Such information
is the mechanism of interaction between any secure
domain and SecDom0 when it comes to resource re-
quests.

(3) The ELF file is uploaded on a storage device from
where it is being read and interpreted using an ELF
loader, developed in-house.

(4) Resources indicated in the enriched ELF file are al-
located to the Secure Domain through an assignment
process using the system calls provided by the micro-
kernel.

In the end, the initial thread (called root thread) is started,
becoming the entry point from where any guest operating
system bootstraps itself. This process can be thought of
as an analogy to a bootloader where it takes care of all
the low-level initializations until the operating system can
start booting on its own.

4. IMPLEMENTATION DETAILS

Section 3 presented a top-level view of VMXHAL, our vir-
tualization framework. The lower parts of the architecture
are the L4 microkernel, SecDom0 and native libraries that
need to be glued up to work together. This section will
extend implementation specific details for some of the ba-
sic native libraries, such as resource management and 1/0
virtualization. These form the basis of your virtualization
framework. The development environment is described in
subsection 4.2.

4.1 Resource Management

Designing SecDom0 revealed a deficiency in the microker-
nel mechanisms. There were no means through which one
could create a new Secure Domain at runtime and bind to
it a subset of the creator/parent’s resources. Investigation
lead us to the point where a new system call, which we
called ResourceControl, was required.

Using the ResourceControl system call, resources of a
Secure Domain can be altered and certain actions could
open security breaches. If SecDom0 would create two new
Secure Domains and would bind certain resources to each
one, separation needs to be ensured: one Secure Domain
couldn’t access and control the other’s resources, though
these resources had initially been part of the same Secure
Domain.

This separation is ensured by setting limits (base and
size) for the capability list as a subset of the original list
for each resource type. Creation of new Secure Domains
can be done recursively; the system may end up with a
hierarchical set of Secure Domains. Resource access rights

are set up in such a way that any Secure Domain may
access and modify any resources of his own, of its child
Secure Domains or any other successor.

This feature allows one guest operating system to create
as many Secure Domains as it wants (e.g. for each device
driver), with no interaction with SecDom0 (its parent),
thus ensuring a safe environment that can’t be easily
exploited. This no-interaction with SecDom0O supports a
weakly coupled distributed system where SecDom0 is not
a bottleneck; SecDom0 only deals with operating system
boot up, not with the fine-grained management of guest
requests.

Before the addition of the ResourceControl system call,
resources for future Secure Domains had been statically
configured through the build system. After initialization,
the microkernel allocated necessary resources for all Secure
Domains. Moving from static hard-coded allocation to
dynamic management, where each Secure Domain may
be independently controlled, comes with a cost of perfor-
mance. The static allocation of resources at the beginning
of the world (system startup) is done by the microkernel
at system initialization without requiring a given system
call to be invoked. Using dynamic management, SecDom0
runs in the user space of the microkernel and a system
call is required for each resource-related operation, adding
overhead.

Table 1. Secure Domain loading time — Static
vs. Dynamic

SecDom Static (ms) Dynamic (ms)
Lightweight 1.3 22
Heavyweight 10 400

Table 1 provides a short overview of the time spent in
creating a Secure Domain by the microkernel and then by
SecDom0. While dynamic creation takes longer, it is still
under 0.5 seconds even for the “heavyweight” SecDom.
The lightweight Secure Domain was only printing a mes-
sage to the console and had only 5 memory segments; the
heavyweight SecDom was a Linux kernel and had about
30 memory segments. Time spent in allocating resources is
growing faster when using SecDom0 (the slowdown factor
ranging from 15x to 40x). This is explained by the fact
that time spent allocating resources is proportional to the
resource size. For example, in the case of memory mapping,
granularity is 4096 bytes, and a larger segment needs more
system calls.

4.2 Development Environment

Before continuing to the implementation of the virtualiza-
tion framework components, we give a short description
of the the supported hardware. The L4-based microkernel
runs on ARMv5, ARMv6 and ARMv7-based hardware,
more specifically XScale PXA255, Texas Instruments
OMAP System-on-Chips (SoC) and Qualcomm Snap-
dragon SoCs. The latests SoCs supported are OMAP4460
and APQ8064, the former being implemented on Pand-
aboard and Samsung Galaxy Nexus phone, while the latter
is part of LG Nexus 4 phone. The microkernel is highly
portable contributing to the versatility of the VMXHAL
framework.

72

CONTROL ENGINEERING AND APPLIED INFORMATICS

To prove the usability of the framework we chose to par-
avirtualize a Linux kernel on top of the microkernel using
the same technique as (Leslie et al., 2005a): creating a
new 14 architecture in the arch/ directory. “Wombatized”
kernel versions are 2.6.24, 2.6.29, 2.6.32 and 3.0.8. Initially
we used simple filesystems with basic init programs and
then moved to enhanced filesystems such as Angstrém? .
Our final objective was to run the Android framework on
top of our paravirtualized Linux kernel, using a handset
to demonstrate the versatility of our proposed solution. In
the end we were able to run Android Ice Cream Sandwich
(ICS) using the paravirtualized 3.0.8 Linux kernel on a
Galaxy Nexus phone.

One of the issues with Android is its use of proprietary
drivers for certain peripheral devices (e.g. GPU). Android
ICS needs hardware graphics acceleration in order to boot-
up, thus making the GPU one of the most important
components in the handset.

Having only one virtualized operating system provides
little practical advantages for our proposed solution; a
dual persona phone was our future target as described in
Section 5.

The L4 microkernel and SecDom0 provide CPU and mem-
ory virtualization. CPU virtualization uses threads as
scheduling entities in the microkernel; there is a one-
to-one correspondence between Secure Domain threads
and microkernel threads. Memory virtualization is done
through the use of address spaces for virtual memory. 1/O
virtualization is acquired by decoupling the driver backend
for I/O devices in a dedicated Secure Domain; this Secure
Domain hosts an I/O server that exposes a virtualization
API which we dubbed VirtOps.

4.3 I/0 Virtualization

In our goal for a Dual Persona Phone, we needed to
virtualize at least storage devices (block), display, input
(touchscreen) and networking.

The I/O device drivers require special treatment as they
are not part of nor virtualized by the microkernel. Due to
the microkernel requirement to be minimal, drivers run on
top of the microkernel. I/O access to peripherals must be
handled by the guest operating systems using the native
drivers of the underlying hardware architecture. In the
context of multiple guest operating systems, either a third
party must control access to devices, or one of the guest
operating systems must become a proxy for the others.

Ring buffer

descriptor | P29¢1|Page2

Pagek

Fig. 2. Shared segment organization

Enabling guest operating systems to virtualize I/O devices
in an extensible way directed us in developing a new library
for virtual I/O operations, called VirtOps. The VirtOps
provides an API for device virtualization using a client-
server model. The client and server interfaces have to be
generic (it’s irrelevant what kind of data will be exchanged

4 http://www.angstrom-distribution.org/

between the two sides) and have to ensure a safe and
reliable data transfer.

In the rest of this section we will refer to a setup consisting
of one I/O Server domain and one or more clients (Linuz
VM), as presented in Section 3. The I/O Server domain
consists of a paravirtualized Linux distribution with exclu-
sive access to all physical devices provided by the hardware
platform. Its main function is multiplexing access of client
operating systems to hardware in a secure way. For each
client-server pair a shared memory segment is provided.
This segment is used for data exchange in the form of
a ring buffer. The shared memory segment is organized
as shown in Figure 2. The first chunk represents the ring
descriptor information and following are page-size aligned
chunks used for effective data transfer.

Each client request is described by the format of struct
generic_ring descr element depicted in Listing 1 and a
client descriptor holding specific data. The shared_page_ind
field indicates the shared page used for data transfer.

Listing 1. Generic ring descriptor
struct generic_ring_descr {

union {
unsigned int raw;
struct {
unsigned int server_owned:1;
unsigned int do_write:1;
unsigned int server_err:1;
unsigned int shared_page_ind:29;
b X
} status;
unsigned int size;

unsigned int mem_offset ;

}s

The I/O Server maintains a list of registered local servers
for different devices (e.g. timer, block IO, ethernet). In
the registration process a server has to provide its type,
a function to be called when a client request has arrived
and one for registering new clients. Also, there is a list of
registered clients from other domains, each having assigned
a unique global identification number (GID). Similarly, a
Linux Client has a list of local registered device clients.

On both sides (the I/O Server and the Linux client) there
is a dedicated microkernel thread, called virtualization
thread, used for dispatching server-client requests. Inter-
domain requests are delivered using IPC messages, while
data transfer is done through shared memory. This model
is similar to the hardware model: a device places data
in a memory location (our shared memory segment) and
issues an interrupt (IPC in our model) to the driver to
read information sent by the device.

In the next subsections we will briefly describe particular
implementation details for the block, network, display and
input virtualization. These are the main devices that need
to be virtualized in order to have a usable operating
system.

CONTROL ENGINEERING AND APPLIED INFORMATICS

73

4.4 Block 1/0 Virtualization

Block device driver paravirtualization required an image
file for each client; this image file resides in a special secure
partition of the I/O Server, inaccessible to untrusted user
space utilities. The image file itself contains a partition
table and a set of partitions, in order to provide a block
device interface to a Linux client.

The core of the Linux block layer manages block I/0
requests. Such a request is described by a struct request
structure consisting of a set of segments, each of them
corresponding to one in-memory buffer.

Each block I/O client request is sent to the I/O Server
using VirtOps and there it is transposed relative to the
image file content using the information provided by the
struct request. The requested data blocks are loaded
into the shared memory segment and then the client is
notified to grab them. The infrastructure uses zero-copying
enabling the client to use data directly from the shared
memory segment, disabling unnecessary copying into its
own private memory.

4.5 Network Virtualization

In addition to having access to external storage via the
block device driver, another fundamental requirement for
client secure domains is network connectivity.

1/0 Server

Client
Shared memory

circular buffers
14vneto

Fig. 3. Network virtualization architecture

etho I { l4vneto

Networking support is implemented in clients as an Ether-
net driver called 14vnet. In each client, the virtual driver
exposes an Ethernet interface to the operating system and
user space applications. The virtualized 14vnet interface
in each client can communicate to a corresponding inter-
face in the I/O Server domain, by writing and reading Eth-
ernet frames to/from circular buffers located in a shared
memory segment, like shown in Figure 3. The I/O Server
acts as a router, and performs NAT in order to enable
Internet access for client secure domains.

For each secure domain, we can configure the driver in
terms of number of network interfaces. Each client uses one
interface, with the I/O Server having as many interfaces
as there are clients. For each interface, we need to set the
shared memory segment used for sending outgoing frames
and the shared memory segment from which incoming
frames are to be read.

In the current setup (in Figure 3), the network interfaces
of the I/O server and the client are named 14vnetO. In
the general case, where multiple clients would exist, the
I/0 Server interfaces are 14vnetO through 14vnet<N-1>,
where N is the number of clients.

4.6 Display Virtualization

After enabling communication for the second Android
(block I/O and network), we need to make it usable by

Android 0 Android 1

, Physical memory for N
framebuffer

Virtual framebuffer

Framebuffer 1 ’ N

\ 4

Framebuffer 0

Display subsystem

—{ ovLO ‘ ‘ ovL1 ‘ ‘ ‘
|
Display

Fig. 4. Display virtualization

virtualizing the display (Carabas et al., 2014). As the
second business oriented Android was not GPU intensive,
we considered using software rendering. We disabled hard-
ware rendering in the Android framework using the same
method as the B Labs® Dual Android project. However,
the B Labs demo uses VNC to virtualize display, leading
to a larger performance overhead than our solution.

By default, the Android subsystem renders graphics in
the first framebuffer, accessible via /dev/graphics/fbO0.
In the second Android, £b0 is managed by a driver based
on the virtual framebuffer implementation in the Linux
kernel. The only difference is that, instead of being allo-
cated from the kernel’s memory, the virtual framebuffer is
mapped in a shared memory segment defined in the build
system of the L4 microkernel.

The display subsystem of the first Android also handles the
screen of the second Android. We do this by allocating an
extra framebuffer in Android0 and mapping it in the same
shared memory segment as Android1’s virtual framebuffer
(see Figure 4).

The OMAP Display Subsystem (DSS) exposes a configu-
ration interface in the Linux sysfs % interface. We use this
interface to switch the display between the two Android
instances. We make use of the overlay objects of the
OMAP DSS. An overlay defines a rectangular area of a
framebuffer and is used by an overlay manager to redraw
only certain parts of the screen at a time and thus make
the refresh process more efficient. In our case, we “borrow”
one of the OMAP DSS’s overlays and set it to contain
the entire extra framebuffer. The switch between Android
instances is done by enabling and disabling overlays via
the sysfs entries.

4.7 Input Virtualization

In the Linux kernel, the Input subsystem is an abstraction
layer between devices (keyboard, mouse, joystick, touch-
pad, and so on) and input handlers. The input devices
capture input from user actions and produce input events
that are dispatched to the interested handlers. We register
multiple handlers (one for each client) for the same input

5 http://dev.b-1labs.com
6 https://www.kernel.org/doc/Documentation/arm/OMAP/DSS

74

CONTROL ENGINEERING AND APPLIED INFORMATICS

device (e.g. touchscreen), only one being active at a certain
moment in time (the one that has the Android on the
screen). In case of the client handler, events are dispatched
through the VirtOps infrastructure to the input device
driver of the Linux client.

5. EVALUATING VMXHAL: DUAL PERSONA
PHONE

In the previous Section we presented the inner details
of the VMXHAL framework, reasons for its versatility
and steps made towards a practical demonstration using
multiple instances of the Android operating system.

In today’s business environment, an increasingly large
number of employees use two phones: one for work and
one for personal use (Brodkin, 2012). Gartner predicts
that by 2017, half of the employers will require employees
to bring their own devices to work”, a policy dubbed
BYOD - Bring Your Own Device. Through virtualization
on embedded devices, one can provide mechanisms that
allow running two operating system instances on the
same phone, completely isolated from each other. Such
a solution would enable employees to use a single dual-
OS phone, relieving the need to carry two devices and
providing flexibility in configuration and security.

The main advantage in having multiple operating systems
running on top of a single device is related to the isolation
degree. For example, having an operating system for a
given environment provides a more secure environment
than having only one OS instance for all environments.

The scenario stated above has been implemented with
the VMXHAL virtualization framework described in this
paper. We took a Galaxy Nexus phone and enhanced it
with our L4 microkernel, the VMXHAL framework and
two Androids on top of it: one Android for personal use
and one for business use. One of the Androids had also
taken the role of the I/O Server for device virtualization.
This setup, described in Figure 5, is called a Dual Persona
Phone.

1/0 server VM Client VM

Android Linux
user space

Android Linux
user space

VirtOps
server

A

Android Linux VirtOps Android Linux
kernel client kernel

Paravirtualizatipn Paravirtualization
layer layer

| |
| v v

ResourceControl
Y

| Hardware platform

SecDom0

L4 microkernel

Fig. 5. Dual Persona Phone setup

The two Android VMs in our Dual Persona Phone are
managed by SecDom0, which uses the ResourceControl
mechanism to provide management functionality. VMs

7 http://www.gartner.com/newsroom/id/2466615

implement architecture-dependent operating system func-
tionality (such as system call traps) using a paravirtualiza-
tion layer. One of the Android VMs acts as an I/O server,
having full access to hardware peripherals, while the other
uses stub drivers to access devices. I/O virtualization is
done on top of the VirtOps infrastructure described in
Section 4.

During the process of bringing up a Dual Persona Phone
using the Android framework, we encountered scalability
problems. Android is a complex framework requiring a
very large amount of memory: at least 256 MB to boot-
up and at least 512MB to be able to open the browser.
The Galaxy Nexus phone has 1024MB of memory and
only 768MB visible to user, the other chunk being left out
for proprietary multimedia devices. Obviously running two
Androids at the same time is at the limit. We needed to
strip down the second Android and remove all unnecessary
services in the startup process. In most of the cases this is
enough as the business phone has reduced requirements,
with software provided by the employee’s company.

To make our solution more practical, we decided to move
the implementation to a new device, Nexus 4, which has
2048MB of RAM. Currently under work, we obtained a
port of the L4 microkernel on top of this platform.

6. FURTHER USE CASES

In this section we present other scenarios which could
benefit from the usage of our virtualization framework. A
possible application is represented by the emerging market
of automotive In-Vehicle Infotainment solutions, where
hardware costs would be significantly reduced by using vir-
tualization. Another use case consists of the integration of
virtualized operating systems with baremetal applications
on Smart Home Server appliances.

6.1 In-Vehicle Infotainment

In-Vehicle Infotainment (IVI) is an umbrella term for
hardware and software technologies employed in the au-
tomotive industry to provide entertainment functionality
and other non-critical features such as automotive nav-
igation. Various solutions have been proposed for info-
tainment systems based on Android (Chen et al., 2011;
Macario et al., 2009; Al-Ani et al., 2010). IVI platforms
include the architecture established by the GENIVI Al-
liance and Tizen IVI, which aims for GENIVI compliance
itself (Ylinen, 2012). Another project directed towards
IVI technologies is the Yocto Project layer for In-Vehicle
Infotainment % .

The main challenge of IVI is that of integrating a het-
erogeneous set of components which interact directly with
the user: a music player, television, integrated GPS, a web
browser, hardware interfaces (e.g. USB) and others. The
complexity of such systems leads to specific requirements
pertaining to security and performance. The system should
be able to implement security policies where, for example,
an application with Internet access wouldn’t be able to
access the current level of the gas meter.

8 http://elinux.org/images/5/51/Yocto_Layer_for_In-Vehicle_
Infotainment.pdf

CONTROL ENGINEERING AND APPLIED INFORMATICS

75

Our solution can use the current Trusted Computing Base
to implement arbitrary security policies. SecDoms can
isolate secure and legacy components. Multiple Android
and/or Linux instances could run virtualized on the top
of the infotainment hardware platform to isolate front
seat and back seat IVI. A further step toward this goal
would involve certifying the L.4 microkernel as a separation
kernel (Rushby, 1981, 1989). Ensuring the reliability of the
solution would be done by integrating High Awvailability
features with the Infotainment applications.

6.2 Smart Home Server

In a similar fashion to IVI, the field of Home Automation
illustrates ubiquitous computing by integrating so-called
“smart” computing devices with household tools and ac-
tivities, e.g. lighting, heating, appliances or entrance locks.
Motivation for smart home ranges from energy efficiency
to the increase of comfort for disabled persons. The de-
sign of home automation encompasses a variety of fields
such as Artificial Intelligence, Systems Design and Human-
Computer Interaction (Bravo et al., 2011).

We suggest the integration of various home automation
components on a single hardware platform, with the help
of virtualization features provided by the framework pre-
sented in this paper. The solution would consist of an An-
droid/Linux virtual machine providing a user interface and
legacy drivers, running in parallel with native applications
used for dedicated functions, such as an Internet gateway
or an electronic door locking mechanism. The architec-
ture would meet the needs of dedicated applications (e.g.
a RTOS or some other native application requiring full
processor availability). It would also isolate the unreliable
components from the rest of the system by design, ensuring
that the overall system functionality remains uncompro-
mised.

The main challenge in providing a solution for home
automation (i.e. a Smart Home Server) based on our
framework is that of providing a portable user space en-
vironment for baremetal applications. The current imple-
mentation provides support for a subset of the C library
functionality and minimal POSIX. This proves to be in-
sufficient for the needs of applications such as a dedicated
stack for network routing. We aim to address this aspect
in the future.

7. RELATED WORK

Similar approaches on virtualizing embedded systems ei-
ther follow a thin layer microkernel-based design or a heav-
ier hypervisor with extended features. VMXHAL provides
features from both worlds, with a reduced Trusted Com-
puter Base and security focus on one hand and a baremetal
domain for dynamically managing other domains.

Projects similar to ours are based on the L4Ka::Pistachio
and OKL4 (Heiser and Leslie, 2010) microkernels. Both L4
variants are able to run the Wombat kernel (Leslie et al.,
2005b), a Linux kernel modified to run as a paravirtualized
user-mode application. OKL4 aims towards the migration
of its API to that of seL4?, a formally-verified L4 micro-

9 http://os.inf.tu-dresden.de/pipermail/l4-hackers/2007/
003149.html

kernel (Klein et al., 2009). With setup being done at build
time, these L4-based designs lack a dedicated domain to
dynamically manage virtual machines.

Similarly, (Lackorzynski et al., 2004; Lange et al., 2011)
illustrate paravirtualized Linux kernels running on top of
Fiasco.OC (Werner, 2012), a modern rewrite of the original
L4 microkernel. L4Android has the same goal of providing
a Dual Persona phone, its major disadvantage being that
it doesn’t support newer versions of Android such as Ice
Cream Sandwich (Android 4.0), which require a working
GPU driver to achieve a fully usable virtualized environ-
ment. The same is the case with the framework based
on CODEZERO (Pham et al., 2013): the demos provided
by B Labs % use VNC to provide display virtualization,
which incurs an additional overhead caused by network
transfer and frame compression, in contrast to our solu-
tion, based on framebuffer switching in the Linux kernel.
Our Dual Persona Phone based on VMXHAL uses the
framebuffer switching technique and provides improved
user experience when compared to the B Labs work.

(Barr et al., 2010) provide a solution for mobile virtualiza-
tion that uses a similar architecture to that of their desktop
products. (Andrus et al., 2011) propose a framework using
lightweight virtualization techniques to provide a Dual
Persona phone based on a Linux kernel and the Android
framework. Both solutions lack security by design. The
first because it relies on hosted virtualization: attackers
can compromise the integrity of the entire system if they
compromise the host operating system. The second be-
cause it must include the Linux kernel in the Trusted Com-
puting Base, and because it cannot achieve full isolation
between the two virtual phones.

Xen, one of the more popular virtualization solutions,
provides an ARM port ' . While initially focused on ARM
chips targeted at the server market, there is ongoing
effort to support mobile devices (Hwang et al., 2008),
even if chips provided no virtualization support. However,
the Xen hypervisor possesses a relatively large Trusted
Computing Base, with around 150,000 lines of code. Our
L4 microkernel consists of a Trusted Computing Base of
only around 25,000 lines of code, making it less prone to
security vulnerabilities.

Green Hills'? address security issues in embedded vir-
tualization with their INTEGRITY RTOS. Its main ad-
vantages are its Separation Kernel Protection Profile
(SKPP) and EAL6+ '3 Common Criteria certifications.
Green Hills claims availability of their secure virtualiza-
tion technology on hardware ranging from mobile devices
to automotive though lack of publications and technical
documentation makes it difficult to evaluate.

8. CONCLUSION AND FURTHER WORK

We presented a virtualization framework for embedded
systems consisting of a thin microvisor, a separated do-
main for drivers and I/O management and dedicated do-

10http://dev.b-1labs.com/prebuilt-demos/dual-tuna-ics/
M http://www.xenproject.org/developers/teams/arm—
hypervisor.html
2http://www.ghs.com/products/rtos/integrity.html

13 Evaluation Assurance Level

76

CONTROL ENGINEERING AND APPLIED INFORMATICS

main (SecDom0) for dynamic control of virtual machines.
This design provides versatility, runnig on multiple devices
and allowing the deployment of both baremetal applica-
tions and paravirtualized operating systems.

The framework extends existing embedded virtualization
solutions such as OKL4 and L4Linux, being based on an
L4 family microkernel and providing I/O isolation and
dynamic management. It uses a rather small Trusted Com-
puting Base, with about 25,000 line of code, compared
to the 150,000 lines of code of the Xen hypervisor. The
dynamic management component provided by SecDom0
provides the ability to easily and fully configure and con-
trol non-privileged SecDoms and their resource allocation.
With this design it is possible to restart a failing SecDom
with no impact on other SecDoms, ensuring reliability.

We deployed the framework on several ARM-based de-
vices, ranging from development boards to fully fledged
hand-held devices. As proof of concept we built a Dual
Persona phone setup, with two Android operating systems
running simultaneously on top of the virtualization frame-
work.

In the virtualization framework we implemented a new
interface, VirtOps, to isolate drivers and ease development
of I/O virtualization components. Isolating driver is im-
portant as they are a major cause of faults in operating
systems.

We demonstrated the extensibility of the interface with a
setup with two Android Linux making use of the storage,
network, input and display devices.

Future work will focus on enhancing portability and use
cases. Effort is under way to port the virtualization frame-
work to a quad-core platform and providing full Symmetric
Multi-Processing (SMP) support to the upper layer. New
devices are to be targeted to ensure portability. We target
deployment in commercial products and future applica-
tions such as automotive and infotainment, real time ap-
plications and baremetal native applications and drivers.

Porting the Linux kernel on Nexus 4 is work in progress
as we also want to enhance the paravirtualization model
based on Wombat (Leslie et al., 2005a). Our current
model virtualizes space management operations (most
notably page mapping/unmapping and cache flushing)
using microkernel system calls. This incurs an overhead
of up to 27% on system calls done by a simple command
such as 1s. The performance penalty is caused by frequent
on-demand paging and cache flushing operations; we plan
to eliminate these shortcomings by switching to a more
robust virtualization design.

In order to enhance performance and portability with
respect to applications and operating systems running on
top of the framework, we aim to create a POSIX-like
runtime environment running on top of the microkernel
to be used by native applications, virtualized operating
systems and drivers.

ACKNOWLEDGEMENTS

The work has been funded by the Sectoral Operational
Programme Human Resources Development 2007-2013 of

the Ministry of European Funds through the Financial
Agreement POSDRU/159/1.5/S/134398.

We would like to thank Gary Gibson and Val Popescu,
of VirtualMetrix, Inc. for their continuous support and
advice in our work. Gary has provided invaluable technical
feedback and proposals and Val has always kept us on the
path of practicality of our work. We thank our colleagues
Petre Eftime and Cristi Condurache for their review and
thoughtful remarks, and Andrei Buhaiu, Lucian Cojocar,
Vali Priescu, Catalin Moraru for their initial work and
design decisions in the project.

REFERENCES

Accetta, M., Baron, R., Bolosky, W., Golub, D., Rashid,
R., Tevanian, A., and Young, M. (1986). Mach:
A new kernel foundation for unix development. In
USENIX 1986 Summer Technical Conference and Ex-
hibition Conference; 1986., 93-112.

Al-Ani, T., Savarimuthu, T., and Purvis, M. (2010).
Android-based in-vehicle infotainment system (aivi).
Master’s thesis, University of Otago.

Andrus, J., Dall, C., Hof, A.V., Laadan, O., and Nieh,
J. (2011). Cells: a virtual mobile smartphone archi-
tecture. In Proceedings of the Twenty-Third ACM
Symposium on Operating Systems Principles, SOSP
11, 173-187. ACM, New York, NY, USA. doi:10.
1145/2043556.2043574. URL http://doi.acm.org/
10.1145/2043556.2043574.

Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris,
T., Ho, A., Neugebauer, R., Pratt, I., and Warfield, A.
(2003). Xen and the art of virtualization. ACM SIGOPS
Operating Systems Review, 37(5), 164-177.

Barr, K., Bungale, P., Deasy, S., Gyuris, V., Hung, P.,
Newell, C., Tuch, H., and Zoppis, B. (2010). The vimware
mobile virtualization platform: is that a hypervisor in
your pocket? SIGOPS Oper. Syst. Rev., 44(4), 124-135.
doi:10.1145/1899928.1899945. URL http://doi.acm.
org/10.1145/1899928.1899945.

Bravo, J., Fuentes, L., and de Ipifia, D.L. (2011). Theme
issue: “ubiquitous computing and ambient intelligence”.
Personal and Ubiquitous Computing, 15(4), 315-316.

Brodkin, J. (2012). Ars readers confirm: We want
dual-persona smartphones. http://arstechnica.com/
information-technology/2012/12/ars-readers-
confirm-we-want-dual-persona-smartphones/,
[Last accessed on Oct 01, 2014].

Carabas, M., Mogosanu, L., Deaconescu, R., Gheorghe, L.,
and Tapus, N. (2014). Lightweight display virtualization
for mobile devices. In International Workshop on Secure
Internet of Things 2014. IEEE.

Chen, M.C., Chen, J.L., and Chang, T.W. (2011).
Android/osgi-based vehicular network management
system. Computer Communications, 34(2), 169 —
183. doi:http://dx.doi.org/10.1016/j.comcom.2010.03.
032. URL http://www.sciencedirect.com/science/
article/pii/S0140366410001647. Special Issue: Open
network service technologies and applications.

Cheriton, D.R. (1984). The v kernel: A software base for
distributed systems. Software, IEEE, 1(2), 19-42.

Elkaduwe, D., Klein, G., and Elphinstone, K. (2008).
Verified protection model of the sel.4 microkernel. In
Verified Software: Theories, Tools, FExperiments, 99-114.
Springer.

CONTROL ENGINEERING AND APPLIED INFORMATICS

77

Hansen, P.B. (1970). The nucleus of a multiprogramming
system. Commaunications of the ACM, 13(4), 238-241.
Heiser, G. (2011). Virtualizing embedded systems: why
bother? In Proceedings of the 48th Design Automation

Conference, 901-905. ACM.

Heiser, G. and Leslie, B. (2010). The OKL4 microvisor:
Convergence point of microkernels and hypervisors. In
Proceedings of the first ACM asia-pacific workshop on
Workshop on systems, 19-24. ACM.

Hwang, J.Y., bum Suh, S., Heo, S.K., Park, C.J., Ryu,
J.M., Park, S.Y., and Kim, C.R. (2008). Xen on ARM:
System virtualization using Xen hypervisor for ARM-
based secure mobile phones. In Consumer Communi-
cations and Networking Conference, 2008. CCNC' 2008.
5th IEEE, 257-261. doi:10.1109/ccnc08.2007.64.

Intel Embedded Alliance (2011). White paper: The
benefits of virtualization for embedded systems. Tech-
nical report. URL https://embedded.communities.
intel.com/servlet/JiveServlet/previewBody/
6956-102-1-2113/2011, %20Virtualizationy
20White’,20Paper%20FINAL.pdf. Last accessed on
Mar 9, 2015.

Klein, G., Elphinstone, K., Heiser, G., Andronick, J.,
Cock, D., Derrin, P., Elkaduwe, D., Engelhardt, K.,
Kolanski, R., Norrish, M., Sewell, T., Tuch, H., and
Winwood, S. (2009). seld: formal verification of an
os kernel. In Proceedings of the ACM SIGOPS 22nd
symposium on Operating systems principles, SOSP
09, 207-220. ACM, New York, NY, USA. doi:10.
1145/1629575.1629596. URL http://doi.acm.org/
10.1145/1629575.1629596.

Lackorzynski, A. and Warg, A. (2009). Taming sub-
systems: capabilities as universal resource access con-
trol in 14. In Proceedings of the Second Workshop
on Isolation and Integration in Embedded Systems,
IMES ’09, 25-30. ACM, New York, NY, USA. doi:
10.1145/1519130.1519135. URL http://doi.acm.org/
10.1145/1519130.1519135.

Lackorzynski, A. et al. (2004). L4linux porting optimiza-
tions. Master’s thesis, Technische Universitat Dresden.

Lange, M., Liebergeld, S., Lackorzynski, A., Warg, A., and
Peter, M. (2011). L4android: a generic operating system
framework for secure smartphones. In Proceedings of
the 1st ACM workshop on Security and privacy in
smartphones and mobile devices, 39-50. ACM.

Leslie, B., van Schaik, C., and Heiser, G. (2005a). Wombat:
A portable user-mode Linux for embedded systems. In
6th Linux.conf.au. Canberra.

Leslie, B., van Schaik, C., and Heiser, G. (2005b). Wom-
bat: A portable user-mode Linux for embedded systems.
In 6th Linuzx.conf.au. Canberra.

Liedtke, J. (1995). On micro-kernel construction. SIGOPS
Oper. Syst. Rev., 29(5), 237-250. doi:10.1145/224057.

224075. URL http://doi.acm.org/10.1145/224057.
224075.

Macario, G., Torchiano, M., and Violante, M. (2009). An
in-vehicle infotainment software architecture based on
google android. In Industrial Embedded Systems, 2009.
SIES’09. IEEE International Symposium on, 257—-260.
IEEE.

Mijat, R. and Nightingale, A. (2014). Virtualization is
coming to a platform near you. mobile.arm.com/
files/pdf/System-MMU-Whitepaper-v8.0.pdf, [Last
accessed on May 24, 2014].

Pham, K.D., Jain, A.K., Cui, J., Fahmy, S.A., and Maskell,
D.L. (2013). Microkernel hypervisor for a hybrid arm-
fpga platform. In Application-Specific Systems, Archi-
tectures and Processors (ASAP), 2013 IEEE 24th Inter-
national Conference on, 219-226. IEEE.

Ruocco, S. (2008). A real-time programmer’s tour of
general-purpose 14 microkernels. FURASIP J. Embed-
ded Syst., 2008, 11:1-11:14. doi:10.1155/2008/234710.
URL http://dx.doi.org/10.1155/2008/234710.

Rushby, J. (1989). Kernels for safety. Safe and Secure
Computing Systems, 210-220.

Rushby, J.M. (1981). Design and verification of secure
systems. In ACM SIGOPS Operating Systems Review,
volume 15, 12-21. ACM.

Ryzhyk, L., Chubb, P., Kuz, 1., and Heiser, G. (2009).
Dingo: Taming device drivers. In Proceedings of the
4th ACM European conference on Computer systems,
EuroSys '09, 275-288. ACM, New York, NY, USA. doi:
10.1145/1519065.1519095. URL http://doi.acm.org/
10.1145/1519065.1519095.

Shapiro, J.S., Smith, J.M., and Farber, D.J. (1999). EROS:
a fast capability system, volume 33. ACM.

Tanenbaum, A.S., Woodhull, A.S., Tanenbaum, A.S., and
Tanenbaum, A.S. (1987). Operating systems: design and
implementation, volume 2. Prentice-Hall Englewood
Cliffs, NJ.

Werner, J. (2012). Improving Virtualization Support in
the Fiasco. OC Microkernel. Master’s thesis, Technische
Universitat Berlin.

Wiggins, A., Tuch, H., Uhlig, V., and Heiser, G. (2003).
Implementation of fast address-space switching and tlb
sharing on the strongarm processor. In A. Omondi
and S. Sedukhin (eds.), Advances in Computer Systems
Architecture, volume 2823 of Lecture Notes in Computer
Science, 352-364. Springer Berlin Heidelberg. doi:10.
1007/978-3-540-39864-6_28. URL http://x.doi.org/
10.1007/978-3-540-39864-6_28.

Wulf, W., Cohen, E., Corwin, W., Jones, A., Levin, R.,
Pierson, C., and Pollack, F. (1974). Hydra: The kernel
of a multiprocessor operating system. Communications
of the ACM, 17(6), 337-345.

Ylinen, M. (2012). Tizen IVI Architecture.

