
CEAI, Vol.17, No.3 pp. 77-87, 2015 Printed in Romania

Evaluation Framework for Security and Resource Consumption of
Cryptographic Algorithms

Cristina-Loredana Duta, Bogdan-Costel Mocanu,

Florin-Alexandru Vladescu, Laura Gheorghe, Nicolae Tapus

Department of Computer Science and Engineering, University Politehnica of Bucharest, Romania
E-mail: cristina.duta.mapn@outlook.com, bogdan_costel.mocanu@cti.pub.ro,

florin_alexandru.vladescu@cti.pub.ro, laura.gheorghe@cs.pub.ro, nicolae.tapus@cs.pub.ro)

Abstract: Today, security is necessary when transmitting confidential information over the network. One
of the most important ways to provide data confidentiality is through cryptography. In this paper, we
present a framework for testing and evaluating cryptographic algorithms. When evaluating block and
stream ciphers, some basic properties should be tested: correct functional testing, passing statistical
randomness testing, having good substitution boxes (S-boxes) and good permutation boxes (P-boxes) in
their construction and providing a good throughput. The proposed framework receives the cryptographic
algorithm as input and evaluates: the provided test vectors, the randomness of the generated data, the
properties of the S-boxes and the P-boxes, the performance in terms of speed and throughput and
provides a result, whether or not the algorithm is secure and can be used in cryptographic applications.

Keywords: cryptography, randomness tests, S-boxes, P-boxes, performance evaluation



1. INTRODUCTION

Nowadays, due to the large amount of data that is processed
or transferred between individuals or companies, the security
domain is becoming one of the most important issues. Data
must be kept secure and nobody, except the authorized
entities, can have access to confidential information. The
solution for this requirement is to use cryptography.

Cryptography protects information by transforming it into
unreadable format (encryption). This format hides a message
that should be understood only by the intended receiver (after
decryption). Also, with the help of cryptography,
transmission channels that carry sensitive information can be
protected against unauthorized access.

Because of the increasing importance of data that is being
exchanged over the Internet, a solution must be found in
order to provide the necessary protection against the attacks.
Because of this, evaluating cryptographic algorithms is an
important task in order to achieve a high level of information
security.

Security for cryptographic systems is ensured if some basic
properties are taken into consideration when developing a
cryptographic algorithm. For instance, the impossibility of
distinguishing a primitive (block or stream cipher) from a
random mapping is an important aspect. Based on the results
of statistical randomness tests, it can be determined the
suitability of the algorithm to be used in specific applications
as a random number generator.

The purpose of this project is to determine whether the
evaluated cryptographic algorithm is capable of providing a
certain level of security for the transmitted information. Our
goal is to create a complex evaluation framework that
incorporates testing functions for all important cryptographic

properties. In this way, the users of the framework can see if
their algorithm is vulnerable or not and decide if it can be
used in the application it was designed for. For instance,
statistical testing module can show if an algorithm is suitable
to be a random number generator, the S-boxes testing module
can identify a weakness in the construction of the algorithm,
the performance evaluation module can specify if the
algorithm is good in software or in hardware
implementations.

The paper is organized as follows. Related work is presented
in Section 2. Section 3 gives an overview of the architecture
for the evaluation framework. Section 4 offers details about
our implementation of the framework. In Section 5 various
metrics taken into consideration for the algorithms are given
and the experimental results are presented. Section 6
describes our conclusions and future work.

2. RELATED WORK

To offer a better perspective about the utility and importance
of the generic evaluation framework we developed, this
section presents various methods and techniques for
evaluating cryptographic algorithms and the results obtained
by other solutions.

2.1 Cryptographic Algorithms

Cryptographic algorithms are classified in symmetric
algorithms (also known as secret key algorithms) and
asymmetric algorithms (public key algorithms).

When symmetric algorithms are used, the sender and the
receiver have the same key. The key is agreed upon between
the both of them and it is used for encryption and decryption
of the message. Some of the best known cryptographic
algorithms included in this category are: Advanced

78 CONTROL ENGINEERING AND APPLIED INFORMATICS

Encryption Standard (AES), Data Encryption Standard (DES)
and 3DES.

When asymmetric algorithms are used, each user has a public
and a private key. The public key of the receiver is known to
everyone and is used by the sender to encrypt the message
and the private key is used by the receiver to decrypt
message. The public-key system is constructed in a way that
calculating one key, for instance the private key, from the
other key, the public key, is computationally infeasible. Some
of the most important applications of public-key
cryptography are Elliptic Curve cryptography (ECC), PGP
and the public-key infrastructure (PKI).

Symmetric algorithms can be divided into block ciphers and
stream ciphers. Block ciphers are algorithms that permute N-
bit blocks of plaintext data, combine them with the secret key
and generate at the end N-bit blocks of encrypted data.
Stream ciphers typically operate serially by generating a
stream of pseudo-random key bits, called keystream. This
keystream is XOR-ed with the data to encrypt or decrypt in a
bit by bit manner. In this paper, we focus on evaluating
symmetric algorithms.

2.2 Performance Evaluation

(Tamimi, 2005) makes a performance comparison between
symmetric key algorithms such as DES, 3DES, AES and
Blowfish taking into consideration different sizes and
contents of input data. The evaluation was performed on two
different hardware platforms: P-II 266 MHz and P-4 2.4
GHz.

(Shah et al., 2011) propose different performance factors
such as: visual degradation after encryption, tunability and
computational speed. (Singh et al., 2011) discuss the
performance metrics for the symmetric key algorithms and
present their results.

(Arora et al., 2012) has chosen algorithms such as AES, DES
and Blowfish. In this case, the evaluation is dependent on the
type of data. The input files can be of type .exe, .doc, .wmv
and .avi and the comparison is based on the calculated
throughput.

(Ramesh et al., 2012) try to determine how algorithms
perform on web servers. The tests were performed on
platforms such as Internet Explorer, Mozilla Firefox, Opera
and Netscape Navigator. They reached the conclusion that
DES is suitable for Internet Explorer, RC6 for Mozilla
Firefox and UR5 for Opera, in terms of provided throughput.

Performance comparison between different encryption
algorithms implemented in .NET framework was made by
(Dhawan, 2002). The algorithms compared were DES, 3DES,
RC2 and AES. The parameters used for comparison were the
number of requests processed per second and the response
time for different user-load situations. The best result is
obtained in the case of AES.

Compared with all these papers, our framework brings new
and original functionalities in terms of performance
evaluation: it can evaluate any symmetric cryptographic
algorithm (block cipher or stream cipher) requiring as input

only the .dll file containing the algorithm. It calculates its
execution time, speed and throughput for different file sizes
such as 1KB, 100 KB, 500 KB, 1 MB, 100 MB, 500 MB, 1
GB, compares the results with threshold values from
Crypto++ benchmarks1 and specifies if the evaluated
algorithm has a small/good/high throughput.

2.3 S-box Testing

The foundations of any cipher system are two fundamental
concepts: confusion and diffusion, which were identified by
(Shannon, 1949). All modern cryptographic primitives have
in their construction a collection of S-boxes that ensure
confusion and P-boxes, which provide diffusion, by
spreading out the output bits to S-boxes included in the next
round of the algorithm. It can be said in this context, that the
S-boxes are an integral part of symmetric key cryptosystems,
which are used to obscure the relation between the plaintext
and the cipher text. In general, the strength of symmetric
ciphers is determined by “properly” designed S-boxes.

The theory regarding S-boxes has appeared as an attempt to
formalize defenses that can be included into S-boxes to
strengthen the algorithm against cryptographic attacks. For
instance, if a new attack is discovered, this leads to a new
design criterion that shows what proprieties the S-box must
have to resist it. When creating cryptographic algorithms,
there is a set of design criteria, which are considered to be
essential.

If the S-box does not satisfy one of the criteria, the design of
the algorithm based on that S-box may be cryptographically
weak (it can be attacked). The set of design criteria essential
for S-boxes are defined further on.

Completeness criterion - This criterion was discovered by
(Kam and Davida, 1979) and is, in general, intended for the
entire cryptographic design rather than a single S-box. If the
criterion is not satisfied, the attacker can use methods such as
“divide and conquer” to inspect the design.

Balance criterion - According to the balance criterion each
Boolean vector responsible for the S-box has the same
number of 0’s and 1’s. If this criterion is not satisfied, then
some output strings are more probable than others, which
leave the design vulnerable to attacks which exploit the non-
uniformity of output strings using probabilistic distributions.

Nonlinearity criterion - This criterion requires the S-box not
to be a linear mapping from input to output. If this criterion is
not satisfied, then the cryptosystem will be susceptible to
attacks.

Propagation criterion - (Webster and Tavares, 1986)
introduced the Strict Avalanche Criterion (SAC). According
to this criterion if only one input bit is changed, than half of
the output bits will be changed. If the SAC criterion is not
satisfied, an attacker can determine correlations between the
plaintext and the cipher text using methods such as known
plaintext-cipher text attack.

1http://www.cryptopp.com/benchmarks.html

CONTROL ENGINEERING AND APPLIED INFORMATICS 79

Good XOR profile - The XOR profile is a table, which
presents the differences between the input and output of the
S-boxes. This criterion is not very restrictive, because the
designer of the S-boxes is the one that has to make sure that
the XOR profile does not contain entries with large numbers.
If the XOR profile is not very good, then an attacker can
apply a differential cryptanalysis attack (Heys, 2004), and
recover pieces of the plaintext.

If a designer understands how to create cryptographically
good S-boxes, the new S-boxes can be used to develop new
private-key cryptosystems and new methods of generating
cryptographically good S-boxes are always in demand.

(Stoianov, 2010) has developed software for testing square S-
boxes. In this project, the author divides the software into two
components entitled “Data processing” and “Checks and
Tests”.

(Angraini et al., 2013) have analyzed the S-boxes from
Whirlpool and SEED algorithms, but only in terms of the
strict avalanche criterion (SAC) test. Their study tries to
create a new S-box, based on AES’s one and to determine
whether or not if satisfies SAC.

(Saarinen, 2011) presents the results obtained after analyzing
all 4x4 bit S-boxes. The paper includes a detailed description
of the properties of the S-boxes and presents a set of S-boxes
that have ideal cryptographic properties.

Our framework includes a module for testing S-boxes,
because as far as we know, there is no software available
today that can be used to verify all the properties of any S-
box. Testing the S-boxes is very important because it allows
detecting and identifying vulnerabilities in the construction of
the cryptographic primitive if they exist.

2.4 P-box Testing

A domain in which little research was made is the one of
analyzing the properties of Permutation boxes (P-boxes),
related to cryptography area. A permutation box is a method
of bit shuffling used to permute bits across S-boxes inputs.

(Brown et al., 1990) have studied the design of permutation
boxes. In the article, they explain the design criteria for the
permutations in DES type cryptosystems and they establish
some rules that must be respected in order for the
permutation to be correct. Due to the small number of
publications regarding the properties of the permutations, we
explored this research subject and our evaluation framework
includes a module for testing P-boxes.

2.5 Statistical Testing

In general, the security of cryptographic system is strongly
related to randomness, because the output of these systems
can be observed by any adversary and should be seen as a
sequence of random values, which hold the secret, but don’t
reveal any sensitive information. Generating high-quality
randomness is an essential step of many cryptographic
operations and sometimes, the significance of well designed

cryptographic pseudo-random data generators is deprecated.

Because some of the proprieties of random sequences are
statistical, these can be measured and evaluated using
statistical randomness tests.

In general, statistical tests use a binary sequence as input and
determine whether or not the null hypothesis, denoted H0, is
accepted or rejected. H0 considers the input sequence to be
random. Because randomness tests are probabilistic, two
types of errors can occur: type I error (the data is random, but
H0 is rejected) and type II error (the data is non-random, but
H0 is accepted).

The probability for a type I error to occur is called level of
significance of the test, and is denoted by α. In general, the
statistical tests return a number between 0 and 1, which is
called P-value. If P-value is greater than α, then the H0 is
accepted, else it is rejected. Based on these notions, it can be
seen that the level of significance can have different values,
according to the specific of the application.

A collection of statistical randomness test that are created to
evaluate the randomness proprieties of sequences is called a
test suite. Several test suites are available today such as:
NIST (Rukhin et al., 2010), TestU01 (L'Ecuyer et al., 2007),
Diehard (Marsaglia, 2003), and ENT (Walker, 2008).
Diehard suite was developed by George Marsaglia, while the
NIST test suite was developed by the Computer Security
Division and The Statistical Engineering Division at National
Institute of Standards and Technology (NIST). Crypt-XS
suite (Gustafson et al., 1994) was developed at the
Information security Research Center at Queensland
University of Technology in Australia.

It is very important to evaluate the outputs generated by
cryptographic algorithms using statistical randomness tests.
For instance, even when the AES competition took place, the
candidate block ciphers were evaluated by (Soto, 1999). In
order for the results of the tests to be relevant, sequences of at
least 106 bits length were necessary. This was achieved by
concatenating the outputs of the candidate algorithms. Nine
different methods were proposed to generate large number of
data stream from a block cipher and then the resulting
streams were tested using the statistical tests from NIST
(Rukhin et al., 2010).

(Cook et al., 2009) have created a new method entitled
“elastic block cipher method” and they present in the paper
examples based on AES, Camellia, MISTY1 and RC6. The
two versions, the original and the elastic one, were evaluated
using NIST statistical tests and randomness tests used for
AES candidates.

(Chen et al., 2009) present a new statistical test for block
ciphers. The new test is applied to Rijndael, Camellia and
SMS4 algorithms in order to determine if these have good
statistical properties.

The advantage brought by our project is that, as far as we
know, a generic framework to evaluate also the randomness
properties of any cryptographic algorithm (stream cipher or
block cipher) has not been publicly presented or described.

80 CONTROL ENGINEERING AND APPLIED INFORMATICS

2.6 Functional Testing

Another important feature provided by our framework is the
module of functional testing, for which as far as we know,
there isn’t any software instrument developed. Having the
test vectors provided by the developers, the application
automatically compares them with the results obtained by it.
It uses the evaluated algorithm for encryption/decryption of
the specified text and can determine if they coincide or not.
In this way, the user can perform functional testing to make
sure the algorithm is implemented correctly before he
proceeds to the other evaluation mechanisms.

Using our framework, we managed to evaluate algorithms
such as AES, DES, 3DES, TEA, Camellia, LEX, Sosemanuk,
HC-128and RC4 taking into consideration performance, S-
box testing, P-box testing, statistical testing and functional
testing.

3. FRAMEWORK ARCHITECTURE

This section presents the architecture and the design
principles of the evaluation framework.

The proposed framework for cryptographic algorithms has
four main functionalities. The first one is performance
evaluation of the cryptographic algorithms. This functionality
consists of measuring the speed, throughput and clock cycles.
The second functionality of the framework is the evaluation
of the randomness properties of cipher outputs. For this
functionality, the NIST statistical suite was implemented.
Another set of tests is the set of statistical tests used in
evaluating AES candidates. The third functionality of the
framework is the evaluation of substitution boxes (S-boxes)
and the last functionality provided is the evaluation of the P-
boxes.

The framework includes several modules such as functional
testing module (which verifies the test vectors provided by
the developer of the algorithm), statistical testing module (
which verifies if the output of the cryptographic algorithm
satisfies randomness properties), S-box testing module
(which evaluates the properties of the S-boxes included in the
algorithm construction, if they exist), P-box testing module
(which verifies the properties of the P-boxes included in the
algorithm) and the performance evaluation module (which
compares the speed and throughput of the evaluated
algorithm with the speed and throughput of well known
cryptographic primitives such as AES and RC4).

Concerning the interactions between the user and the
framework a use case diagram is presented in Figure 1. The
use case diagram includes 6 actions.

In the initialization action, the operator loads the
cryptographic algorithm into the framework and sets the
parameters necessary for the evaluation. The initialization
and configuration process implies the loading of the target
algorithm to be evaluated in a specific form. The algorithm
must be implemented in a common programming language
such C/C++, C# and compiled as a dynamic library (.dll).
The parameters are set by the user in the GUI depending on
the description of the algorithm. The parameters that must be

configured are standard parameters for cryptographic
algorithms such as key size, block size, IV size, if necessary.

 After initialization, the user can perform the evaluation. The
processing activity represents the effective testing for the
algorithms. Therefore, in this activity are performed the
functional tests of the algorithm implementation by using test
vectors provided by the developer of the algorithm. The
performance evaluation module tests the speed and
throughput of the algorithm. The statistical evaluation
module ensures testing of the statistical properties of the
algorithm output. This task is performed by applying the
NIST statistical suite. The evaluation of the S-Boxes is
performed by testing the properties of good S-boxes such as:
balance, nonlinearity, completeness, propagation criteria and
good XOR profile.

Fig. 1. Use Case Diagram.

Finally, the evaluation of P-boxes is a bit different because
permutations alone do not have good cryptographic
properties. Because permutations are from mathematical
point of view bijective functions, the framework will test
their properties. The most important test is to determine
whether the permutation has an inverse. To do this, the
module verifies if the permutation used in the algorithm has
fixed points and if it is circular.

After the algorithm is tested, the results of the evaluation are
analyzed and the results are obtained. Based on the final
results, the user can decide if he can use the algorithm in
cryptographic applications and it is secure or not.

The evaluation framework is structured as a finite state
machine (FSM). The FSM is composed of 7 states which are
shown in Figure 2. The basic idea of the FSM is that when
the framework is properly configured for a specific
cryptographic algorithm all the program logic can be applied
for testing.

The states of the framework are: load algorithm, configure
parameters, functional testing, performance evaluation,
statistical evaluation, S-box evaluation, P-box evaluation.

CONTROL ENGINEERING AND APPLIED INFORMATICS 81

In the load algorithm state, the algorithm for evaluation is
loaded in a .dll format. After this state, the FSM enters in the
configuration state. Here are configured the following
parameters: algorithm type, key size, block size and IV size.

The next state represents the functional testing phase. In this
state, the algorithm is functional tested with test vectors.

In the statistical evaluation state are performed statistical tests
from the NIST statistical suite to evaluate the randomness of
the output of the algorithm being tested.

In the performance evaluation state, the speed and throughput
of the evaluated algorithm is calculated and compared with
threshold values.

Fig. 2. State machine diagram.

In the S-box evaluation state are tested the properties of S-
boxes and finally in the P-box evaluation state are tested the
properties of the P-boxes.

4. IMPLEMENTATION

In this section, we present the implementation of the
evaluation framework of cryptographic algorithms.

The framework was designed as a thick client application
developed under Microsoft Windows Operating System and
with .NET 4 Framework. The thick client design was chosen
based on the following reasons: the framework is deployed
on a standalone computer, the framework has to be easy to
use and the cost of deployment and maintenance has to be
low.

The framework is developed in C# under the .NET 4
Framework as a standalone Windows Forms application. The
framework is implemented using the MVP (Model View
Presenter) design pattern.

The MVP design pattern is an evolution of the Model View
Controller (MVC) design pattern. MVP consists of the
following layers: Graphical user interface (GUI), Application
logic, Model business objects.

In MVP design pattern, the model layer is isolated from the
view layer, in contrast with MVC where the model and view
layers have direct links between each other.

4.1 GUI Description

The GUI is designed using general Windows Forms with
several tabs for the main activities of the application. The
GUI is depicted in Figure 3.

Each tab from GUI represents a module of the framework.
The first tab is for evaluating symmetric algorithms, as it can
be seen in Figure 3. The user must select the type of the
algorithm (stream or block cipher), introduce the key, block
and optionally the IV length, load the .dll file and select the
format of the data.

Fig. 3. GUI of the Framework.

The third tab is for the S-boxes testing module, shown in
Figure 4, and the next tab is for P-boxes testing module,
presented in Figure 5 (the user loads the S-box or P-box from
a text file).

Fig. 4. S-box testing module.

The fifth tab, shown in Figure 6, includes the module for
statistically testing the algorithms.

82 CONTROL ENGINEERING AND APPLIED INFORMATICS

Fig. 5. P-box testing module.

The sixth tab, presented in Figure 7, represents the
Performance evaluation module, which is used to determine
the speed and throughput of the tested algorithm and compare
it with the speed and throughput of standardized algorithms
such as AES, RC4.

Fig. 6. Statistical testing module.

Fig. 7. Performance evaluation module.

4.2 Application logic

This layer contains the logic of the framework, such as the
implementation of the NIST Suite for statistical properties of
randomness, the implementation of statistical tests applied for
AES candidates, the implementation of functions to calculate
the speed and throughput of the algorithm, the
implementation of functions to verify the properties of good

S-Boxes and the implementation of functions to verify the
properties of permutations.

For the functional testing module to work, the user must
configure the parameters. For example, if we want to test
DES algorithm, first, the type of algorithm is selected, which
in our case is “block cipher”. Then the length of the key is
written (64 bits), the length of the block (64 bits) and the
length of the IV if necessary (which in our example is not
used). Then the user must import the .dll file containing the
cryptographic algorithm being tested. Also, mandatory for
this part, is to select the format of the data (it can be in ASCII
format, in decimal format or in hexadecimal format).Taken
our example, with DES, the DECIMAL radio button is
selected for all three parameters – plaintext, key and
ciphertext.

To activate the “Load Test Vectors” button, the user must
press the “Setup parameters” button. If the parameters are not
correct, for instance, the file loaded is not a .dll file, or if
instead of numbers for the key/block length are letters
introduced, the application will show corresponding
messages and will not enable the “Load Test Vectors” button.

If the parameters are correct, the user can load the file
containing the test vectors and can apply the functional
testing function. This module allows the user to save the
results obtained into a text file.

The statistical testing module includes implementations for
the NIST statistical suite and for the randomness tests used
for AES candidates.

There are 15 NIST tests implemented, each verifying
different properties of the output of the cipher. These are:
frequency test, block frequency test, runs test, cumulative
sums test, longest run of 1’s test, binary matrix rank test,
discrete Fourier transform test, non-overlapping template test,
overlapping template test, universal statistical test, linear
complexity test, serial test, approximate entropy test, random
excursions test, and random excursions variant test.

The nine tests used to evaluate the AES candidates are: key
avalanche test, plaintext avalanche test, plaintext-ciphertext
correlation test, cipher block chaining mode test, random
plaintext-random key test, low density key test, low density
plaintext test, high density plaintext test, and high density
key test.

The user can select which tests he wants to apply, by
checking the box corresponding to it, or it has the option to
run all of them. The framework stores all the results of the
statistical tests in files and provides charts for each NIST test
that show the uniform distribution of the obtained values.

The S-box testing module includes five functions, each
corresponding to a property of S-boxes. The module allows
the user to load the S-box written as a matrix in a text file and
verifies the properties that the user selects. It verifies the
completeness criteria, the balance criteria, the nonlinearity
criteria, the propagation criteria and the XOR profile. The
results are displayed in a textbox in detail.

P-box testing module allows loading the P-box as a text file.
The application verifies at the beginning if the permutation

CONTROL ENGINEERING AND APPLIED INFORMATICS 83

has an inverse and displays it in a text box. Then, the user can
select which property of the permutation to test: if it has fixed
point or if it is circular.

For the performance evaluation module, random files of
1KB, 10 KB, 100 KB, 1 MB, 10 MB, 50 MB, 100 MB, 500
MB and 1 GB were generated and used for all algorithms. To
measure the throughput and speed, objects specific to .NET
framework were used, such as “PerformanceCounter”. After
calculating these values, they are compared with the
predefined threshold values.

5. EXPERIMENTAL EVALUATION

To demonstrate the functionalities provided by the
framework, we used a system with Intel Core Dual CPU 1.86
GHz, 2 GB of RAM, Windows 8 32-bits and video card
integrated. The purpose of this paper is to show which
instruments can be used to evaluate a cryptographic
algorithm, and to determine whether an algorithm is suitable
to be used in secure communications or as a pseudo-random
generator.

The experiments that were performed are presented in detail
in the following sections.

5.1 Functional testing using test vectors

In order for an algorithm to be evaluated, a .dll file containing
its functions must be provided as input to the framework, as
mentioned in the Section 4.

The developer of the cryptographic algorithm has to provide
a file, which contains test vectors, so that the evaluator can
perform a functional testing before starting with the other
evaluation mechanisms.

In the framework’s layout, a separate box specifies the format
necessary for the test vectors, as it can be seen in Figure 8.
This ensures that the framework correctly interprets the
obtained results.

Fig. 8. The format for the test vectors.

For instance, consider the test vectors from Figure 9 for AES
with 128-bit key.

Fig. 9. Test vectors for AES-128 algorithm.

When loading the file with the values previously mentioned
and in the format specified in the framework the results will
be printed in a box of the framework and saved in a file (if
the check box for this is selected). For the example above, the
results are shown in Figure 10.

Fig. 10. Results for functional testing for AES-128.

In addition, if the values of the test vectors do not coincide,
the framework specifies the incorrect value and which is the
correct value. If the functional testing does not provide the
correct results, the rest of the evaluation mechanisms still
work, because the modules are independent of each other.

This functionality was tested on block cipher algorithms such
as AES, DES, 3DES, TEA and Camellia and on stream
ciphers such as RC4, Sosemanuk, LEX, and HC-128.

5.2 Statistical testing

As mentioned before, the framework ensures the possibility
to apply the NIST statistical suite and the randomness tests
used for AES candidates as described in previous sections.

In general, there are four values for the level of significance
(α) that can be used: 0.05, 0.01, 0.005 and 0.001 and six
different lengths for the sequences being tested: 128 KB, 256
KB, 512KB, 1MB, 2MB and 4MB. The minimum number of
sequences/files, denoted with N, that have to be tested to
obtain statistically relevant results depends on the value of α,
as it can be seen in (1).

N ൒
ହ

ሺ஑ିሺଵି஑ሻሻ
 (1)

Since the level of significance is 0.01 set as default in the
framework implementation, the minimum number of files/
sequences necessary for testing with NIST statistical suite is
506. This means that when the user selects tests applied to
AES candidates, the framework will generate automatically
510 files of 128 KB each, with the characteristics
corresponding to selection made.

The interpretation of empirical results is made using two
approaches: 1) examining the proportion of sequences that
pass a statistical test, 2) analyzing the distribution of P-values
to check uniformity.

Using the results obtained, calculate the proportion of
sequences (files) that pass. For instance, if 510 binary
sequences are tested and only 506 of them have the P-value
greater than 0.01, then the proportion is 506/510=0.9921.

The range of acceptable proportions is given by the
confidence interval, which is defined as in (2), wherepො ൌ 1 െ
α and m is the sequence size. For the example above, the
confidence interval is 0.99 േ 0.00943. If the proportion is
outside of this interval, then the data is non-random.

84 CONTROL ENGINEERING AND APPLIED INFORMATICS

pො േ 3ට
୮ෝሺଵି୮ෝሻ

୫
(2)

The interval between 0 and 1 is divided into 10 sub-intervals
and the P-values included in each sub-interval are counted
and displayed in a chart, called a histogram.

The uniformity of the values is also verified by applying a χଶ
test on the P-values obtained for an arbitrary statistical test.
Equation (3) shows how to compute this, where F୧ represents
the number of P-values in each sub-interval i and s is the
sample size (in our case 510).

χଶ ൌ ∑
൫୊౟ିୱ ଵ଴ൗ ൯

మ

ୱ
ଵ଴ൗ

ଵ଴
୧ୀଵ (3)

The P-value is calculated with (4), using the incomplete
Gamma function (igamc). If the P-value is greater than
0.0001, then the sequences are uniformly distributed.

P െ value ൌ igamc ൬9 2ൗ , χ
ଶ

2ൗ ൰ (4)

The files which contain the results of the NIST statistical
tests have the structure depicted in Figure 11.

Fig. 11. Interpretation of the statistical tests results.

The first ten columns represent the frequency of P-values,
and how they are distributed in the unit interval that has been
divided into ten discrete bins. The next column is the P-value
that is obtained after applying the chi-square test (this
indicates the uniformity of the P-values for a specific
statistical test). The column 12 indicates the proportion of the
binary sequences that has passed (rate of success) and the last
column indicates the name of the statistical test applied.

An example of a chart generated by the framework, when
applying the frequency test is depicted in Figure 12.The
frequency test was applied on 510 files of 128 KB generated
by concatenating the ciphertexts obtained by using AES
algorithm, with 128 bits key. The chart shows the uniformity
of the P-values obtained. The interval between 0 and 1 is
divided into 10 sub-intervals and the P-values that are
between each sub-interval are counted and then displayed.

Fig. 12. Histogram of P-values for Frequency Test.

This module was used to test the output generated by
algorithms such as AES, DES, 3DES, Camellia, TEA, LEX,
Sosemanuk, HC-128 and RC4. In (Duta et al., 2014) we
have applied studied the randomness properties of Camellia,
TEA and LEX using the statistical module included in our
generic framework. We have shown that TEA, Camellia and
LEX are algorithms that pass with high score the statistical
randomness testing demonstrating in this way their suitability
to be random number generators.

5.3 Testing S-boxes

As mentioned in previous sections, analyzing the S-boxes of
a cryptographic algorithm is also very important to determine
whether or not the primitive can be used in applications to
ensure security.

For this module, the framework asks the user to load the file
containing the S-box (which has to be written in hexadecimal
format in order to correctly interpret the results). As
mentioned before, the user has the possibility to select which
properties of the S-box he wants to test. The results are
displayed in a separate window and can be written in a file, if
the corresponding option is checked.

For instance, when considering the S-box of DES algorithm,
shown in Figure 13, the framework will display the results
presented in Figures 14, 15, 16 and 17.

Fig. 13. DES S-box.

Fig. 14. Results for balance criteria for DES S-box.

Fig. 15. Results for nonlinearity criteria for DES S-box.

CONTROL ENGINEERING AND APPLIED INFORMATICS 85

Fig. 16. A part of the results for propagation criteria for DES
S-box.

Fig. 17. An XOR profile generated automatically.

In addition, the S-boxes used for AES and Camellia were
verified and we can conclude that they satisfy all the
properties necessary for a good cryptographic S-box.

5.4 Testing P-boxes

As described in the framework architecture section, another
functionality of the framework is to test the properties of the
P-boxes used by cryptographic algorithms. P-boxes, as
independent constructions do not provide too much security
to the cryptographic algorithms, because the only property
that they achieve is diffusion.

 In combination with other mathematical transformations
such substitutions, XOR-ing and other, they contribute to the
security of the algorithm. In this paper, we present two
properties of independent P-boxes.

First of all, having a permutation function, f, such as in (5),
we want to test if the permutation has fixed points. If (6) is
true, the permutation has fixed points, otherwise it doesnot
have fixed points.

Π ൌ ቀ ୶౟
୤ሺ୶౟ሻ

ቁ , i ൌ 1. . n; (5)

x୧ ൌ fሺx୧ሻ (6)

The second test verifies the fact that the permutation
function, f, described in (1) is not circular. Considering the
inverse permutation function from (7), called g, if (8) is true,
then the permutation Π is circular, otherwise is not circular.

Πିଵ ൌ ቀ ୶౟
୥ሺ୶౟ሻ

ቁ , i ൌ 1. . n; (7)

gሺx୧ሻ ൌ fሺx୧ሻ (8)

An example for testing our approach upon the P-boxes
properties we have chosen the 32 bit P-box used by DES for
shuffling the bits of a 32 bit half block. Therefore the results
obtained by using the framework described in this paper are
shown in Figure 18.

Fig. 18. Results for DES P-box- 32 bit half block.

Also, the permutation functions from DES, Camellia, and
Blowfish have been tested. We can mention the fact that the
permutation included in DES algorithm is not good, it does
not satisfy the previously mentioned properties. This does not
mean that the construction of the algorithm is not secure,
because as we already said, the permutations ensure
diffusion, but combined with S-boxes and other structures
that ensure confusion, the algorithm can be cryptographically
good.

5.5 Algorithm Performance Evaluation

Every cryptographic algorithm is created in order to fulfill
security needs in a specific application. Sometimes, they are
used in embedded devices and other times in software
modules. When selecting the best cryptographic algorithm for
these places, we need to take into consideration the speed and
throughput provided by them.

The framework has a module entitled “Performance
evaluation”, which measures the throughput of the
cryptographic algorithms that is being evaluated, when
encrypting files of 1 KB, 100 KB, 500 KB, 1MB, 100MB,
500MB and 1 GB. The values obtained are compared with
threshold values such as: throughput for AES (128, 192, 256
bits according to the key size) and throughput for RC4 (for
stream ciphers in particular). Based on the comparison with
these values, the framework returns the following results, as
represented in Figure 19:

 The algorithm has a good throughput, but smaller
than the one provided by AES/RC4;

86 CONTROL ENGINEERING AND APPLIED INFORMATICS

 The algorithm ensures a high throughput, better than
the one provided by AES/RC4;

 The algorithm ensures a small throughput, much
smaller that the throughput of AES/RC4 algorithm.

 In previous research, we have calculated the performance in
terms of throughput, speed and clock cycles for AES, DES
and 3DES, in order to establish which should be considered
the standard threshold value used to compare other
algorithms performance.

In (Duta et al., 2013), we calculated the performance in terms
of throughput, speed and clock cycles for stream ciphers such
as HC-128, RC4 and Sosemanuk, in order to establish which
should be considered the standard threshold value.

Fig. 19. Results from Performance Evaluation Module for
Camellia algorithm.

We have chosen AES’s throughput as the standard value for
block ciphers and the RC4’s throughput as the standard value
for stream ciphers.

For instance: Camellia algorithm has a good throughput, but
the values are smaller than AES’s; TEA algorithm has a high
throughput, the values are greater than AES’s; LEX
algorithm has a good throughput, but the values are smaller
than RC4’s.

6. CONCLUSIONS

The aim of this paper is to present a framework, which can be
used to evaluate any symmetric encryption algorithm by
taking into consideration different elements such as:
properties of S-boxes, properties of P-boxes, test vectors for
the algorithm, statistical properties of the generated
ciphertext (applying randomness tests such as NIST and the
tests used for the AES candidates), speed and throughput
provided by the algorithm.

From the evaluation results, we can observe certain
characteristics. First of all, we can ensure functional testing
for the algorithms if test vectors are provided. This is a
necessary functionality needed every time a new

cryptographic algorithm is developed. We performed
functional testing for block cipher algorithms such as AES,
DES, 3DES, TEA and Camellia and for stream ciphers such
as RC4, Sosemanuk, LEX, and HC-128.

Secondly, the properties of the S-boxes and P-boxes used in
the construction of the algorithm can be verified to identify
the existence of any vulnerability. For instance, the S-boxes
used by AES and Camellia were verified as well as the
permutation functions from DES, Camellia, and TEA.

Thirdly, the framework can be used to statistically test any
cryptographic algorithm. To verify the correct functionality
of this module, the output generated by algorithms such as
AES, DES, 3DES, Camellia, TEA, LEX, Sosemanuk, HC-
128 and RC4 were tested. As far as we know, a generic
framework to evaluate the randomness properties of any
cryptographic algorithm (stream cipher or block cipher) has
not been publicly presented or described. Also, we are the
first to publish in (Duta et al., 2014), the results obtained for
TEA cipher regarding its randomness properties.

Fourthly, the performance of the evaluated algorithms in
terms of throughput is compared with threshold values
obtained for standardized implementations of cryptographic
primitives. For instance, Camellia algorithm has a good
throughput, but is smaller than AES’s. Also, stream ciphers
such as Sosemanuk and HC-128 were tested and the
performance evaluation module showed that they have a
good throughput, but smaller than RC4’s.

Our future work involves an improvement of the framework
such that it will allow evaluating algorithms based on other
criteria such as memory usage, attack scenarios and hardware
implementation resources. Our goal is to be able to decide
based on an evaluation framework which encryption
algorithms to use for different types of applications in a way
that consumes less energy, but still ensure high speed.

REFERENCES

Angraini, N., Susanti, B.H. and Magfirawaty (2013).
Analysis of the Use of Whirlpool’s S-box, S1 and S2
SEED’s S-box in AES Algorithm with SAC Test.
Information Systems International Conference, pp. 56-
76.

Arora, R. and Sharma, S. (2012). Performance Analysis of
Cryptography Algorithms. International Journal of
Computer Applications, Vol. 48, No. 21, pp. 35-39.

Brown, L. and Seberry, J. (1990). On the Design of
Permutation P in DES Type Cryptosystems. Advances
in Cryptology: Proceedings of EUROCRYPT ’89, pp.
696-705.

Chen, H., Feng, D.G. and Fan, L.M. (2009). A New
Statistical Test on Block Ciphers. Chinese Journal of
Computers, pp. 595-601.

Cook, D.L., Yung, M. and Keromytis, A.D. (2009). Elastic
Block Ciphers in Practice: Constructions and Modes of
Encryption. 3rd European Conference on Computer
Network Defense, pp. 69-91.

Dhawan, P. (2002). Performance Comparison: Security
Design Choices. Microsoft Developer Network,

CONTROL ENGINEERING AND APPLIED INFORMATICS 87

http://msdn2.microsoft.com/en-
us/library/ms978415.aspx (Last Accessed: September
2014).

Duta, C.,Mocanu, B.C.,Vladescu, F.A. and Gheorghe, L.
(2013). Performance Analysis of Stream Cipher
Algorithms. 6th International Conference on Security
for Information Technology and Communications, pp.
112-128.

Duta, C., Mocanu, B.C, Vladescu, F.A. and Gheorghe, L.
(2014). Randomness Evaluation Framework of
Cryptographic Algorithms. International Journal on
Cryptography and Information Security, Vol. 4, No.1,
pp. 31-49.

Gustafson, H. et al. (1994). A computer package for
measuring the strength of encryption
algorithms.Computers and Security, Vol. 12, pp. 687-
697.

Heys, H. M. (2004). A Tutorial on Linear and Differential
Cryptanalysis. Technical report. Electrical and
Computer Engineering, University of Newfoundland,
Canada.

Kam, J. and Davida, G. (1979). Structured design of
substitution-permutations networks. IEEE Transactions
on Computers, pp. 747-753.

L'Ecuyer, P. and Simard, R. (2007).TestU01: A C library for
empirical testing of random number generators. ACM
Transactions on Mathematical Software, Vol. 33, No. 4.

Marsaglia, G. (2003). The diehard test suite, available at
http://i.cs.hku.hk/~diehard/(Last Accessed: September
2014).

Ramesh, G. and Umarani, R. (2012). Performance Analysis
of Most Common Encryption Algorithms on Different
Web Browsers. International Journal of Information
Technology and Computer Science, Vol. 4, No. 12, pp.
60-66.

Rukhin, A., et al. (2010). A statistical test suite for random
and pseudorandom number generators for
cryptographic applications, NIST Special Publication
800–22. National Institute of Standards and
Technology.

Saarinen, M.O. (2011). Cryptographic Analysis of All 4x4-
Bit S-boxes, https://eprint.iacr.org/2011/218.pdf (Last
Accessed: September 2014).

Shah, J. and Saxena, V. (2011). Performance Study on Image
Encryption Schemes. .International Journal of
Computer Science, Vol. 9, Issue 4, No. 1, pp. 349-355.

Shannon, C. E. (1949). Communication theory of secrecy
systems. Bell System Technical Journal 28, Vol.4, pp.
656-715.

Singh, G., Singla, A.K.. and Sandha, K.S. (2011).
Performance Evaluation of Symmetric Cryptography
Algorithms. International Journal of Electronics and
Communication Technology, Vol. 2, Issue 3, pp. 141-
146.

Soto, J. (1999). Radomness Testing of AES Candidate
Algorithms, available at
http://csrc.nist.gov/publications/nistir/ir6390.pdf (Last
Accessed: September 2014).

Stoianov, N. (2010). One software tool for testing square s-
boxes, http://arxiv.org/ftp/arxiv/papers/1009/1009.
2476.pdf(Last Accessed: September 2014).

Tamimi, A. (2005). A Performance Comparison of Data
Encryption Algorithms. Information and
Communication Technologies, ICICT 2005, pp. 84-89.

. Walker, J. (2008). ENT-A pseudorandom number
sequence test program, available at
http://www.fourmilab.ch/random/(Last Accessed:
September 2014).

Webster, A.F. and Tavares, S.E. (1986). On the design of S-
boxes. Advances in Cryptology (CRYPTO’85), Lecture
Notes in Computer Science No. 218, Springer, pp. 523-
534.

