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Abstract: Controlling of large nuclear reactors is a challenging task due to simultaneous
presence of both slow and fast varying dynamic modes. This paper presents the design of
linear quadratic regulator for spatial power control of a large Advanced Heavy Water Reactor
(AHWR). The AHWR system is represented by 90 first order nonlinear differential equations
with 5 inputs and 18 outputs. After linearization, the original ill-conditioned system of AHWR
is represented into standard singularly perturbed two-time-scale form and decomposed into two
comparatively lower order subsystems, namely, ‘slow’ and ‘fast’ subsystems of orders 73 and 17
respectively. Two individual optimal controllers are developed for both the subsystems and then
a composite controller is obtained for original system. This composite controller is applied to the
vectorized nonlinear model of AHWR. From dynamic simulation in representative transients,
the suggested controller is found to be superior to other methods.

Keywords: Nuclear reactor, optimal control, order reduction, power control, singular
perturbation.

1. INTRODUCTION

The analysis and control of large scale systems have always
been a complicated task due coupled variables that evolve
in disparate (slow and fast) time-scales. The design of
optimal control for such system is impractical. However,
this can be achieved by using singular perturbations and
time-scale methods (Kokotovic et al. (1976); Saksena et al.
(1984)). These methods work by decoupling the fast and
slow varying modes. A number of approaches have been
developed over the period of time to tackle ill-conditioning
generally observed in case of higher order systems (Phillips
(1980); Chow et al. (1984); Naidu (1988); Bobasu et al.
(2003); Shimjith et al. (2011a)).

In the context of power distribution control in a nuclear
reactor, it is worth mentioning that the model of a nu-
clear reactor belongs to a special class of systems called
singularly perturbed systems. The simultaneous presence
of both the slow as well as the fast varying dynamical
modes, could cause ill-conditioning of the problem. Hence
it is necessary to transform the nuclear reactor model into
a suitable form whereby stiffness is completely eliminated.
Besides, the model order reduction is achieved to a certain
extent. Application of singular perturbation techniques to
Advanced Heavy Water Reactor (AHWR) and Pressurized
Heavy Water Reactor (PHWR) are reported in (Tiwari
et al. (1996, 1998); Shimjith et al. (2011a,b); Munje
et al. (2013a,b, 2014b)). Some other control techniques
suggested for AHWR and PHWR are documented in
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(Shimjith et al. (2011c); Munje et al. (2014a); Londhe
et al. (2014); Abbasi et al. (2014)).

In this paper, the design of a near optimal linear regulator
(Chow et al. (1984)) for controlling spatial power in
AHWR is proposed, which is then applied to the vectorized
nonlinear model of AHWR and simulation results are
obtained under different transients. The organization of
the paper is as follows. In Section 2 description of AHWR
system is given. Control design is proposed in Section 3.
In Section 4 application of composite controller to AHWR
is presented followed by conclusion in Section 5.

2. DESCRIPTION OF AHWR SYSTEM

2.1 Introduction

In India, Advanced Heavy Water Reactor (AHWR), a 920
MW (thermal), vertical pressure tube type reactor has
been designed. It is moderated by heavy water, cooled by
boiling light water and fueled with (Th-233U)O2 and (Th-
Pu)O2 pins (Sinha et al. (2006)). The reactivity control
devices in AHWR consist of eight absorber rods (ARs),
eight shim rods (SRs) and eight regulating rods (RRs).
The physical dimensions of AHWR are large compared to
the neutron migration length in the core, making it sus-
ceptible to xenon induced spatial oscillations. Spatial os-
cillations in neutron flux distribution resulting from xenon
reactivity feedback are a matter of concern in large nuclear
reactors. If the spatial oscillations in power distribution are
not controlled, power density and rate of change of power
at some locations in the reactor core may exceed limits
of fuel failure (Duderstadt and Hamilton (1975)). Spatial
control means to suppress xenon oscillations from growing.
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The objective is to maintain the core power distribution
close to a desired shape. For spatial control system design,
a very extensive derivation of AHWR mathematical model
is given in (Astrom and Bell (2000); Shimjith et al. (2008,
2010)) and the same has been used here for the study
carried out in this paper. The AHWR core is considered
to be divided in 17 relatively large nodes as shown in
Fig. 1. The following nonlinear equations constitute the
mathematical model of AHWR:

dWi

dt
= (ρi − αii − β)

Wi

`
+

17∑
j=1

αji
Wj

`
+ λCi (1)

dCi
dt

=
β

`
Wi − λCi (2)

dIi
dt

= γIΣfiWi − λIIi (3)

dXi

dt
= γXΣfiWi + λIIi − (λX + σ̄XiWi)Xi (4)

dHk

dt
= κvk (5)

evxi
dxi
dt

=Wi − qdi(hw − hd)− qdixihc (6)

exh
dhd
dt

= qf (k̂2hf − k̂1)− qd(k̂2hd − k̂1). (7)

where k = 2, 4, 6, 8 and i = 1, 2, . . . , 17. W , C, I, X and
H are nodal powers, effective one group delayed neutron
precursor, iodine and xenon concentrations and regulating
rod positions respectively. xi and hd denote exit quality
of ith node and downcomer enthalpy respectively. αji and
αii denote the coupling coefficients between jth and ith

nodes and self coupling coefficients of ith node respectively.
σ̄Xi = σXi/EeffΣfiVi and vk is control signal applied to
the RR drive and κ is a constant having value 0.56. Other
notations and symbols have their usual meanings.

Values of evxi and exh along with neutronic parameters,
nodal volumes and cross-sections, nodal powers, coolant
flow rates under full power operation and coupling coeffi-
cients are given in (Shimjith et al. (2011c)). The reactivity
term ρi in (1) is expressed as ρi = ρiu + ρiX + ρiα , where
ρiu , ρiX and ρiα are the reactivity feedbacks due to the
control rods, xenon and coolant void fraction respectively,
given by

ρiu =

{
(−10.234Hi + 676.203)× 10−6, if i = 2, 4, 6, 8.
0 elsewhere,

ρiX =− σ̄XiXi

Σai
,

ρiα =−5× 10−3(9.2832x5i − 27.7192x4i + 31.7643x3i

−17.7389x2i + 5.2308xi + 0.0792).

Equations (1)-(7) are linearized around steady state oper-
ating conditions (Hk0 , Xi0 , Ii0 , hd0 , Ci0 , xi0 ,Wi0) and rep-
resented in standard state space form. For this, define the
state vector as

z =
[
zTH zTX zTI δhd z

T
C zTx zTW

]T
(8)

where zH = [ δH2 δH4 δH6 δH8 ]
T

and the rest zξ =

[ (δξ1/ξ10) · · · (δξ17/ξ170) ]
T

, ξ = X, I, C, x, W , in
which δ denotes the deviation from respective steady state

Fig. 1. 17 nodes AHWR scheme.

value of the variable. Likewise, define the input vector

as u = [ δv2 δv4 δv6 δv8 ]
T

and output vector as y =

[ yg y1 · · · y17 ]
T

where yg =
∑17
i=1

δWi∑17

j=1
Wj0

and yi = δWi

Wi0

correspond to normalized total reactor power and nodal
powers respectively. Then, the system given by (1)-(7) can
be expressed in standard linear state space form as

ż = Az + Bu + Bfwδqfw (9)

y = Mz (10)

where δqfw is deviation in feed water flow rate. Matrices
A, B, Bfw and M are given in (Shimjith et al. (2011c)).
Eigenvalues of A fall in two distinct clusters. First cluster
has 73 eigenvalues ranging from −1.8395×10−1 to 3.9654×
10−6 and the second one is of 17 eigenvalues ranging
from −2.7626× 102 to −7.2516. Six eigenvalues of A have
their real parts positive while four eigenvalues are at the
origin (grouped in first cluster), which indicates instability.
Hence, it is necessary to design an effective controller to
maintain the total power of the reactor while the xenon
induced oscillations are being controlled.

2.2 Control Problem of AHWR

Spatial control of AHWR has been attempted by Shimjith
et al. (2011c); Munje et al. (2014a) using output feedback
based technique. However, static output feedback does not
guarantee the stability of closed loop system (Syrmos et
al. (1997)). As an extension to this a state feedback based
three-time-scale approach has been applied to AHWR
in (Shimjith et al. (2011a)). In this quasi-steady-state
method is used to decouple the AHWR system in ‘slow’,
‘fast 1’ and ‘fast 2’ subsystems. The practical implemen-
tation of such a state feedback based controller demands a
state observer of large order. Hence, Fast Output Sampling
(FOS) based controller is investigated in (Shimjith et al.
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(2011b)). This method is based on Multirate Output Feed-
back (MROF), by which the states of the system can be
computed exactly. In FOS, control signal is generated as a
linear combination of a number of output samples collected
in one sampling interval. In this, input sampling time is
larger compared to output sampling time. For example in
(Shimjith et al. (2011b)), sampling time for spatial control
component of input is taken as 60 s. A similar kind of
approach for two-time-scale system is suggested in (Munje
et al. (2013a)) for the AHWR, where sampling time is
taken as 54 s. However, for practical reactor control to
work with larger sampling time is not desirable, because
in small time, reactor can undergo a considerable change.
Hence, Periodic Output Feedback (POF) technique, duel
of FOS, is suggested in (Munje et al. (2014b)). These
MROF based methods (i.e. FOS and POF) have their
own advantages, but they lack robustness. These methods
may not work satisfactorily in the presence of disturbance,
parameter variations and perturbations in the operating
conditions. Therefore, robust sliding mode control (SMC)
technique is explored for AHWR in (Munje et al. (2013b))
and it is shown that, better results are obtained. However,
it requires all the states for feedback. Recently, single-
input fuzzy logic controller is also suggested for control
of AHWR (Londhe et al. (2014)), in which feedback of 24
states is used to drive the AHWR system.

In this paper, model order reduction has been carried out
via two-time-scale decomposition to obtain reduced order
subsystems of AHWR. In contrast to the earlier work of
(Shimjith et al. (2011a)), where three-time-scale decom-
position method was used to obtain three subsystems, this
method provides higher degree of accuracy. Moreover, the
comparison of results, helps to understand the effect of
different model order reduction methods.

3. CONTROL DESIGN

Singularly perturbed systems can be modeled by set of
nonlinear differential equations (Kokotovic et al. (1976);
Saksena et al. (1984)) given by

ż1 = f(z1, z2,u, t); z1(t0) = z10 , (11)

εż2 = g(z1, z2,u, t); z2(t0) = z20 , (12)

y = h(z1, z2,u, t) (13)

where the n1 dimensional state vector z1 is predominantly
slow and the n2 dimensional state vector z2 contains
fast transients superimposed on a slowly varying “quasi-
steady-state”, i.e. ‖ż1 � ż2‖, such that n1 + n2 = n,
u ∈ <m is the input, y ∈ <p is the output, parameter ε > 0
is a scalar representing the speed ratio of the slow versus
fast phenomenon. The model represented by (11)-(13)
is a standard singularly perturbation model extensively
studied in control literature. As the parameter ε tends
to zero, the solution behaves non-uniformly, producing
so called singularly perturbed stiff problem. The scalar ε
represents all the small parameters to be neglected. The
parameter ε can be picked up on the basis of knowledge
of the process/system and components. A linear time-
invariant controllable and observable version, obtained by
linearizing (11)-(13) has the form

ż1 = A11z1 + A12z2 + B1u, (14)

εż2 = A21z1 + A22z2 + B2u, (15)

y = M1z1 + M2z2 (16)

where the matrices Aij , Bi and Mi are of appropriate
dimensionality.

3.1 Two-Time-Scale Decomposition

The separation of states into slow and fast is nontrivial
modeling task demanding insight and ingenuity on the part
of the analyst. The main purpose of singularly perturba-
tion approach to analysis and design is the alleviation of
high dimensionality and ill-conditioning resulting from the
interactions of slow and fast dynamic modes. For grouping
of state variables of the physical system into slow and
fast groups, a method based on scaling of state has been
proposed in (Chow et al. (1984)). Now setting ε = 0, the
system (14)-(16) can be decomposed into two subsystems
as follows.

Slow subsystem: The slow subsystem is represented by

żs = Aszs + Bsus (17)

ys = Mszs + Nsus (18)

where

As = A11 −A12A
−1
22 A21,Bs = B1 −A12A

−1
22 B2,

Ms = M1 −M2A
−1
22 A21,Ns = −M2A

−1
22 B2.

Fast subsystem: The fast subsystem model is given by

dzf
dτε

= Afzf + Bfuf (19)

yf = Mfzf (20)

where Af = A22, Bf = B2 and Mf = M2. Note that the
slow subsystem is of order n1 and the fast subsystem is of
order n2.

3.2 Linear State Feedback Control

For convenience system (14)-(16) is again represented in
the following form

ż = Az + Bu (21)

y = Mz (22)

where z =
[
zT1 zT2

]T
is the n1 +n2 = n dimensional state

vector and recall that

A =

[
A11 A12
A21

ε

A22

ε

]
,B =

[
B1
B2

ε

]
,M =

[
M1

M2

]T
. (23)

In particular, it is considered to minimize the quadratic
performance index

J =

∞∫
0

[
zTQz + uTRu

]
dt (24)

where Q ≥ 0 and R > 0 are respectively (n × n) and
(m×m) matrices. The solution to the problem (24) is the
optimal linear feedback law
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u =−R−1BTS
[
zT1 zT2

]T
= Kopt

[
zT1 zT2

]T
= Koptz (25)

where (n×n) matrix S in (25) can be obtained by solving
the Riccati equation

SA + ATS− SBR−1BTS + Q = 0. (26)

Several methods are available for solving the Algebraic
Matrix Riccati equation (26). However, the enormous size
of the problem and the stiffness due to the presence of
both the slow and fast dynamic phenomenon cripple even
the most effective approach. Hence, by application of sin-
gular perturbation approach, the original higher order ill-
conditioned system is decomposed in two subsystems and
the linear regulator design is carried out for two separate
subsystems individually. Finally separately designed reg-
ulators are combined to obtain control law given by (25).
For design purpose, the matrices Q and S are assumed to
be partitioned as

Q =

[
Q11 Q12

QT
12 Q22

]
and S =

[
S11 εS12

εST12 εS22

]
. (27)

Substituting the values of Q and S from (27) along
with A and B, from (23), and then simplifying with the
assumption ε = 0, the original problem decomposes into
two linear regulator problems as described in the following.

Fast subsystem regulator problem: For fast subsystem
(19), control is given by

uf = −R−1BT
f S22zf = K2zf (28)

where

S22Af + AT
f S22 − S22BfR

−1BT
f S22 + Qf = 0 (29)

where Qf = Q22 ≥ 0 and R > 0. A unique solution of S22

exists if the fast subsystem pair (Af ,Bf ) is controllable.

Slow subsystem regulator problem: The optimal control
for slow subsystem (17) is given by

us = −R−10

(
H0 + BT

0 S0

)
zs = K0zs (30)

where S0 is obtained by solving

S0A0 + AT
0 S0 − S0B0R

−1
0 BT

0 S0 + Q0 = 0 (31)

in which

A0 = As −BsR
−1
0 H0,

B0 = Bs,

Q0 = Q̄0 −HT
0 R
−1
0 H0,

R0 = R +
(
A−122 Bf

)T
Q22A

−1
22 Bf ,

H0 =−
(
A−122 Bf

)T [
QT

12 −Q22A
−1
22 A21

]
,

Q̄0 = Q11 −Q12A
−1
22 A21 −

(
A−122 A21

)T[
QT

12 −Q22A
−1
22 A21

]
.

Composite Controller Design: Separately designed opti-
mal controllers (28) and (30) should ensure the stability
of subsystems i.e.

<e [ ϕ(Af + BfK2) < 0 ] (32)

and <e [ ϕ(As + BsK0) < 0 ] (33)

where ϕ(.) is eigenvalue. As a result, an asymptotically
stable closed loop behavior can be obtained if the following
composite control is applied to the system (14)-(15)

u = K0zs + K2zf . (34)

In terms of states z1 and z2, one can write

u =
[

(Em + K2A
−1
22 B2)K0 + K2A

−1
22 A21

]
z1 + K2z2

= [ K1 K2 ]
[
zT1 zT2

]T
(35)

where K1 = (Em +K2A
−1
22 B2)K0 +K2A

−1
22 A21, in which

Em is (m×m) identity matrix. Further (35) can be written
as

u = Koptz (36)

where Kopt = [ K1 K2 ]. This composite control can serve
as a near optimum control for the actual higher order
system.

Remark 1: If the system is having stable fast modes, then
K2 can be taken as null matrix of (m × n2) dimension.
This yields reduced two-time-scale approximation to Kopt

as K̄opt = [ K0 0 ].

4. APPLICATION TO AHWR

The linear model of the AHWR given by (9)-(10) is found
to controllable and observable (Shimjith et al. (2011c)).
The control input u, to RR drives consist of two terms,
written as

u = ugp + usp (37)

where ugp is global power component, designed in (Munje
et al. (2013b)), and usp is spatial power feedback compo-
nent. After application of global and spatial power feed-
backs system (9) becomes

ż = Âz + Busp + Bfwδqfw (38)

where Â, system matrix with global power feedback
(Shimjith et al. (2011c)), has eigenvalues falling in two
distinct clusters. First cluster of 73 eigenvalues ranging
from −1.8402× 10−1 to −2.6799× 10−5 with three eigen-
values at origin and second cluster of 17 eigenvalues range
from −7.2484 to −2.7626 × 102. Hence, it is possible to
transform model (38) into singularly perturbed form (14)-
(15).

4.1 Singularly Perturbed Form of AHWR Model

In case of AHWR, after linearization of set of equations
given by (1)-(7), it is indeed observed that coefficients
in the 17 equations for nodal powers, contain ` in their
denominator. It is neutron life time and its value is
3.6694 × 10−4 s. This parameter can be picked up as ε.
Therefore, the state variables of system defined by (8) are
grouped into slow and fast ones as

z1 =
[
zTH zTX zTI δhd zTC zTx

]T
, (39)

z2 = zW . (40)
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Now, the AHWR model is transformed into standard
singularly perturbed two-time-scale form, given by (14)-
(15), where n1 = 73 and n2 = 17. Submatrices A11,
A12, A21

ε , A22

ε , B1 and B2

ε are respectively of dimensions
(73 × 73), (73 × 17), (17 × 73), (17 × 17), (73 × 4) and
(17× 4).

4.2 Composite Controller Design

Now model (38) is decomposed into slow and fast subsys-
tems, using equations (17)-(20). The eigenvalues of matri-
ces As and Af are given in Tables (1) and (2) respectively.
It is seen that the eigenvalues of the fast subsystem matrix
Af are in excellent agreement with the last 17 eigenvalues

of matrix Â. Similarly, the slow subsystem eigenvalues
compare well with remaining 73 eigenvalues of matrix Â.
Hence, it can be concluded that the singularly perturbed
form of model (38) is valid in case of AHWR. Slow sub-
system contains the eigenvalues which are unstable along
with those near the origin whereas fast subsystem con-
tains stable eigenvalues. It may further be noticed that in
comparison with (14)-(16), the submatrix B2 of the input
matrix is null matrix, thereby leading to Bf = 0. In other
words, the fast subsystem is uncontrollable. However, it
can be verified that the slow subsystem is controllable and
hence only K0 needs to be designed for system (38) as
given below

usp = K0z1. (41)

The regulator design is carried out using equations de-
scribed in Sections 3.2 with R as a (4× 4) identity matrix
and the matrix Q as given in (Shimjith et al. (2011a)).
The matrix S0 is evaluated by solving (31) and the optimal
control gain K0 for the slow subsystem is determined from
(30). Finally the composite gain matrix Kopt is determined
from (35) and is given by

Kopt = − [ KH KX KI Kh KC Kx 0 ] (42)

where 0 denotes a null matrix of (4 × 17) order and KH ,
KX , KI , Kh, KC and Kx are feedback gains correspond-
ing to RR positions, xenon, iodine, enthalpy, delayed neu-
tron precursor and exit quality respectively. With global
power feedback and (42), the overall control input (37)
becomes

u =−KHzH −KXzX −KIzI −Khzh (43)

−KCzC −Kxzx + ugp. (44)

Table (3) lists the closed loop eigenvalues of (38), which
shows that all the eigenvalues are in left half of s-plane.

4.3 Transient Simulations

Response of the controller was analyzed by simulating
the vectorized nonlinear model (Munje et al. (2014a))
of AHWR given by (1)-(7) in MATLAB/Simulink for the
transients involving a disturbance in the spatial power
distribution. The reactor was assumed to be initially op-
erating at full power equilibrium condition. Shortly, RR2,
originally under auto control, was driven out manually
by 1% giving appropriate control signal after 2 s and
thereafter left on auto control as shown in Fig. 2. Other

Table 1. Eigenvalues of slow subsystem (As).

Sr. No. Eigenvalues Sr. No. Eigenvalues

1 2.4139×10−17 42 -5.7898×10−2

2 6.1105×10−17 43 -5.9709×10−2

3 -2.2396×10−17 44 -5.9727×10−2

4 -2.8757×10−5 45 -6.0346×10−2

5 -3.7781×10−5 46 -6.0644×10−2

6 -3.7993×10−5 47 -6.1849×10−2

7 -4.0124×10−5 48 -6.1946×10−2

8 -4.1520×10−5 49 -6.2200×10−2

9 -4.1968×10−5 50 -6.2385×10−2

10 -4.4204×10−5 51 -6.2458×10−2

11 -4.7338×10−5 52 -6.2608×10−2

12 -4.8866×10−5 53 -6.2865×10−2

13-14 (-7.7407± i 2.9929)×10−5 54 -6.2894×10−2

15-16 (-7.3360± i 3.9319)×10−5 55 -9.7168×10−2

17-18 (-6.4855± i 5.3109)×10−5 56 -1.0708×10−1

19-20 (-3.5444± i 7.7360)×10−5 57 -1.3169×10−1

21-22 (-3.7785± i 7.6475)×10−5 58 -1.4712×10−1

23-24 (-6.5949± i 5.4819)×10−5 59 -1.4713×10−1

25-26 ( 8.0471± i 3.9863)×10−5 60 -1.4808×10−1

27-28 ( 8.8268± i 2.1800)×10−5 61 -1.5063×10−1

29 -1.4107×10−4 62 -1.5580×10−1

30 -1.4441×10−4 63 -1.5585×10−1

31 -1.5717×10−4 64 -1.5662×10−1

32 -1.6524×10−4 65 -1.6019×10−1

33 -1.6573×10−4 66 -1.6316×10−1

34 -1.7308×10−4 67 -1.6324×10−1

35 -1.8807×10−4 68 -1.6404×10−1

36 -1.8870×10−4 69 -1.7531×10−1

37 -2.4408×10−4 70 -1.8031×10−1

38 -1.5738×10−2 71 -1.8049×10−1

39 -5.0954×10−2 72 -1.8122×10−1

40 -5.1179×10−2 73 -2.7823×10−1

41 -5.7743×10−2

Table 2. Eigenvalues of fast subsystem (Af ).

Sr. Eigenvalues Sr. Eigenvalues Sr. Eigenvalues
No. No. No.

1 -7.2028 7 -9.4608×101 13 -2.1110×102

2 -3.2833×101 8 -1.0868×102 14 -2.1904×102

3 -3.3361×101 9 -1.1704×102 15 -2.3591×102

4 -6.6593×101 10 -1.6967×102 16 -2.7163×102

5 -6.8317×101 11 -1.7568×102 17 -2.7626×102

6 -9.3649×101 12 -1.9497×102

RRs moved in under the effect of the controller in order to
maintain the total reactor power. After the period during
which the manual signal was enforced on RR2, all RRs
were being driven by the controller to their original posi-
tions within 135 s. Variations in spatial power measured
in terms of first and second azimuthal tilts (Shimjith et
al. (2011c)) along with variations in quadrant powers and
global power are shown in Figs. 3, 4 and 5 respectively.

In order to assess the response of the system to disturbance
in feed flow, the model was simulated when 5% positive
step change was introduced in the feed flow as shown in
Fig. 6(a). As a result of this, the incoming coolant enthalpy
reduced by about 0.64% (Fig. 6(b)). The total power
was found to be stabilizing at its rated value due to the
action of controller (Fig. 6(c)). However, RRs are driven
in by 0.9% (Fig. 6(d)). For the temporary disturbance
introduced in feed flow the total power is found to be
stabilizing back at their original value and RRs also came
back to their equilibrium positions as illustrated in Fig 7.
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Table 3. Closed loop eigenvalues of the AHWR
model.

Sr. No. Eigenvalues Sr. No. Eigenvalues

1 -2.8369×10−5 50 -6.2865×10−2

2-3 (-3.6054± i 7.7099)×10−5 51 -6.2893×10−2

4-5 (-3.9491± i 7.5495)×10−5 52 -5.0944×10−2

6 -3.7779×10−5 53 -5.1151×10−2

7 -3.7985×10−5 54 -1.5738×10−2

8 -4.1515×10−5 55 -9.6913×10−2

9 -4.1942×10−5 56 -1.3225×10−1

10 -4.0111×10−5 57 -1.4712×10−1

11 -4.4291×10−5 58 -1.4713×10−1

12 -4.7331×10−5 59 -1.4809×10−1

13 -4.9080×10−5 60 -1.5068×10−1

14-15 (-6.5115± i 5.2628)×10−5 61 -1.5580×10−1

16-17 (-6.5926± i 5.4855)×10−5 62 -1.5585×10−1

18-19 (-7.3405± i 3.9069)×10−5 63 -1.5662×10−1

20-21 (-7.7414± i 2.9910)×10−5 64 -1.6022×10−1

22-23 (-8.3203± i 3.3684)×10−5 65 -1.6316×10−1

24 -8.4318×10−5 66 -1.6324×10−1

25 -9.6873×10−5 67 -1.6405×10−1

26 -1.4048×10−4 68 -1.7542×10−1

27 -1.4459×10−4 69 -1.8037×10−1

28 -1.5742×10−4 70 -1.8049×10−1

29 -1.6516×10−4 71 -1.8122×10−1

30 -1.6590×10−4 72 -2.8889×10−1

31 -1.7323×10−4 73 -1.0800×10−1

32 -1.8816×10−4 74 -6.9171×100

33 -1.8871×10−4 75 -3.2844×101

34 -2.4746×10−4 76 -3.3372×101

35 -7.9732×10−3 77 -6.6599×101

36 -8.0749×10−3 78 -6.8323×101

37 -8.1030×10−3 79 -9.4612×101

38 -5.7736×10−2 80 -9.3653×101

39 -5.7892×10−2 81 -1.0868×102

40 -5.9706×10−2 82 -1.1705×102

41 -5.9723×10−2 83 -1.6967×102

42 -6.0344×10−2 84 -1.7568×102

43 -6.0642×10−2 85 -1.9497×102

44 -6.1848×10−2 86 -2.1110×102

45 -6.1945×10−2 87 -2.1904×102

46 -6.2200×10−2 88 -2.3591×102

48 -6.2458×10−2 89 -2.7163×102

49 -6.2608×10−2 90 -2.7626×102

47 -6.2384×10−2
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Fig. 2. Variation in RR positions during the transient.
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Fig. 3. Suppression of tilts initiated by change in position
of RR2.
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Fig. 4. Quadrant power variations during the transient.
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Fig. 5. Variations in global power during the transient.

In another transient, initially, the reactor is under steady
state and is assumed to be operating at 920.48 MW
with nodal power distribution as given in Shimjith et al.
(2011c). Now, the demand is reduced uniformly at the rate
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Fig. 6. Effect of 5% positive step change in the feed flow.
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Fig. 7. Effect of temporary disturbance in the feed flow.

of 1.5 MW/s to 828.43 MW, in 61 s and held constant
thereafter. During the transient, it is observed that, the
global power is following the demand power as shown in
Fig. 8. It is noted that, the xenon concentrations stabilizes
to their respective new steady state values in about 40 h.
However, the nodal powers attain the steady state value
in about 100 s.

Further, the performance of controller is compared with
three-time-scale approach presented by Shimjith et al.
(2011a). In this case, RR6 was driven out manually by 2%
giving appropriate control signal and simultaneously RR4
was driven in by 2%. Immediately after that regulating
rods were driven back to their original positions. Result
is generated for variations in control rod positions using
both the controllers as shown in Fig 9. It is observed
that, in both the cases RRs are driven back to their
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Fig. 8. Variation of global power during power maneuver-
ing from 920.48 MW to 828.43 MW.
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(a) Three−time−scale approach (Shimjith et al., 2011)
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Fig. 9. Comparison of three-time-scale and two-time-scale
methods.

equilibrium positions but time required to do so is less
in the suggested controller. Variation in quadrant powers
during this transient are given in Fig. 10.

5. CONCLUSION

In this paper, the original numerically ill-condition system
of AHWR is decomposed into two lower order subsystems
by singular perturbation technique. Linear quadratic reg-
ulators are then designed for the two subsystems sepa-
rately and a composite controller for original system is
obtained. This composite controller achieves an asymp-
totic approximation to the closed loop system performance
and eliminates the ill-conditioning issues associated with
AHWR. This controller is investigated for vectorized non-
linear model of AHWR. Performance of the suggested con-
troller is judged via simulations carried out under various
transient conditions. Proposed controller is compared with
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Fig. 10. Quadrant power variations during the transient.

three-time-scale composite controller for same transient
levels. It is observed that performance of the suggested
controller is better compared to three-time-scale composite
controller in terms of spatial stabilization.

The control strategy for AHWR, presented here, utilizes
the feedback of nodal powers, regulating rods’ positions
and xenon and iodine concentrations. For the later two
variables, it would be necessary to employ an observer or
estimator.
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