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Abstract: This paper presents an approach for active fault-tolerant control (FTC) design of constrained 
linear multi input-multi output (MIMO) systems. The proposed approach is based on model predictive 
control (MPC) and fault estimation scheme. This method uses two optimal observers to estimate the plant 
states and loss of effectiveness factor of actuators and sensors. A supervisor unit also uses the fault 
modelling and correction of plant model per sampling time to accommodate simultaneous partial actuator 
and sensor faults. Also, by using embedded integrator and feedback compensation in MPC formulation, 
actuator and sensor faults are compensated automatically. The most important advantages of the 
proposed approach is ability to deal with the constraints and all types of faults in control system 
simultaneously low on-line computational load, and its simplicity for real applications. Simulation results 
on active magnetic bearing system show the effectiveness of the proposed approach. 

Keywords: fault-tolerant control (FTC), model predictive control (MPC), fault detection and isolation 
(FDI). 



1. INTRODUCTION 

In recent years, fault-tolerant control (FTC) systems have 
been gaining an increasing insert among researchers. The 
main motivation behind such an increasing insert is high 
performance requirements of modern industries and demand 
for higher reliability and safety in control systems. 

A control system that can accommodate faults among system 
components automatically while maintaining system stability 
along with a desired level of overall performance is denoted 
as an FTC system (Zhang and Jiang, 2008; Jiang and Yu, 
2012;  Mirzaee and Salahshoor, 2012). FTC system design 
techniques can be classified in two types: passive approach 
(PFTC) such as robust fault accommodation approach (Yang 
et al., 2001; Veillrtte et al., 1992) and active approach 
(AFTC) such as adaptive approach (Tao et al., 2001; Bodson 
and Groszkiewicz, 1997);  model following (Huang and 
Stengel, 1990); eigenstructure assignment (Jiang, 1994); and 
multiple model (Zhang and Jiang, 2001; Boskovic et al., 
1998). In PFTC, the controller structure is constant and 
system can tolerate only a limited number of faults which are 
assumed to be known prior to controller design. On the other 
hand, AFTC can accommodate faults by reconfiguration or 
restructuring the controller based on information provided by 
of fault detection and isolation (FDI) module (Jiang and Yu, 
2012). 

Model predictive control (MPC) has been widely adopted by 
process industry as an effective practical control technique, 
specially, in chemical process (Prakash et al., 2010; Puig et 
al., 2008; Gambier et al., 2010). This is mainly due to its 
unique advantages in dealing with hard constraints on inputs 
and states, and complex process dynamics such as time 
varying, unstable and multivariable behaviors (Camacho et 
al., 2010). In MPC at each sample time, starting at the current 

state, an open loop optimal control problem is solved over 
finite horizon. At the next time step, the computation is 
repeated starting from the new state and over a shifted 
horizon, leading to a moving horizon policy (Bemporad et al., 
2002). 

The idea of using MPC in FTC is firstly discussed in 
(Maciejowiski, 1997; Maciejowiski and Jones, 2003); both 
references show that MPC provides suitable implementation 
architecture for FTC. MPC based on FTC system design 
technique can be classified in two types: passive approaches 
and active approaches. Passive methods such as (Abdel- 
Geliel et al., 2006; Mahmood and Mhaskar, 2012) 
compensate the faults that are known and used in MPC 
design by coping the extra constraints. On the other hand, this 
fact that MPC is a discrete model-based approach that can 
handle constraints, makes it a serious candidate for AFTC 
approaches (Joosten et al., 2008). In these approaches, MPC 
module can be reconfigured by using the information 
provided by FDI module. Active approaches can be classified 
in two types: multiple MPCs such as (Kanthalakshmi and 
Manikandan, 2011; Kargar et al., 2013; Ichtev et al., 2002; 
Mendonça et al., 2012; Chilin et al., 2012) and adaptive 
approaches such as (Salahshoor  et al., 2010; Martínez et al., 
2005; Qi Sun et al., 2008; Menighed et al., 2011; Chilin et al., 
2012). In adaptive approaches, faults can be compensated by 
modifying the constraints in MPC problem such as (Joosten 
et al., 2008; Salahshoor et al., 2010; Martínez et al., 2005); 
other faults can be compensated by modifying in internal 
model used by MPC such as (Qi Sun et al., 2008; Menighed 
et al., 2011; Chilin et al., 2012). 

In this paper, an AFTC scheme based on combination MPC 
with fault estimation is presented to accommodate actuator 
and sensor faults of a linear time-invariant system with some 
constraints on control inputs. Figure 1 show the architecture 



CONTROL ENGINEERING AND APPLIED INFORMATICS      69 

     

 
 

of the proposed FTC in this paper where controller composed 
of MPC, fault/state estimator and supervisor. The fault/state 
estimator is based on the observers that estimate the loss of 
effectiveness of actuators and sensors (ߛො௔	,  ො௦) and the statesߛ
of plant (ݔො௉). The fault information provided by fault 
estimator  is then used in supervisor that modifies the internal 
model of MPC. Thus, the proposed controller can 
compensate actuator and sensor faults. By using embedded 
integrator (EI) model in MPC design, bias faults in actuators 
and sensors can also be compensated, and by using feedback 
compensation (FC) in MPC, the plant faults can be 
compensated automatically. 

 
Fig. 1. Block diagram of the proposed FTC system. 

Compared to existing works, the contributions of this paper 
are in four aspects: 1) Actuator and sensor faults  as well as 
control constraints can be compensated simultaneously in the 
FTC design approach; 2) The proposed approach has low 
computational load because of using MPC based on Laguerre 
functions and dealing with actuator and sensor faults by 
correction of internal model instead of changing constraints;  
3) An fault estimator is explicitly designed to provide fault 
information for MPC; and 4) Simplicity and effectiveness of 
the proposed FTC approach is significant . 

The paper is organized as follows: in Section 2, the general 
MPC formulation is discussed. Section 3 presents the 
proposed FTC based on MPC. Section 4 illustrates the 
simulation results to show the effectiveness of the proposed 
method on the active magnetic bearing system. Finally, 
conclusions are given in Section 5. 

2. MODEL PREDICTIVE CONTROL 

MPC has been known as an effective solution for constrained 
MIMO control system design problem in the process 
industries. The basic structure of MPC is depicted in Figure 2 
(Camacho and Bordons, 2004). 

 

 

 

 

 

 

 

Fig. 2. Basic structure of MPC.  

At each sample time, the process model is used to predict the 
future plant outputs on the prediction horizon	N୔, based on 
past and current values and proposed optimal future inputs. 
These inputs are calculated by solving a constrained 
optimization problem. The optimization yields an optimal 
input sequence, but only the first element of the sequence is 
applied to the plant and the other elements removed. In the 
next sample time, the complete calculation is repeated. This 
policy is called the receding horizon control principle (RHC), 
(Camacho and Bordons, 2004; van den Boom and 
Stoorvogel, 2010). 

Consider the discrete- time linear system 

௉ሺ݇ݔ ൅ 1ሻ ൌ ௉ሺ݇ሻݔ	௉ܣ ൅ ሺ݇ሻݑ	௉ܤ ൅  ଵ݀ሺ݇ሻ                     (1)ܤ

ሺ݇ሻݕ ൌ  ௉ሺ݇ሻ                                                                  (2)ݔ	௉ܥ

While fulfilling the constraints 

௠௜௡ݑ∆ ൑ ሺ݇ሻݑ∆ ൑ ௠௜௡ݑ					,௠௔௫ݑ∆ ൑ ሺ݇ሻݑ ൑  	௠௔௫ݑ

௠௜௡ݕ ൑ ሺ݇ሻݕ ൑   ௠௔௫                                                           (3)ݕ

at all time instant ݇ ൒ 0,  where  ݔ௉ ∈ 	ܴ௡భ,  ݑሺ݇ሻ ∈ 	ܴ௠   
and ݕ ∈ 	ܴ௤ are the state, input and output vectors 
respectively. Also ݀ሺ݇ሻ is the known disturbance and  
ሺ݇ሻݑ∆ ൌ ሺ݇ሻݑ െ ሺ݇ݑ െ 1ሻ is the increment of input vector. 

Taking a difference operation on both sides of (1) and 
denoting the variables below  

௉ሺ݇ݔ∆ ൅ 1ሻ ൌ ௉ሺ݇ݔ ൅ 1ሻ െ     ௉ሺ݇ሻݔ

௉ሺ݇ሻݔ∆ ൌ ௉ሺ݇ሻݔ െ ௉ሺ݇ݔ െ 1ሻ 

ሺ݇ሻݑ∆ ൌ ሺ݇ሻݑ െ ሺ݇ݑ െ 1ሻ, ∆݀ሺ݇ሻ ൌ ݀ሺ݇ሻ െ ݀ሺ݇ െ 1ሻ 

and choosing new state variable vector 
ሺ݇ሻݔ ൌ ሾ∆ݔ௉ሺ݇ሻ்		ݕሺ݇ሻሿ், leads to the state-space model 
with embedded integrator (EI), (Grimble and Johnson, 2009): 
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൤
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൨                                                   (5) 

where 0௠ ൌ ሾ0		0	. . .		0ሿᇩᇭᇭᇪᇭᇭᇫ
௡భ

  and ∆ݑሺ݇ሻ is the input vector of the 
system. The triple (A, B, C) is called the augmented model, 
which will be used in the design of MPC. When the state- 
space model with EI in MPC formulation is used, MPC can 
compensate the disturbance with step dynamic in control 
system, automatically. 

In general, MPC solves the following constrained 
optimization problem 

݉݅݊௨బ,…,௨ಿೠషభ ∑ ൫ݔሺ݇ ൅ ݉|݇ሻ൯
்
	ܳ൫ݔሺ݇ ൅ ݉|݇ሻ൯

ே೛
௠ୀ଴ ൅

													∑ ሺݑሺ݇ ൅ ݉ሻሻ்	ܴ	ሺݑሺ݇ ൅ ݉ሻሻேೠିଵ
௠ୀ଴ 		                         (6) 

Subject to 
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∆u୫୧୬ ൑ ∆uሺkሻ ൑ ∆u୫ୟ୶	,			k ൌ 1,2, … , Nୡ                         (7) 

௠௜௡ݑ ൑ ሺ݇ሻݑ ൑ ,	௠௔௫ݑ ݇ ൌ 1,2, … , ௖ܰ                               (8) 

௠௜௡ݕ ൑ ሺ݇ሻݕ ൑ ,	௠௔௫ݕ ݇ ൌ 1,2, … , ௣ܰ                               (9) 

ሺ݇ݔ ൅ 1ሻ ൌ ሺ݇ሻݔ	ܣ ൅ ሺ݇ሻݑ∆	ܤ ൅  ௗሺ݇ሻ∆݀ሺ݇ሻ                (10)ܤ

ሺ݇ሻݕ ൌ  ሺ݇ሻ                                                                   (11)ݔ	ܥ

ሺ݇ሻݑ∆ ൌ ሺ݇ሻݔ	௠௣௖ܭ ൅  ሺ݇ሻ                                         (12)ܦௗܭ

at each sampling instant, where	ܳ ൌ ܥ்ܥ	 ൒ 0	, ܴ ൌ ்ܴ 	൐ 0  
and ௣ܰ	, ௨ܰ		, ௖ܰ are the output, input and constraint horizon, 
respectively with ௣ܰ ൒ ௨ܰ	and	 ௖ܰ ൒ ௣ܰ െ 1	. 

The optimization problem (6-12) is solved by quadratic 
programming which gives the desired control sequence 
ሺ݇ሻݑ∆ ൌ ሾ∆்ݑሺ݇ሻ		∆்ݑሺ݇ ൅ 1ሻ…	∆்ݑሺ݇ ൅ ௨ܰ െ 1ሻሿ் that 
fulfilled in (12) where ܦሺ݇ሻ is known statement of ݀ሺ݇ሻ. 
Then by RHC principle, the first vector of control sequence is 
injected to the plant. The parameters of above optimization 
problem are ௣ܰ	, ௨ܰ		and	 ௖ܰ  and computational load in MPC 
is related to them. One of the MPC formulation is classic 
approach presented in Bemporad et al., 2002. By this 
approach, in the case of rapid sampling, complicated process 
dynamics and/or high demands on closed-loop performance, 
satisfactory approximation of the control signal ∆ݑ may 
require a very large number of parameters (large ௨ܰ), leading 
to poorly  numerically conditioned solutions and heavy 
computational load when implemented on-line. Instead, a 
more appropriate approach is to use Laguerre networks in the 
design of MPC presented in Grimble and Johnson, 2009.  

A set of discrete-time orthonormal basis Laguerre functions 
can be obtained by  

Г௡ሺݖሻ ൌ Г௡ିଵሺݖሻ	
௭షభି௔

ଵି௔௭షభ
  ,         n=2, 3, ... , N.                  (13) 

where Гଵሺݖሻ	
ඥଵି௔మ

ଵି௔௭షభ
 , N is the number of Laguerre functions 

in the network and ܽ is the pole of the Laguerre network. the 
set of Laguerre functions can be expressed as	ܮሺ݇ሻ ൌ
ሾ݈ଵሺ݇ሻ	݈ଶሺ݇ሻ…	݈ேሺ݇ሻሿ், where ݈௜ሺ݇ሻ denote the inverse Z-
transform of  Г௜ሺݖ, ܽሻ. The main idea in MPC based on 
Laguerre functions is the approximating member of control 
sequence by a set of Laguerre functions as  

ሺ݇ݑ ൅ ݅ሻ ൌ ݅					,	ߟሺ݇ሻ்ܮ ൌ 1,2, … , ௨ܰ െ 1	                        (14) 
 

where the parameter vector η comprises N Laguerre 
coefficients: ߟ ൌ ሾܿଵ	ܿଶ …		ܿே	ሿ். By using this 
approximation, the optimization problem (6-12) is expressed 
in terms of coefficient vector η , instead of ∆ݑ as in the 
classic approach. Thus, the coefficient vector η will be 
optimized and computed in the design. With this design 
framework, the control horizon ௨ܰ from the classic MPC 
approach has vanished. Instead, the number of terms ܰ	ሺܰ ൏
௨ܰሻ is used to describe the complexity of the trajectory in 

conjuction with the parameter ܽ. Furthermore, a long control 
horizon ( ௨ܰ) can be realized without using a large number of 
parameters, thus the computation load is decreased. In this 
paper, the MPC based on Laguerre functions is used in 
proposed FTC scheme.  

Remark 1: For tracking objective, when the reference signal 
ሺ݇ሻݎ ് ሺ݇ݔ  ,0 ൅ ݉|݇ሻ can be chosen as ݔሺ݇ ൅݉|݇ሻ ൌ
ሾ∆ݔ௉ሺ݇ ൅݉|݇ሻ்		ݕሺ݇ ൅ ݉|݇ሻ െ  ሺ݇ሻሿ் and the optimizationݎ
problem is solved. 

In the most cases, there are not explicit model of the system 
and there are some uncertainties in process model. In these 
cases, model of process is achieved by model mismatch. 
When MPC uses this model, it cannot achieve control 
objectives. For this purpose, feedback compensation (FC) 
could be used to solve this problem by marking error ݁ሺ݇ሻ at 
time ݇ as follows 

݁ሺ݇ሻ ൌ ሺ݇ሻݔ െ ݇|ሺ݇ݔ െ 1ሻ                                                (15) 

where ݔሺ݇ሻ can be obtained by system feedback or state 
observer at time ݇, and ݔሺ݇|݇ െ 1ሻ is the predictive value of 
݇ ሺ݇ሻ at timeݔ െ 1. By adding error in MPC formulation, 
equation (12) is rewritten as follows  

ሺ݇ሻݑ∆ ൌ ሺ݇ሻݔ	௠௣௖ܭ ൅ ሺ݇ሻܦௗܭ ൅  ሺ݇ሻ                        (16)ܧ௘ܭ

where ܧሺ݇ሻ is the known statement of ݁ሺ݇ሻ. By using FC in 
MPC formulation, the control system has robustness against 
model mismatch. 

Remark 2: When the fault occurs in plant, it can be modeled 
as model mismatch; then by using FC in MPC formulation, 
the control system can accommodate the fault in plant. 

In addition, MPC can compensate the failure in the 
components of the control system relatively (van den Boom 
and Stoorvogel, 2010). This property of MPC is due to this 
fact that in MPC, the control signal is recomputed at each 
sample time by solving an open-loop problem, then it is easy 
to make changes in the problem formulation. In Section 4, 
this property of MPC on the active magnetic bearing system 
control will be shown. 

3. FTC BASED ON MPC 

In this section, the fault description is introduced in 
subsection 3.1, and the proposed fault estimator and 
supervisory method are presented in subsection 3.2 and 3.3 
respectively, and finally the architecture of proposed FTC 
scheme is shown in 3.4. 

3.1  Fault Description in Control System Components 

During  the system operation, faults or failures may be occur 
in the closed-loop control system components such as 
actuators, sensors and plant. These faults can be modeled as 
additive or multiplicative due to malfunction or equipment 
aging. 

The fault that changes the dynamics of the plant is the plant 
fault and modeled as bellow 

௉௙ܣ ൌ ௉ܣ ൅   ௉                                                                (17)ܣߜ

For example, the tank system that is pierced and its flow rate 
is changed, has the plant fault. 

The faults that may be occurred in actuators are bias and 
partial actuator failures that is reduction of control 
effectiveness. The i,th  actuator fault can be shown as follow 
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௙௜ݑ ൌ ሺ1 ൅ ௜ݑ௔௜ሻߛ ൅  	௙బ೔ݑ

   	݅ ൌ 1, 2, … ,݉	,			 െ 1 ൑ ௔௜ߛ	 	൑ 0                                   (18) 

where ߛ௔௜ is the control effectiveness factor, m is the number 
of actuators in the control system and ݑ௙బ೔is the bias of i,th  
actuator. Different types of actuator faults are shown in Table 
1. 

Table 1.  Actuator fault type 

 u୤୭୧ ൌ 0 u୤୭୧ ് 0 

γୟ୧ ൌ 0 Fault free bias 

െ1 ൏ ୟ୧ߛ ൏ 0 Partial failure Partial failure and 
bias 

γୟ୧ ൌ െ1 failure Stuck 

The actuator fault can also be represented in a control system 
by the following compact form  

௙ݑ ൌ ሺܫ ൅ ݑ௔ሻߛ ൅  ௙బ                                                         (19)ݑ

where, ߛ௔ ൌ ݀݅ܽ݃ሺߛ௔ଵ, ,௔ଶߛ … ,  is the identity matrix ܫ ,௔௠ሻߛ
and  ݑ௙బ ൌ ሾݑ௙బభ	ݑ௙బమ ሿ	௙బ೘ݑ…

்.  

In a similar way, sensor faults can be represented as bellow 

௙ݕ ൌ ሺܫ ൅ ݕ	௦ሻߛ ൅  ௙బ                                                         (20)ݕ

where, 
௦ߛ ൌ ݀݅ܽ݃൫ߛ௦ଵ, ,௦ଶߛ … , ௙బݕ		݀݊ܽ	௦௤൯ߛ ൌ ሾݕ௙బభ	ݕ௙బమ … ሿ	௙బ೜ݕ

். 

3.2  Fault/ State Estimator 

As presented in Section 1, AFTC method is used to 
compensate actuator and sensor faults. For AFTC design, 
designing of fault estimator is necessary. For estimator 
design, this paper uses the idea that presented in Qi Sun et al., 
2008, and presents a fault/state estimator that estimates the 
control and output effectiveness factors (ߛ௔	,  ௦) and states ofߛ
the plant (ݔ௉) that are used in MPC. Consider the discrete- 
time linear system 

௉ሺ݇ݔ ൅ 1ሻ ൌ ௉ሺ݇ሻݔ	௉ܣ ൅ ሺ݇ሻݑ	௉ܤ ൅  ଵ݀ሺ݇ሻ                    (21)ܤ

ሺ݇ሻݕ ൌ   ௉ሺ݇ሻ                                                                (22)ݔ	௉ܥ

Regarding (18), the state equation with actuator fault is given 
by 

௉ሺ݇ݔ ൅ 1ሻ ൌ ௉ሺ݇ሻݔ	௉ܣ ൅  ሺ݇ሻݑ	௉ܤ

   ൅ሾܾଵߛ௔ଵ ܾଶߛ௔ଶ … ܾ௠ߛ௔௠ሿ ൦

ଵሺ݇ሻݑ
ଶሺ݇ሻݑ
⋮

௠ሺ݇ሻݑ

൪ ൅  ଵ݀ሺ݇ሻ       (23)ܤ

or in a compact form 

௉ሺ݇ݔ ൅ 1ሻ ൌ ௉ሺ݇ሻݔ	௉ܣ ൅  ሺ݇ሻݑ௉ܤ

																							൅ܧሺ݇ሻ	ߛ௔ሺ݇ሻ ൅  ଵ݀ሺ݇ሻ                                 (24)ܤ

where       

ሺ݇ሻܧ ൌ ܷሺ݇ሻ			,		௉ܷሺ݇ሻܤ ൌ ൦

	ଵሺ݇ሻݑ
0
⋮
0

0
ଶሺ݇ሻݑ
⋮
0

⋯
⋯
⋱
⋯

0
0
⋮

௠ሺ݇ሻݑ

൪ 

௔ሺ݇ሻߛ ൌ ൦

	௔ଵሺ݇ሻߛ
௔ଶሺ݇ሻߛ
⋮

௔௠ሺ݇ሻߛ

൪ 

In the absence of the knowledge on the evolution of the 
effectiveness factors, the control effectiveness can be 
modeled as a random bias vector 

௔ሺ݇ߛ ൅ 1ሻ ൌ ௔ሺ݇ሻߛ ൅  ሺ݇ሻ                                                (25)ݓ

where ݓሺ݇ሻ denote the white noise sequence. By defining the 
new state such as ݖ௔ሺ݇ሻ ൌ ሾݔ௉ሺ݇ሻ		ߛ௔ሺ݇ሻሿ், the augmented 
model is 

௔ሺ݇ݖ ൅ 1ሻ ൌ ௔ሺ݇ሻݖ	ሚ௔ܣ ൅ ሺ݇ሻݑ	෨௔ܤ 	൅  ෨ଵ݀ሺ݇ሻܤ

                    ൅ܤ௪ݓሺ݇ሻ                                                       (26) 

ሺ݇ሻݕ ൌ  ௔ሺ݇ሻ                                                                (27)ݖ	ሚ௔ܥ

where 

ሚ௔ܣ ൌ ቂܣ௉ ሺ݇ሻܧ
0 ܫ

ቃ , ෨௔ܤ ൌ ቂܤ௉
0
ቃ , ෨ଵܤ ൌ ቂܤଵ

0
ቃ 

௪ܤ ൌ ቂ0
ܫ
ቃ , ሚ௔ܥ ൌ ሾܥ௉	0ሿ 

If the pair (ܣሚ௔		,  ሚ௔) is observable, by an optimal observerܥ
such as kalman filter (van den Boom and Stoorvogel, 2010), 
both state vector of plant and control effectiveness factors can 
be estimated. 

In a similar way, the output equation with sensor faults is 
given by 

ሺ݇ሻݕ ൌ ௉ሺ݇ሻݔ௉ܥ ൅  ௦ሺ݇ሻ                                          (28)ߛ	ሺ݇ሻܨ

where 

ሺ݇ሻܨ ൌ െ	ܻሺ݇ሻ, ܻሺ݇ሻ ൌ ൦

	ଵሺ݇ሻݕ
0
⋮
0

0
ଶሺ݇ሻݕ
⋮
0

⋯
⋯
⋱
⋯

0
0
⋮

௤ሺ݇ሻݕ

൪ 

௦ሺ݇ሻߛ ൌ ൦

	௦ଵሺ݇ሻߛ
௦ଶሺ݇ሻߛ
⋮

௦௤ሺ݇ሻߛ

൪ 

In the absence of the knowledge on the evolution of the 
effectiveness factor, the sensor effectiveness can be model as  

௦ሺ݇	ߛ ൅ 1ሻ ൌ ௦ሺ݇ሻߛ ൅  ሺ݇ሻ                                                 (29)ݒ

where ݒሺ݇ሻ denote the white noise sequence. By defining the 
new state such as ݖ௦ሺ݇ሻ ൌ ሾݔ௉ሺ݇ሻ		ߛ௦ሺ݇ሻሿ், the augmented 
model is 

௦ሺ݇ݖ ൅ 1ሻ ൌ ௦ሺ݇ሻݖ	௦	ሚܣ ൅ ሺ݇ሻݑ	෨௦ܤ 	൅  ෨ଵ݀ሺ݇ሻܤ

                      ൅ܤ௩ݒሺ݇ሻ                                                      (30) 
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ሺ݇ሻݕ ൌ  ௦ሺ݇ሻ                                                                 (31)ݖ	ሚ௦ܥ

where 

௦	ሚܣ ൌ ቂܣ௉ 0
0 ܫ

ቃ , ෨௦ܤ ൌ ቂܤ௉
0
ቃ , ෨ଵܤ ൌ ቂܤଵ

0
ቃ , ௩ܤ ൌ ቂ0

ܫ
ቃ			 

ሚ௦ܥ ൌ ሾܥ௉	ܨሺ݇ሻሿ 

If the pair (ܣሚ௦		,  ሚ௦) is observable, by an optimal observerܥ
such as kalman filter, both state vector of plant and 
effectiveness factors of sensors can also be estimated. 

Thus, the fault estimator composed of two observer that its 
existence conditions are the observability of (ܣሚ௔		,  ሚ௔) andܥ
,		ሚ௦ܣ)  ሚ௦), and the number of faults must be lower than orܥ
equal to the measurable outputs of the plant. 

It is worth mentioning that disturbance estimation method is 
similar to the proposed fault estimation method. In the 
absence of the knowledge on the evolution of the disturbance, 
it can be modeled as  

݀ሺ݇ ൅ 1ሻ ൌ ݀ሺ݇ሻ ൅ ݁ௗሺ݇ሻ                                                 (32) 

where ݁ௗ(k) denote the white noise sequence. By defining the 
new state such as ݏሺ݇ሻ ൌ ሾݔ௉ሺ݇ሻ		݀ሺ݇ሻሿ், the augmented 
model is given by 

ሺ݇ݏ ൅ 1ሻ ൌ ሺ݇ሻݏ	ሚௗܣ ൅ ሺ݇ሻݑ	෨ௗܤ ൅  ௘݁ሺ݇ሻ                        (33)ܤ

ሺ݇ሻݕ ൌ  ሺ݇ሻ                                                                  (34)ݏ	ሚௗܥ

where 

ሚௗܣ ൌ ቂܣ௉ ଵܤ
0 ܫ

ቃ , ෨ௗܤ ൌ ቂܤ௉
0
ቃ , ሚௗܥ ൌ ሾܥ௉	0ሿ, ௘ܤ ൌ ቂ0

ܫ
ቃ 

If the pair (ܣሚௗ		و	ܥሚௗ	) is observable, by an observer, both state 
vector of plant and disturbance can also be estimate. 

3.3 Supervisory Scheme 

As shown in Figure 1, the supervisor is unit that gives the 
fault information from fault/state estimator, then by modifies 
the internal model of plant, and the MPC controller is then 
reconfigured. The technique of modeling the all types of 
faults in actuators and sensors is presented in the following. 

Consider the fault-free model of system  

௉ሺ݇ݔ ൅ 1ሻ ൌ ௉ሺ݇ሻݔ	௉ܣ ൅ ሺ݇ሻݑ	௉ܤ ൅  ଵ݀ሺ݇ሻ                    (35)ܤ

ሺ݇ሻݕ ൌ  ௉ሺ݇ሻ                                                                (36)ݔ	௉ܥ

when actuator fault occurs, by replacing ݑሺ݇ሻ with ݑ௙ሺ݇ሻ, 
presented in (19), the state equation (35) is changed by 

௉ሺ݇ݔ ൅ 1ሻ ൌ ௉ሺ݇ሻݔ	௉ܣ ൅ ܫ௉ሺܤ ൅  ሺ݇ሻݑ௔ሻߛ

																								൅ܤ௉ݑ௙బ ൅  ଵ݀ሺ݇ሻ                                         (37)ܤ

By defining ܤ௉௡௘௪ ൌ ܫ௉ሺܤ ൅  ௔ሻ, the equation (37) can beߛ
written as 

௉ሺ݇ݔ ൅ 1ሻ ൌ ௉ሺ݇ሻݔ	௉ܣ ൅  ሺ݇ሻݑ௉௡௘௪ܤ

																								൅ܤ௉ݑ௙బ ൅  ଵ݀ሺ݇ሻ                                         (38)ܤ

For compensating the actuators fault, by using the 
information about  ߛ௔ , ܤ௉௡௘௪ is constructed, and MPC is 

then redesigned. It should be noted, in most cases the bias of 
actuator (ݑ௙బ) has a step dynamic; then as discussed in 
Section 2, because of using EI in MPC, this fault can be 
compensated automatically. Thus, it is not necessary to 
consider the part ܤ௉ݑ௙బ	in internal model. Therefore, for 
compensating the actuator faults, the new model represented 
in (39) and (40), will be replaced by the old fault-free model 
in the MPC formulation 

௉ሺ݇ݔ ൅ 1ሻ ൌ ௉ሺ݇ሻݔ	௉ܣ ൅ ሺ݇ሻݑ௉௡௘௪ܤ ൅  ଵ݀ሺ݇ሻ               (39)ܤ

ሺ݇ሻݕ ൌ  ௉ሺ݇ሻ                                                                (40)ݔ	௉ܥ

Remark 3: If the actuator bias has different dynamic, for 
compensating, it can be treated as disturbance in MPC 
formulation. In this case, the control low in optimization 
problem of MPC can be modified as bellow 

ሺ݇ሻݑ∆ ൌ ሺ݇ሻݔ	௠௣௖ܭ ൅ ሺ݇ሻܦௗܭ ൅ ௕ܭ ௙ܷ଴ሺ݇ሻ                     (41) 

Where  ௙ܷ଴ሺ݇ሻ is the known statement of  ݑ௙బ. Certainly, it is 
necessary that amplitude of ݑ௙బ is known. 

In a similar way, when sensor fault occur, by replacing ݕሺ݇) 
with ݕ௙ሺ݇ሻ	in (20), the output equation (36) is obtained as 
follows 

ሺ݇ሻݕ ൌ ሺܫ ൅ ௉ሺ݇ሻݔ	௉ܥ	௦ሻିଵߛ െ ሺܫ ൅  ௙బ                   (42)ݕ	௦ሻିଵߛ

By defining  ܥ௉௡௘௪ ൌ ሺܫ ൅  ௉ , the equation (42) can beܥ௦ሻିଵߛ
written as 

ሺ݇ሻݕ ൌ ௉ሺ݇ሻݔ	௉௡௘௪ܥ െ ሺܫ ൅  ௙బ                               (43)ݕ	௦ሻିଵߛ

For compensating the sensor fault, by using of information 
about  ߛ௦ , ܥ௉௡௘௪ is constructed, then MPC is redesigned. It 
should be noted, in most cases the bias of sensor (ݕ௙బ) have a 
step dynamic and because of using EI in MPC, this fault can 
be compensated automatically. So it is not necessary to 
consider the part ሺܫ ൅  ௙బin internal model. Thus forݕ	௦ሻିଵߛ
compensating the sensor faults the new model that 
represented in (44) and (45), will be replaced by the old fault 
free-model in the MPC formulation. 

௉ሺ݇ݔ ൅ 1ሻ ൌ ௉ሺ݇ሻݔ௉ܣ ൅ ሺ݇ሻݑ௉ܤ ൅  ଵ݀ሺ݇ሻ                     (44)ܤ

ሺ݇ሻݕ ൌ  ௉ሺ݇ሻ                                                           (45)ݔ௉௡௘௪ܥ

In general, when actuator and sensor fault occur 
simultaneously, the corrected internal model is 

௉ሺ݇ݔ ൅ 1ሻ ൌ ௉ሺ݇ሻݔ	௉ܣ ൅ ሺ݇ሻݑ௉௡௘௪ܤ ൅  ଵ݀ሺ݇ሻ               (46)ܤ

ሺ݇ሻݕ ൌ  ௉ሺ݇ሻ                                                           (47)ݔ௉௡௘௪ܥ

where   ܤ௉௡௘௪ ൌ ܫ௉ሺܤ ൅ ௉௡௘௪ܥ  ௔ሻ  andߛ ൌ ሺܫ ൅  .௉ܥ௦ሻିଵߛ

3.4  FTC Architecture 

The architecture of the proposed FTC scheme based on MPC 
is shown in Figure 3. 

In every sampling instant, the fault/state estimator estimates 
the control and output effectiveness factors (ߛො௔	,  ො௦) and statesߛ
of plant (ݔො௉). Then ߛො௔	,  ො௦ passes to supervisor and new faultyߛ
model will take the place of the old fault-free model in the 
MPC formulation by the supervisor. In addition, the 
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estimated states of plant also used in MPC formulation when 
the states are not measurable. Also, disturbance estimator 
estimates ݀ሺ݇ሻ and sends it to MPC. Then, MPC using this 
new information, updates the optimization problem and 
compute  ݇௠௣௖	, ݇ௗ, ݇௘ in equation (16). Then the actuator and 
sensor faults are compensated by an AFTC system. Also, by 
using EI and FC in MPC, the actuator and sensor bias and 
also plant faults are compensated automatically without their 
information. 

 

Fig. 3. Architecture of proposed FTC based on MPC. 

In brief, the whole procedure of implementation the proposed 
FTC approach can be summarized in the following algorithm: 

(1) Develop the nonlinear model of plant. 

(2) Linearize the obtained nonlinear model around operating 
points. 

(3) Construct MPC controller by EI and FC based on the 
linear model of the process and considering the real 
constraints (this step needs some trial and error for choosing 
the MPC weight matrices, control and prediction horizon). 

(4) Check the observability of (ܣሚ௔		, ,		ሚ௦ܣ) ,(ሚ௔ܥ  ሚ௦) andܥ
,	ሚௗܣ)  .ሚௗ), if they are observable go to step 5ܥ

(5) Construct the fault/state estimator and disturbance 
estimator and supervisor unit. 

(6) Construct the control system as shown in Figure 3. 

As seen in the above algorithm, the proposed approach  
however needs some observability conditions, for example, it 
cannot be used for the cases that (ܣሚ௔		, ,		ሚ௦ܣ) ,(ሚ௔ܥ  ሚ௦) andܥ
,	ሚௗܣ)  ሚௗ) are not observable. Similar to other MPCܥ
approaches, the proposed approach needs an exact modelling 
for obtaining ܣ௉ and ܤ௉ in (1) and (2). Therefore, robustness 
can be a critical issue in this approach.  Finally, it needs some 
trials and errors for choosing the parameters of MPC to 
guarantee the closed-loop stability and desired performance. 

4. SIMULATION RESULTS 

Simulation results are carried out to evaluate the proposed 
FTC approach based on MPC by using active magnetic

 bearing (AMB) system. AMB system is a nonlinear unstable 
two input-two output system that used in high speed motors 
and centrifuges that used for enrichment. Figure 4 shows the 
AMB system. 

 

 

 

 

 

 

Fig. 4. Structure of Active Magnetic Bearing system. 

The main objective is the control of axis and regulation 
beyond reference while avoiding instability due to input. The 
linear discrete-time model of AMB system with sampling 
interval 0.2 ms is identified as (Grimble and Johnson, 2009) 

௉ሺ݇ݔ ൅ 1ሻ ൌ ௉ሺ݇ሻݔ	௉ܣ ൅ ሺ݇ሻݑ	௉ܤ ൅  ݀ሺ݇ሻ                   (48)	ଵܤ

ሺ݇ሻݕ ൌ   ௉ሺ݇ሻ                                                                (49)ݔ	௉ܥ

subject to  |∆ݑ௜ሺ݇ሻ| ൑ |௜ሺ݇ሻݑ|	݀݊ܽ		1 ൑ 2, ݅ ൌ 1,2 

 where 

௉ܣ ൌ ቎

4.387 6.077
െ1.87 െ2.36

0.503 െ0.01
െ0.27 െ0.62

െ0.12 െ0.24
0.0004 െ0.000

0.875 7.950
െ0.0005 1.094

቏                                          

௉ܤ ൌ ቎

0.031 െ0.00
0.054 െ0.00
0.004 െ0.00
0.00			 			0.06

቏, ܤଵ ൌ ቎

0
0

െ0.002
0

0
0
0

െ0.002

቏ 

௉ܥ ൌ ቂ0.0265 0.0785
െ0.049 െ0.073

0.0009 െ0.024
െ0.024 0.110

ቃ 

and ݀ሺ݇ሻ is disturbance by step dynamic. 

The simulation results of control of AMB system by MPC are 
shown in Figure 5, and the performance and computational 
load of classic MPC and MPC based on Laguerre functions 
are compared. In the classic MPC for reaching stability and 
acceptable performance, the parameters by trial and error are 
chosen as ௨ܰ ൌ 7	, ௣ܰ ൌ 15 , and in MPC based on Laguerre 
functions   parameters are chosen as N=2, a=0.9, ௣ܰ ൌ 15 .  

From Figure 5, it can be seen that classic MPC can achieve 
stability and acceptable performance by optimization of 7 
parameters, while MPC based on  Laguerre functions can 
achieve stability and desirable performance by optimization 
of 2 parameters.  This can show low computational load in 
MPC based on Laguerre functions. 
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Fig. 5. Control of AMB system by MPC based on Laguerre 
functions and classic MPC. 

In the following,  two FTC approaches are compared. For 
this purpose, the performance of the proposed FTC approach 
based on MPC using Laguerre functions is compared with 
FTC based on classic MPC as presented in Qi Sun et al., 
2008 under different fault scenarios. 

Fault scenario #1 

In the first fault scenario, simultaneous faults in actuator, 
sensor and plant are considered such that bias in actuator 1 
and sensor 1 is equal to ݑ௙బ ൌ 0.7	and		ݕ௙బ ൌ 0.5 , fault in 
actuator 1 and sensor 1 is 50% and 60%, respectively and 
dynamic change is given by 

௉௙ܣ ൌ ௉ܣ ൅ ௉ܣߜ								,								௉ܣߜ ൌ ቎

െ0.5
0
0
0

0
െ0.05
0
0

0
0
0
0

0
0
0
0

቏ 

This change is occurred at instant k=300. The simulation 
results are shown in Figure 6.  This figure compares  FTC 
based on Laguerre based MPC with FTC based on classic 
MPC as presented in Qi Sun et al., 2008.  As shown in Figure 
6, the performance of the proposed FTC is more better than 
other FTC approach.  Also, Figure 7 shows the loss of 
effectiveness factor of actuator and sensor estimated by 
fault/state estimator. 

Fault scenario #2 

In the second fault scenario, the failure of the actuator 1 is 
considered to show the capability of the proposed FTC 
approach in dealing with actuator failure. Suppose that the 
actuator 1 fails at instant k=300. The simulation results are 
shown in Figure 8. Also, Figure 9 shows the control loss of 
effectiveness factor of actuator 1 that estimated by fault/state 
estimator. 

 

Fig. 6. Control of AMB system by FTC based on MPC in 
fault scenario #1. 

Fig. 7. Control and output loss of effectiveness factor 
estimated by Fault/State estimator in fault scenario #1. 

Fault scenario #3 

In the third fault scenario, the failure of the sensor 2 is 
considered. Assume that failure of the sensor 2 occurs at 
instant k=300. The simulation results are shown in Figure 10. 
By using proposed FTC, system is stable in the presence of 
the fault in sensor 2. It should be note that when fault sensor 
occurs, the observability of (ܣሚ௦		,  ሚ௦) is destroyed. In thisܥ
scenario, we can assume that ߛ௦ is known. 

Simulation results in all fault scenarios show that the 
proposed FTC based on MPC using Laguerre functions 
accommodates the simultaneous faults in the closed-loop 
control system and can deal with constraints on control and 
incremental control with low computational load in 
comparison with other FTC based on classic MPC.  
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Fig. 8. Control of AMB system by FTC based on MPC in 
fault scenario #2.  

Fig. 9. Control effectiveness factor of actuator 1 estimated by 
Fault/State Estimator in fault scenario #2. 

 

Fig. 10. Control of AMB system by FTC based on MPC in 
fault scenario #3. 

 

5.  CONCLUSIONS 

In this paper, an active FTC approach based on MPC for a 
class of MIMO constrained linear systems has been 
presented. Based on fault estimation approach, the internal 
model of MPC is corrected in each sampling instant and  then 
actuator and sensor faults are compensated. Also, by using EI 
and FC in MPC formulation, the bias faults of actuators and 
sensors can be compensated automatically. The advantages of 
the proposed FTC approach are that it is comprehensive in 
fault accommodation point of view because it is able to 
compensate all types of faults in control systems 
simultaneously,  it has low computational load because of 
using MPC based on Laguerre functions  and can handle 
control constraints to prevent of actuator saturations,  it is 
able to deal with failures in actuators and sensors as well as 
bias fault without any additional work in comparison with 
other FTC approaches, and finally  simplicity and  
effectiveness of the proposed FTC approach for real 
applications are more significant. In the future work, this 
approach will be extended to general MIMO constrained 
nonlinear systems. 
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