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Abstract: In this paper, an Enhanced Genetic Algorithm (EGA) based proportional–integral-derivative 
(PID) controller is presented for control of nonlinear dynamic process. In EGA, the crossover and elite 
offspring are optimized using Ant colony Optimization (ACO) which improves the convergence 
characteristics and optimization capabilities of traditional Genetic Algorithm (GA).The proposed 
algorithm is implemented for closed loop control of Continuous Stirred Tank Reactor (CSTR) process. 
The performance of the proposed scheme is validated through the simulation results and by comparing 
with the conventional counterparts. The integral performance criteria viz., Integral Square Error (ISE), 
Integral Absolute Error (IAE), Integral Time weighted Absolute Error (ITAE) of the EGA implemented 
CSTR system revealed a reduction of ISE equal to 1.5704e-4 at 50-150 sampling interval when compared 
to conventional GA. The results show that, EGA based nonlinear PID is more suitable for servo and 
regulatory operations. 
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

1. INTRODUCTION 

In process industries, PID controllers are widely preferred for 
servo and regulatory tracking than the advanced control 
techniques such as, Model Predictive Control, Fuzzy and 
Neural modelling, Adaptive control etc., because of its simple 
architectures and robustness behaviour (Ibrahim et al., 2014; 
Ruiyao Gao et al., 2002). Most of the chemical processes 
such as CSTR, distillation column, bio reactor, etc., are 
nonlinear systems and they have got dynamic behaviour 
dominated by the system parameters.  

The nonlinear process modelling and identification over its 
widespread operating region plays a dynamic role in 
controller performance and its design due to variation in 
operating condition from time to time. The multiple model 
technique evades these issues in nonlinear system modelling, 
which is formulated by splitting the entire operating region 
into different regions and then the local PID controller is 
tuned for each region. (Wen Tan et al., 2006; Praksh et al., 
2009) have reported several PID tuning techniques such as 
Ziegler–Nichols (Z–N) method, Cohen–Coon (C–C) method, 
Internal Model Control (IMC) method, Gain-Phase margin 
(G-P) method with ISE, IAE, and ITAE as the objective 
function to be minimized. The local PID controller is not 
effective when the system is highly nonlinear and complex in 
nature, because of the varying operating conditions. 
However, the Nonlinear PID controller (N-PID), which 
reflects the nonlinear relations of the input and output 
variables, can eradicate these issues. (Su et al., 2005; Ruiyao 
Gao et al., 2002) has reported a nonlinear PID controller for 
the CSTR process using local model networks. (Prakash and 

Srinivasan, 2009) have also discussed about the N-PID 
controller design for the nonlinear model which has been 
obtained from local linear model fusion improves the closed 
loop performance. (Prakash and Srinivasan, 2009) have 
presented Takagi-Sugeno (T-S) fuzzy multiple models for the 
nonlinear process. The interpolation of the local model using 
T-S fuzzy weight is termed as multiple model of the process. 
The T-S model if-then rule represents the input-output 
relations of the process and it is used to formulate N-PID 
controller. (Christopher Hametner et al., 2013) have 
presented PID controller design for the nonlinear system 
using discrete-time local model networks. 

The N-PID parameters Kp, Ki and Kd are tuned through the 
conventional tuning techniques (Wen Tan et al., 2006), each 
local model is tuned separately and combined using T-S 
fuzzy fusion techniques. The conventional PID tuning for the 
nonlinear system provides improper settings due to process 
parameter variations, which gives oscillatory response and 
poor robustness behaviour. To achieve satisfactory servo and 
regulatory performance, it is necessary to have optimally 
tuned parameters of PID.(Wei-Der Chang et al., 2010) have 
discussed about N-PID control system design using the 
improved Particle Swarm Optimization (PSO). (Rajinikanth 
and Latha, 2012) have presented a controller parameter 
optimization for nonlinear systems using Enhanced Bacterial 
Foraging Algorithm (E-BFA). (Wei-Der Chang, 2013) has 
presented a nonlinear CSTR control system design using an 
Artificial Bee Colony (ABC) algorithm.   

Genetic Algorithms (GA) are the heuristic random search 
optimization technique which works based on the mechanism 
of natural selection. The GA attracted great attention among 
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researchers for optimal PID design due to its higher potentials 
and providing optimal solution in high dimensional problem 
space. (Valarmathi et al., 2009; Wei-Der Chang, 2007) have 
discussed about the real-coded GA for system identification 
and controller tuning. In order to achieve better convergence 
and optimized values form GA, the crossover sites and elite 
offspring need to be properly selected. 

In this paper, ACO based GA is proposed for selecting 
possible crossover sites and optimization of reproduction 
offsprings to enhance the searching ability of the 
conventional GA. The foraging behaviour of ants to get food 
is the inspiration for the development of Ant Colony 
Optimization (ACO) (Colorni, 1991; Tavares et al., 2013).  
The proposed EGA examines more combinations of 
crossover sites using positive feedback, distributed search, 
and constructive greedy heuristic method to create better 
crossover and elite offsprings. The optimization of crossover 
and elite offsprings are based on the experience of the 
simulated ant in the tour. The experimental results show that 
the proposed scheme enhances the performance of the GA 
and provides better convergence characteristics with 
improved optimization.  

The rest of the paper is organized as follows: Section.2 and 3 
elaborates the state of art GA and proposed EGA. Section.4 
describes the nonlinear PID controller design using EGA and 
the simulation studies of proposed schemes were also given 
for comparison. The brief conclusion of the work done is 
given in section.5. 

2. OVERVIEW OF GENETIC ALGORITHM 

The GA performs selection, Crossover and mutation 
operations to create crossover offsprings(Kx) and mutation 
offsprings(Mos). These values are used to find the next 
generation population (Pnew). From the literatures (Daniel 
Carmona Morales et al., 2012; Gholamreza Farahani et al. 
2012; Hasanien and Muyeen, 2012; Indranil Pan et al., 2011; 
Tang et al., 2001; Teo Lian Seng et al., 1999; Mohd Sazli 
Saad et al., 2002), it is found that GA is widely applied in 
controller parameter optimisation problems. In this study, the 
real coded GA due to its less computation time (Valarmathi 
et al., 2009). The pseudo code of GA is given in the 
following steps: 

Step.1: Generate random initial population (PInitial) 

Table 1. GA Parameters. 

 
Step.2: The cross over (nx), mutation (nm), and total number 
of parents (np) required to create next generation population 
are calculated as follows: 

))((___ ePCrealnearesttoroundn srx                   (1) 

m s xn P e n                  (2) 

2p x mn n n                (3) 

Where Cr  is the fraction that represents crossover rate. 

Step.3: The fitness function is estimated for the initial 
population. 

Step.4: Fitness scaling: The chromosomes are sorted based 
on fitness scores and then fitness scaling Exp(i) of ith 
chromosome is calculated by rank based scaling using “(4).” 
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Step.5: Selection: The roulette wheel selection is used to 
select numbers of parents (Pnp). 

Step.6: Crossover: Two point crossover is performed on 
offsprings by using parents Pnp(1 to 2nx). 

Step.7: Mutation: Apply mutation to evaluate the mutated 
off-spring.  

The steps are repeated till the maximum number of 
generation is reached.    

The two point crossover method uses randomly selected cross 
over sites. Therefore, no assurance can be made about the 
quality of offspring’s. The convergence rate of the 
optimization can be improved through best crossover sites 
selection.  

The Population Size (Ps) is assigned as 100 from the 
convergence analysis of various population sizes. The 
convergence curve and statistical parameter analysis are 
shown in Fig. 1 and Fig. 2. 
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Fig. 1. Convergence of GA for different population size. 
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(a) Mean and median comparison of convergence curves. 

Name of the Parameter Initial values 
crossover probability (Cr) 0.8 
Maximum generation (Mg) 50 
Population size (Ps) 100 
Elite count (e) 2 
Chromosome length (cl) 15 
Number of Crossover off springs(nx) 78 
Number of Mutation off springs(nm) 20 
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(b) Standard deviation comparison. 

Fig. 2. (a) & (b) Statistical comparison of Convergence 
curves. 

3. ENHANCED GENETIC ALGORITHM 

In recent years, hybridization approaches of evolutionary 
algorithms were reported by researchers (Haibin Duan et al.,  
2013; Pourya Hoseini and Mahrokh, 2013; Irina Ciornei and 
Elias Kyriakides, 2012) is preferred for the improved 
optimization performances.  

In order to improve GA performance, Ant Colony 
Optimization (ACO) based Genetic Algorithm is proposed to 
create better crossover and reproduction offsprings through 
enhanced searching ability (Sina Tabakhi et al., 2014; 
Chandra Mohan and Baskaran, 2012; Rajasekar and Mohana 
Sundaram, 2012). 

The crossover and elite offspring of GA is created by the 
simulated ant of ACO. The crossover sites of GA are 
considered as nodes and the artificial pheromone from the ant 
is deposited on the nodes during tour. The amount of 
pheromone deposited in the each node is inversely 
proportional to the total distance travelled by the ant to reach 
the food. The high pheromone deposited node is considered 
as minimization of the objective function and the same is 
used for offspring generation. These off springs are grouped 
together to form next generation population. 

The proposed algorithm is used to find optimal PID settings 
for the nonlinear system with minimum ISE as objective 
function. The steps involved in the implementation of EGA 
based Nonlinear PID (N-PID) controller is explained below: 

Step.1: Generate random initial population (PInitial) 

Table 2. EGA Parameters. 

Name of the Parameter Initial values 
crossover probability (Cr) 0.8 
Mutation probability(Mr) 0.2 
Maximum generation (Mg) 50 
Population size (Ps) 10 
Elite count (e) 2 
Chromosome length (cl) 15 
Number of Crossover off springs(nx) 6 
Number of Mutation off springs(nm) 2 
Number of Ants (Na) 20 
Maximum tour (Mt) 20 

Evaporation parameter ( ) 0.95 

Relative Important Parameters   (α)=0.01, (β)=0.3 
Initial inertial weight factor  =0.02 

Initialize pheromone initial value and 
increment of pheromone 

τij(0)= τ0&∆τij 
(0)= 0 

Step 2: Fitness function estimation. 

Step.3: Fitness scaling: The chromosomes are sorted based 
on fitness scores, then the fitness scaling Exp(i) of ith 
chromosome is calculated by rank based scaling using “(4).” 

Step.4: Selection: The roulette wheel selection is used to 
select numbers of parents (Pnp).  

Step.5: From the selected parents, the first 2nx numbers of 
parents are formed as colony (Ac).  

Step.6: The simulated ant is made to visit each node based on 
the probabilistic action choice rule (Kan Jun-man, Zhang Yi 
(2012)).The probability for ant ‘a’, placed at node ‘n’, to visit 
node ‘c’ is expressed by Equation.(6). 
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,[ ]n c    - 
Pheromone intensity (calculated through distance 

(dn,c)  between crossover sites) 

,[ ]n c -  Heuristic information about the nodes n and c   

a

n
N   - denotes the number of nodes.  

  - Relative importance given to the pheromone intensity 

and  is the relative importance given to the visibility value.
          

 

Step.7: The update of pheromone is obtained by the equation 
“(8),” 
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Where 
,

k
n cd  

is the cost of the ant k and   is the global 

pheromone updating constant. 

In EGA, the weight factor   is increased by increasing tour 

‘i’  using below expression; 

 (i)=  (i-1) + (i/MaxTour); 

The amount of pheromone deposit is increased when the tour 
‘i’ increases, which results quick convergence with minimum 
distance.   

Step.8:/* Global Update Rules*/ 
At the end of ant’s tour, the pheromone deposit is updated by 
using “(9),”  

( ) [ ( ) ] [ ]nc nci i p              (9) 

Where  

[ ( ) ]nci  -  local update 
   -  Evaporation parameter. 

 (6)
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Where, ( )b

nci  
is amount of pheromone deposited from best 

ant, ( )w
nci  is the amount of pheromone deposited from worst 

ant and ‘d’ is the cost of the ant. 
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Step.9: If maximum tour is not reached then go to step 10. 
Otherwise go to step 7. 

Step.10: Examine the nodes to produce the best crossover 
offspring and then corresponding distance travelled by the ant 
is considered for minimization of objective function. 

Step.11: The new ant colony (An) is constructed through the 
offspring chromosomes and then repeat steps 7 to 9 to find 
new elite offspring. 

Step.12: Mutation is carried out on the parents Pnp(2nx to np) 
to create mutation off springs. 

Step.13: Group the elite off springs, crossover off springs and 
mutation off springs to form new population and assign 
(PInitial) = new population; 

Step.14: If N-PID parameters with minimum ISE is obtained 
then stop, otherwise go to step 2. 

The mutation offsprings are evaluated from each generation 
and the fitness of crossover and elite offsprings have been 
obtained from the heuristic information provided by the 
simulated ant.  

4. EGA BASED NONLINEAR PID CONTROLLER 

The PID controller form is expressed as:    

 
t

dip te
dt

d
KdtteKteKtu

0

)()()()(
       (13) 

Where e(t) is the error, ‘u’ is the input and Kp, Ki and Kd are 
the Proportional gain, Integral gain and Derivative gain 
respectively. 

The IMC tuning formulae for local PID settings are given in 
equation.(14). 
 
 
      
            (14) 

Where Kp,i= Proportional gain, Tr,i=Integral time, 
Td,i=Derivative time, ξ=Damping factor, ωn,i= Un-damped 
natural frequency and ki=Steady state gain.  

The local PID controller is not effective when the system is 
highly nonlinear and complex in nature, because PID 
parameters tuned for one particular operating point is not 
suitable for other operating point. Therefore, parameters need 

to be tuned every time when the operating region varies from 
one local linear model to others. The formulation of multiple 
model from linear models evade these issues in nonlinear 
system modelling. Firstly, the entire operating region of the 
system is divided into different regions for easy computation 
of local linear models and then secondly combined through 
fusion techniques to find nonlinear mode. (Prakash and 
Srinivasan, 2009) have presented Takagi-Sugeno (T-S) fuzzy 
fusion multiple models for the nonlinear process, the input-
output relations of the process are expressed through the if-
then rules of fuzzy.  

In this paper, T-S based N-PID is used for the nonlinear 
dynamic chemical process, it can be generally modelled as; 
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Where ‘f’ and ‘g’ are the nonlinear functions, ‘y’ is the 
output and ‘u’' is the input of the system, ‘v’ and ‘w’ are the 
disturbance vector and noise vector respectively. The local 
model structure for particular operating region of the system 
is expressed as follows: 
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Where ‘θ’ is the parameterized vector used to describe the 
system dynamics. The global structure from the interpolation 
of local model structure can be expressed as: 







N

i
iii vuxfx

1

)(),,,( 
 





N

i
iii wygy

1

)(),,(           (17) 

Where ‘ωi’ is the interpolation function which can be 
expressed as: 
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Where ‘ρi’ is the model validity function and it is assumed to 
be unity for good model structure. The global system 
behaviour is described by a fuzzy fusion of all linear model 
outputs. 

The grade of the membership function should be 
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The N-PID form is expressed as follows: 

))1()2()1(*2)((
)(

)())1()(()(

,,

,

,
,






tutetete
T

Tk

tTe
T

k
tetektu

i
idip

ir

ip
ipi

                          (19) 

The optimal PID settings for better servo and regulatory 
performances can be achieved by adding new features into 
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the tuning procedure. The population based search techniques 
such as GA and Simulated Annealing (SA) paid great 
attention for getting higher efficiency and providing optimal 
solution in high dimensional problem space. The GA has 
much preference in searching the optimal PID settings due to 
its high potential on optimization capability. The 
implementation of the EGA based PID for nonlinear process 
is given in Fig. 3. 

 

 

 

 

 

Fig. 3. Optimal PID for the nonlinear system. 

The objective function is the Integral Square Error (ISE) 
performance criterion with respect to stability which is 
generally expressed in the form of: 

dttytydteISE d

22 )]()([  
             

(20) 

The proposed algorithm is used to minimize ISE and find the 
optimal PID settings for the nonlinear system.  

4.1 Nonlinear PID based on EGA for CSTR process 

The nonlinear CSTR process shown in Fig. 4 is characterized 
by the nonlinear differential equation (21) and equation (22) 
and its nominal operating parameters are given in Table 3. 

 
Fig. 4. CSTR Process. 

))((
)(

exp1)(

)
)(

exp()())((

3
2

1

tTT
tq

K
tqK

tRT

E
tCKtTT

V

q

dt

dT

cf
c

c

f
f




















                         (21) 

 











)(
exp)())(( 0 tRT

E
tCKtCC

V

q

dt

dC
f

f

 

                    (22) 

The control objective is to keep the concentration C(t) of the 
output product into a desired level  by adjusting the inlet 
coolant flow rate qc(t).In CSTR process modelling, five 
operating regions were selected through local model 
networks and are shown in Table 4. 
 

 Table 3. CSTR Parameters. 

Inlet flow rate 
(qf),100 l/m 

Inlet temperature (Tf), 350K 

Inlet concentration 
(Cf), 1mol/l 

Coolant temperature (Tcf), 
350K 

Volume of the tank 
(V),100 L 

Activation energy 
(E/R),104K 

K1= 1.44xe13 K2= 0.01 
K3= 700 K0= 7.2e10 

Table 4. CSTR Stable Operating Regions. 

Operating 
region 

Concentration 
(C0) 

Temperature 
(T0) 

Coolant 
flow 
rate(qc0) 

1 0.0795 443.4566 97 
2 0.0885 441.1475 100 
3 0.0989 438.7763 103 
4 0.1110 436.3091 106 
5 0.1254 433.6921 109 

Where C0, T0, qc0 are the linearization points of the CSTR 
process. The fuzzy dynamic model of the CSTR process 
based local linear model is presented in detail by (Prakash et 
al., 2009). The local PID controller settings for the selected 
operating points were tuned through conventional IMC 
method based tuning techniques. The PID settings of the 
operating region.1 are determined as Kp=119.4321, 
Tr,i=0.3367 and Td,i=0.1926, other regions are also tuned 
similarly. These parameters are considered as initial values to 
find PID parameters from GA and EGA and they are listed in 
Table 5 and Table 6 

Table 5. GA based PID settings. 

Operating point Kci Tri Tdi 

CA = 0.0795, T=443.4566, qc= 97 634.8 0.1774 0.2992 

CA = 0.0885, T=441.1475, qc= 100 799.2 0.2983 0.2215 

CA = 0.0989, T=438.7763, qc= 103 687.9 0.2780 0.2683 

CA = 0.1110, T=436.3091, qc= 106 385.5 0.2876 0.2733 

CA = 0.1254, T=433.6921, qc= 109 706.6 0.1852 0.2513 

Table 6. EGA based PID settings. 

Operating point Kci Tri Tdi 

CA = 0.0795, T=443.4566, qc= 97 668.3 0.192 0.2621 

CA = 0.0885, T=441.1475, qc= 100 799.9 0.299 0.1545 

CA = 0.0989, T=438.7763, qc= 103 776.7 0.300 0.2672 

CA = 0.1110, T=436.3091, qc= 106 350.7 0.299 0.2443 

CA = 0.1254, T=433.6921, qc= 109 799.8 0.265 0.2388 

The global controller i.e., nonlinear PID controller output is 
described by a fusion of all local linear PID controller 
outputs. For the improved closed loop response, the EGA 
based optimization of N-PID is done.  The initial settings of 

Ref 
+ 

         

Out 
- 

Enhanced Genetic 
Algorithm 

Nonlinear 
PID

Nonlinear 
Process
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variables involved in the EGA based N-PID are given in 
Table 2. 

The proposed EGA for non-linear CSTR system is designed 
and implemented using MATLAB version 7.8. The selected 
operating regions for the EGA are given in Table.4. The 
stable region of the CSTR process is c(t)=[0,0.1357] and 
qc(t)=[0,110.8] (Ruiyao Gao et al., 2002). 

The Table 7 shows the fitness comparison of the crossover 
offsprings produced by proposed method and other 
conventional methods. The proposed method uses only very 
minimum population size (Ps=10). 

Table 7. Performance comparison of Crossover of GA. 

Crossover 
Method 

Best Crossover offsprings Cost 
function values 

First 
generation 
cycle 

Second 
generation 
cycle 

Third 
generation
cycle 

Single point  2.62148e-3 2.62148e-3 2.6214e-3 
Two Point  2.37604e-3 2.37604e-3 2.3760e-3 
Arithmetic 2.46555e-3 2.39120e-3 2.3890e-3 
Scattered  2.5127e-3 2.32906e-3 2.2283e-3 
heuristic 2.4203e-3 2.39691e-3 2.3806e-3 
intermediate 2.1796e-3 2.1796e-3 2.1516e-3 
Proposed ACO 
based 
Crossover 

2.21992e-3 2.10696e-3 2.0980e-3 

The Cost function values of Best crossover offspring 
produced in the first three generations ( different crossover 
schemes) is compared in Fig. 5. 
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Fig. 5. Cost values of crossover offsprings. 

To validate the effectiveness of the proposed EGA algorithm, 
closed loop servo and regulatory tracking performances and 
noise rejection responses were obtained for CSTR process. 
The proposed EGA provides the optimal PID controller gains 
as [835.4750 0.1924 0.2621] for [Kp,Ti,Td]  with the objective 
function ISE as 4.025e-8 at 0-50 sampling interval. The 
servo-regulatory tracking responses, convergence 
characteristics and noise rejection characteristics are shown 
in fig. 6 to fig.8 respectively. The control actions on the servo 
operation and for the noise rejection are shown in Fig. 9. 
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(a) Overall servo response. 
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(b) Servo response at one particular region. 

Fig. 6. (a) & (b) Servo responses of the EGA based NPID. 
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Fig.7. Convergence characteristics of EGA. 
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Fig. 8. Noise rejection characteristics of EGA.  
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(a) Servo operation (Coolant flow) 
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 (b) Noise rejection (Coolant flow). 

Fig. 9. Control action curves for servo and noise rejection. 

The derived optimal EGA based N-PID parameters and the 
corresponding objective function ISE values at different 
sampling intervals are given in Table 8 and Table 9. In order 
to evaluate the proposed scheme performance it is compared 
with conventional GA based PID. The closed loop responses 
and ISE values demonstrate that the proposed EGA has quick 
convergence with good computational efficiency. 

Table 8. Optimal PID settings. 

Type of 
Controller 

Operating 
Point 

PID settings 
Kp,i Tr,i Td,i 

 GA based 
PID 

1 634.8768 0.1774 0.2992 
2 799.2724 0.2983 0.2215 
3 687.9284 0.2780 0.2683 
4 385.5384 0.2876 0.2733 
5 706.6820 0.1852 0.2513 

EGA based 
PID 

1 835.4750 0.1924 0.2621 
2 999.9445 0.2994 0.1545 
3 970.9830 0.3000 0.2672 
4 438.4630 0.2992 0.2443 
5 999.7715 0.2651 0.2388 

Table 9. Comparison of ISE, IAE and ITAE values.  

Sampling 
Instants 

ISE  

IMC based 
NPID 

GA based 
NPID 

EGA based 
NPID 

0 – 50 5.2632e-7 1.6492e-7 4.0250e-8 

50 – 150 8.2020e-4 6.0777e-4 4.5073e-4 
150 – 200 2.3964e-3 1.4767e-3 1.1044e-3 
200 – 300 4.0563e-4 3.7061e-4 2.5222e-4 
300 – 350 5.3893e-10 4.7535e-10 1.1250e-12 

Sampling 
Instants 

IAE  

IMC based 
NPID 

GA based 
NPID 

EGA based 
NPID 

0 – 50 53.7758e-3 1.5619e-3 7.1541e-4 

50 – 150 1.0732e-1 9.2002e-2 6.3187e-2 
150 – 200 1.3327e-3 1.6693e-5 1.8848e-5 
200 – 300 6.9266e-2 6.5703e-2 4.6830e-2 
300 – 350 9.8116e-5 9.1376e-5 3.1879e-5 
Sampling 
Instants 

ITAE  

IMC based 
NPID 

GA based 
NPID 

EGA based 
NPID 

0 – 50 4.3158e-2 1.4492e-3 7.6016e-3 

50 – 150 6.3041 4.3749e-1 3.5030 
150 – 200 1.5063e-1 1.4231e-4 2.0361e-3 
200 – 300 1.7782e+1 1.3959 1.1982e+1 
300 – 350 3.0347e-2 2.3137e-3 9.7365e-3 

5. CONCLUSIONS 

In this paper, an optimized nonlinear PID control system for 
the nonlinear process using EGA is presented. The proposed 
EGA uses GA through ACO to enhance local and global 
search capabilities of the Genetic Algorithm towards the 
crossover and reproduction using simulated ant of ACO. 
Experimental explanation of the proposed EGA gives 
optimised N-PID settings with minimization of the objective 
function (ISE). To show the effectiveness of the proposed 
method in the nonlinear PID control system design, the servo 
and regulatory tracking response of the nonlinear CSTR 
process is illustrated. With the objective function ISE under 
different operating regions, the results show quicker 
convergence of the proposed method. 
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