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Abstract: In this paper a nonlinear observer is presented in order to estimate the angular
velocity of both upper and lower wheels of a PC controlled ABS Laboratory setup, from Inteco
Ltd. The system simulates the dynamics of a quarter car model. In order to accomplish this,
it includes two attached wheels. The angular velocity of the upper wheel simulates the angular
velocity of a vehicle’s wheel, while the lower wheel simulates the road surface. In the observer
design, it is assumed that the angular velocity of the vehicle’s wheel is known, since a sensor is
installed on the system, as in a real vehicle, so that the longitudinal velocity can be determined
with this information. The proposed nonlinear observer considers the Pacejka’s “magic formula”
to calculate the contact force. This formula allows the observer to estimate the states in both
the linear and nonlinear regions. The stability of the observer is proved and validated with
simulations, and experimentally with the Antilock Braking System Laboratory setup.
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1. INTRODUCTION

The Antilock Braking System (ABS) was developed to
prevent the wheels from locking up while braking. This
prevents the slippage of the wheels on the surface, ad-
justing the brake fluid pressure level of each wheel, and
helps the driver to keep vehicle’s control (Petrov et al.
(1977), Rittmannsberger (1998), Emig et al. (1990)). In
fact, the ABS is designed to increase the braking efficiency
and to maintain the vehicle’s maneuverability, reducing
the driving instability and decreasing the braking distance.

Modern ABS systems try not only to prevent the wheels
from locking up, but also aim to obtain maximum wheel
grip on the surface while the vehicle is braking (Kiencke
and Nielsen (2010), Rajamani (2011)). The technical dif-
ficulties to implement successfully the antilock concept,
contained in the 1936 patent for an “apparatus for prevent-
ing lock braking of wheels in a motor vehicle” by Robert
Bosch (Bosch GmbH (2003)), were solved between 1967
and 1970, when Mercedes–Benz engineers changed the
mechanical sensors for contactless sensors operating under
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the induction principle (DaimlerAG (2008)). Finally, when
the electronic integrated circuits were small and robust
enough, it was possible to record data from the wheel’s
sensors, and to use more reliable actuators for imposing
brake hydraulic pressure. The mass production started
with the ABS second generation, in 1978 (DaimlerAG
(2008)).

With the hardware technology breakthroughs, now the
challenge is to propose efficient control algorithms for
the actuators. Several algorithms had been aimed for
controlling the ABS.

In this paper, a mechatronic system, an ABS Laboratory
setup manufactured by Inteco Ltd, was used to obtain the
mathematical model and implement the physical simula-
tion. The setup represents a quarter car model, and it
consists of two rolling wheels. The lower wheel, made of
aluminum, imitates the relative road motion of the car,
whereas the upper wheel, made of rigid plastic, simulates
the wheel of the vehicle. In order to accelerate the lower
wheel, a large DC motor is coupled to it. The upper wheel
is equipped with a disk–brake system that is driven by a
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small DC motor where the control input is applied (Inteco
(2006)).

Earlier works on control applied to ABS Laboratory setups
are mainly based on the assumption that information of
all sensors is available for measurement. This assumption
can be considered valid, because nowadays modern cars
contain several sensors. In the literature, controller design
based on nonlinear techniques can be found in Al-Mola
et al. (2014), Khanesar et al. (2012), Oniz et al. (2009),
John and Pedro (2009), Dadashnialehi et al. (2012) or
intelligent control techniques as in Dadashnialehi et al.
(2014), Kayacan et al. (2009), Precup et al. (2012), Cabr-
era et al. (2005), Topalov et al. (2009a,b), Precup et al.
(2010a,b), Habibi and Yazdizadeh (2010), Topalov et al.
(2011).

On the other hand, a nonlinear observer is applied to
an ABS Laboratory setup in Chen et al. (2006) where
an observer–based adaptive fuzzy neural controller is pro-
posed and the stability is proven by the Lyapunov the-
ory. Also, it is possible to find articles about nonlinear
observers of the vehicle longitudinal velocity, as in Zhao
et al. (2011), where a nonlinear observer is presented for
estimating the longitudinal and lateral vehicle velocities
based on Duggof’s tire model and vehicle dynamics. In
Imsland et al. (2007) an observer for automotive vehicle
velocity estimation is presented, in the presence of varying
friction and road bank angles. The same type of observer,
in addition to an observer forcing the dynamics of the
nonlinear estimation error to the dynamics of a linear
reference system, is investigated in Kiencke and Nielsen
(2010). Other types of observers, linear and nonlinear,
using the sliding mode techniques are referred in Baffet
et al. (2007) and Stephant et al. (2007).

The main problem considered in this work is the fact
that some of the state variables, necessary to implement
the previous control strategies, are usually not measured,
due to sensor cost and space occupancy in the vehicle.
For instance, the longitudinal velocity is rarely measured.
Therefore these variables have to be estimated from the
available measurements, such as the angular velocity of
the wheel.

The main contributions of this work are:

1. The mathematical model of the ABS Laboratory
setup was enriched by introducing Pacejka’s magic
formula (Pacejka (2006)), which allows the observer
to work with a tire–road friction model in the linear
and nonlinear regions of the system. This model,
in comparison to others as (Zhao et al. (2011)),
provides an accurate behavior of tire mechanics based
on real experiments test data. The so–called “magic
formula” contains some coefficients to be determined
experimentally, so that the output is similar to the
experimental tire behavior. An additional advantage
of using the magic formula is its wide use in the
automotive industry.

2. The development of a nonlinear observer for the
longitudinal velocity of the vehicle using the available
information of the ABS Laboratory setup sensors.
The observer’s importance relies on the fact that
modern vehicles estimate the longitudinal velocity,

but this estimate is no longer accurate during the
braking process.

3. Simple computation of the observer’s gains that im-
plies an easy and fast implementation of the observer.
For instance, a significant advantage of the proposed
observer over the extended Kalman filter (Stephant
et al. (2007)) is that the real–time solution of the Ric-
cati differential equations is avoided. The proposed
observer is implemented more efficiently because the
gains obtained are easy for the implementation on the
electronic control unit.

4. The proposed observer guarantees theoretical stabil-
ity, developed through practical stability and proven
by a Lyapunov function.

5. The observer is validated, through simulations, im-
plemented and tested on the ABS Laboratory setup.

The paper is organized as follows: Section 2 briefly presents
the development of a mathematical model of the exper-
imental ABS Laboratory setup. Section 3 is dedicated
to the observer design and the demonstration of the
asymptotic stability provided by the error feedback using
Lyapunov function techniques. The result and discussion
are shown in Section 4. Finally, in the last Section, the
conclusion is presented.

2. MATHEMATICAL MODEL OF THE
EXPERIMENTAL ABS LABORATORY SETUP

As mentioned, the Laboratory setup by Inteco Ltd. con-
sidered in this paper consists of two rolling wheels, see
Fig. 1. Although simple, it preserves the fundamental char-
acteristics of an actual ABS system (Inteco (2006)). The
Inteco Ltd. ABS Laboratory setup characterizes a vehicle’s
ABS in the range 0–70 km/h, allows testing control and
observer algorithms, and can be easily adapted for a real
implementation.

The angular velocity of the upper wheel corresponds to
the angular velocity of the vehicle’s wheel (Inteco (2006)).
In addition, with the ABS Laboratory setup, it is possible
to simulate the road surface through the lower wheel. The
control problem is to maintain the wheel slip at a reference
desired value. The wheel slip describes the normalized
difference between the velocities of both wheels. The setup
is equipped with identical encoders on the wheels that
allow determining the wheel slip. These encoders provide
the wheel angular positions, with a measurement accuracy
of 2π/4096 = 0.0015 rad, and the wheel angular velocities,
through differential quotients.

Nowadays, an actual vehicle estimates the longitudinal
velocity applying a relationship between the angular ve-
locity of the wheel and the wheel’s radius, considering the
wheels deformation very small compared to the wheel’s
dimensions. This estimation is good, as long as no slip
is present. Unfortunately, the braking process involves slip
between the wheel and the road surface. When it occurs, it
is not possible to estimate the longitudinal velocity in the
same way. This motivates the design of an observer capable
of estimating this variable. The encoder on the lower wheel
allows a direct measurement of the longitudinal velocity.
This information will be used in order to validate the
observer’s results when is applied on a real vehicle.
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Fig. 1. Scheme of the ABS Laboratory setup.

2.1 Mathematical Model

The mathematical model of the ABS Laboratory setup is
derived under the following assumptions. First, the lateral
and the vertical motions are neglected. Second, the rolling
resistance force is ignored, as it is very small due to braking
(see Fig.2).

The braking torque, Tb, and the bearing friction torque,
M10, act on the upper wheel. The bearing friction torque,
M20, acts on the lower wheel. The tractive force, Fx,
acts on both, the upper and lower wheels. The dynamic
equations of the ABS Laboratory setup are (Inteco (2006))

ẋ1 =
r1
J1
Fxs−

1

J1
(d1x1 +M10 + Tb)s1

ẋ2 = − r2
J2
Fxs−

1

J2
(d2x2 +M20)s2

(1)

where x1, x2 are the angular velocities of the upper and
lower wheels, whose inertia moments are J1, J2 and whose
radii are r1, r2. Furthermore, d1, d2 are the viscous friction
coefficients of the upper and lower wheel and s(x), s1(x1)
and s2(x2) are auxiliary variables

s(x) = sign(r2x2 − r1x1)

s1(x1) = sign(x1)

s2(x2) = sign(x2)

used to determinate if the vehicle is in the traction mode
or in the braking mode, with

sign(x) =


1 if x > 0

0 if x = 0

−1 if x < 0.
Moreover, instead of building the mathematical model
with the physical parameters of the ABS setup, the Pace-
jka’s magic formula was chosen to describe the tractive
dynamics. The magic formula approximates the tire char-
acteristic curve, and is based on empirical measurements.
It is widely used in tire’s dynamic works and allows work-
ing with a wider range of values, including the linear and
nonlinear regions of the tire characteristic

Fx = µDx sin
(
Cx arctan(Bxλ)

)
(2)

where the positive experimental coefficients, given by the
stiffness factor Bx, the shape factor Cx, and the peak
value Dx, are determined to match the experimental data,

Fig. 2. Forces and torques acting in the ABS Laboratory
setup.

µ ∈ [0, 1] is the friction coefficient between the upper and
lower wheel and Fx is the tractive force, i.e. the force
used to generate motion between a body and a tangential
surface.

An advantage of the Pacejka model is that it is based
on trigonometrical functions and, as mentioned, relies on
experimental coefficients tuned so that the output fits the
experimental results. Fig. 3 shows the behavior of the
tractive force calculated in (2).

Finally, the equation (2) depends on the wheel slip func-
tion

λ =
r2x2 − r1x1

r2x2
(3)

i.e. of the relative difference of the wheel velocities.

The braking torque, Tb, is modeled by a first–order equa-
tion (Inteco (2006)), given by

Ṫb = −c31Tb + c31b(u) (4)

where c31 is a constant, and b(u) describes the relation
between the control input applied to the DC motor, which
drives the action of the brake pads, with the control input
u ∈ [0, 1], and generates the braking torque Tb. This
relation can be approximated by

b(u) =

{
b1u+ b2 if u ≥ u0
0 if u < u0

(5)

where b1, b2 are constants. Tb is applied by the brake pad
to the rotor attached to the upper wheel (the upper wheel
in the setup emulates the behavior of the tire in the car),
however, that force is generated by the control signal u, the
voltage applied to the DC motor. Since the brake dynamic
is fast compared with the wheels’ dynamics, (4) can be
approximated as follows

Tb = b1u+ b2. (6)

The control of the ABS can be obtained calculating Tb
(Al-Mola et al. (2014), Dadashnialehi et al. (2014), Khane-
sar et al. (2012), Precup et al. (2012), Kayacan et al.
(2009), Oniz et al. (2009)), and u can be easily calculated
with (6), since b1 and b2 are known.
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Fig. 3. Tractive force Fx vs wheel slip λ.

Under normal operation conditions, the velocity r1x1
matches the forward velocity r2x2. When the brake is ap-
plied, braking forces are generated at the wheel interface,
so r1x1 will tend to be lower than vx, and a slippage will
occur.

In the following section an observer for x̂2 will be designed,
assuming that the variable state x1 is measurable through
an encoder, and the disturbance M10,M20 can be calcu-
lated.

In this article it is assumed that the brakes are applied (Al-
Mola et al. (2014); Dadashnialehi et al. (2014); Khanesar
et al. (2012); Precup et al. (2012); Kayacan et al. (2009);
Martinez-Gardea et al. (2014)), and a braking force is
generated because of the interaction of the two wheels,
which cause the wheel slip λ to increase. As the braking
force increases, a slippage will occur between the tire and
the road surface, and the wheel speed will tend to be lower
than the vehicle speed.

In this situation the values of the auxiliary variables, s, s1
and s2 are the following

s = sign(r2x2 − r1x1) = 1

s1 = sign(x1) = 1

s2 = sign(x2) = 1.

(7)

Considering (7), equations (1) can be rewritten as

ẋ1 =
r1
J1
Fx −

1

J1
(d1x1 +M10 + Tb)

ẋ2 = − r2
J2
Fx −

1

J2
(d2x2 +M20).

(8)

3. OBSERVER DESIGN

The proposed nonlinear observer is a simple Luenberger–
like observer based on a copy of the system (8)

˙̂x1 =
r1
J1
F̂x −

1

J1
(d1x̂1 +M10 + Tb) + ko1(x1 − x̂1)

˙̂x2 = − r2
J2
F̂x −

1

J2
(d2x̂2 +M20) + ko2(x1 − x̂1)

(9)

where ko1, ko2 are the observer’s gains. In this observer,
the estimated tractive force F̂x is a copy of (2), and is
defined as

F̂x = µDx sin
(
Cx arctan(Bxλ̂)

)
(10)

where

λ̂ =
r2x̂2 − r1x̂1

r2x̂2
. (11)

Let us consider the estimation errors
e1 = x1 − x̂1
e2 = x2 − x̂2

(12)

and their derivatives obtained from (8), (9)

ė1 = −
(
ko1 +

d1
J1

)
e1 +

r1
J1

(Fx − F̂x)

ė2 = −ko2e1 −
d2
J2
e2 −

r2
J2

(Fx − F̂x).

(13)

The error equations (13) can be rewritten as

ė = Ae+B(Fx − F̂x) (14)

where e = (e1, e2)T and

A =

−ko1 −
d1
J1

0

−ko2 −d2
J2

 r2, B =


r1
J1

− r2
J2

 .

The stability of the error origin is studied using the
quadratic Lyapunov candidate Vo(e) = eTPe/2, with
P = PT > 0, whose derivative along the dynamics (14)
is

V̇o(e) = eT
ATP + PA

2
e+ eTPB(Fx − F̂x).

Defining a constant matrix

Q =

(
q1 0

0 q2

)
= QT > 0

and determining the values of the matrix

P =

(
p11 p12
p12 p22

)
such that

ATP + PA = −2Q (15)

one obtains

p11 =
q1J1d2s2(J1(J2ko1 + d2s2) + J2d1s1) + q2(J1J2ko2)2

d2s2(J1ko1 + d1s1)(J1J2ko1 + J1d2s2 + J2d1s1)

p12 = − J1J
2
2 q2ko2

d2s2
(
J1d2s2 + J1J2ko1 + J2d1s1

)
p22 =

J2q2
d2s2

.

(16)

In order to get a positive definite matrix P , one requires
that all the determinants of the principal minors of P are
positive

J1
(
J1J

2
2 q2k

2
o2 + J1d

2
2q1 + q1J1J2d2 + q1J2d1d2

)
d2
(
J2
1d2ko1 + J2

1J2k
2
o1 + 2J1J2d1ko1 + d1d2J1 + d21J2

) > 0

q1
((
J1J2ko1 + (J1d2 + J2d1)

)2
+ q2

(
J1J2ko2

)2)(
d2(J1d2 + J1J2ko1 + J2d1)2(J1ko1 + d1)

) > 0.

(17)
The conditions (17) are ensured to hold true by an appro-
priate choice of the gains ko1, ko2 > 0.
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Hence, the Lyapunov function derivative can be rewritten
as

V̇o(e) = −‖e‖2Q + eTPB(Fx − F̂x)

≤ −λQmin‖e‖
2
Q + ‖PB‖‖Fx − F̂x‖‖e‖

(18)

‖Fx − F̂x‖ = φ(e2, x1, x̂1) (19)

with ‖e‖2Q = eTQe, λQmin the minimum eigenvalue of Q,
and where φ is a function that tends to zero exponentially.
Setting where ∆ = ‖PB‖, it is finally possible to bound
the derivative of the Lyapunov function as follows

V̇o(e) ≤ −λQmin‖e‖
2
Q +∆φ‖e‖. (20)

To prove the square integrability of e(t), let us integrate
both sides of (20)

Vo |t,x −Vo |t0,x0
≤ −λQmin

∫ t

t0

‖e(τ)‖2dτ

+∆

∫ t

t0

‖φ(τ)‖‖e(τ)‖dτ

≤ −λQmin

∫ t

t0

‖e(τ)‖2dτ

+∆

[ ∫ t

t0

‖φ(τ)‖2dτ
]1/2[ ∫ t

t0

‖e(τ)‖2dτ
]1/2

where the Schwartz inequality has been used, and x0 =
x(t0). Considering the limit as t tends to infinity and
denoting with ‖ · ‖2 the L2 norm, one has

Vo |∞,x −Vo |t0,x0
≤ −λQmin‖e‖

2
2 +∆‖φ‖2‖e‖2

≤ −λQmin‖e‖
2
2 +∆`φ‖e‖2

(21)

since, as observed, φ goes to zero exponentially, so that

‖φ‖2 = `φ <∞
with `φ a constant. Therefore, since Vo |∞,x≥ 0

λQmin‖e‖
2
2 −∆`φ‖e‖2 ≤ Vo |t0,x0

−Vo |∞,x≤ Vo |t0,x0
(22)

‖e‖22 ≤
∆`φ

2λQmin

+
1√
λQmin

[
Vo |t0,x0

+
∆2`2φ

4λQmin

]1/2
.

Hence, e is L2. Moreover, e is also bounded

The applications of Barbalat’s theorem allows concluding
that lim

t→x0

e = 0 i.e. this observer ensures the exponential

convergence of the estimates x̂1, x̂2 to the states variables
x1, x2 respectively. Hence, the error system in (14) has
the origin exponentially stable, and the estimation errors
tend exponentially to zero, with a time constant τ = 1/λ.

4. EXPERIMENTAL RESULTS

To investigate the performance of the proposed nonlinear
observer, a number of computer-simulated dynamic re-
sponses are obtained. Furthermore, the simulated designs
are built and used in the real-time experiments on the
dynamic test stand. All the following figures show experi-
mental results for a car with an initial longitudinal velocity
V = 60km/h maneuvering on a straight line.

For the experiments for the nonlinear observer, there has
to be a control signal, Tb, applied to the ABS Laboratory

Fig. 4. Physical system of the ABS Laboratory setup.

setup. For this work the control signal is obtained by
a Control Lyapunov Function (Martinez-Gardea et al.
(2014)). This strategy is a generalization of the notion
of Lyapunov function used in the stability analysis of
systems that uses the information of a Lyapunov function
for the construction of the control law. An advantage
of this technique is its extreme simplicity and ease of
implementation, moreover, it automatically provides an
analytic feedback law (Sontag (1989)). Nonetheless, the
nonlinear observer could be implemented with any control
input.

In this section, the nonlinear observer’s behavior is pre-
sented for the experimental platform of the ABS Labo-
ratory setup. In Fig. 4 the physical system is shown, it
simulates an ABS system. The upper wheel simulates the
vehicle’s wheel dynamics, and the lower wheel simulates
the vehicle longitudinal velocity.

Model parameters and the nominal parameters used in
this work, are described in Table 1, emphasizing the
observer values ko1, ko2 used in simulation and real time
implementation.

4.1 Description of the graphics

In order to test the observer’s behavior in the braking pro-
cess, the system’s upper wheel needs to reach an angular
velocity of 1509 rpm or 158 rad/seg (that will be consid-
ered the initial condition of the system). After achieving
this velocity the acceleration signal is deactivated and
the braking process begins. The observer starts with a
different initial condition for the angular velocity, in this
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Table 1. Coefficients and System Variables,
ABS Laboratory setup

r1 0.0995 m
r2 0.0990 m
J1 7.54×10−3 Kgm2

J2 25.6×10−3 Kgm2

d1 118.74×10−6 Kgm2/s
d2 214.68×10−6 Kgm2/s
M10 0.0032 Nm
M20 0.0925 Nm
c31 20.34 s−1

b1 15.24
b2 −6.21
Dx 22.99
Cx 1.15
Bx 28
ko1 10
ko2 40

case 1425 rpm or 150 rad/seg. This is done to show,
that despite different initial conditions, the observer is
capable of tracking the reference correctly. At the end of
the braking process, when the velocity is near zero, the
braking control is disabled because it is no longer effective
therefore all the brake torque must be applied.

In Fig. 5 the real and estimated angular velocity of the
upper wheel (that represents the wheel of the vehicle)
are shown. In the same manner, Fig. 7 depicts the
real and estimated angular velocity of the lower wheel
(that represents the road surface dynamics). Both figures
describe the good reference tracking accomplished by the
observer despite the different initial conditions.

In Fig. 6 the estimation error defined in (12) of the
real and estimated angular velocity of the upper wheel
is shown. In Fig. 8 the estimation error, also defined in
(12) of the real and estimated angular velocity of the lower
wheel is shown. Both errors are bounded and small enough
to display the observer’s good behavior.

Fig. 9 shows the wheel slip, λ, obtained from the system

defined in (3) and the wheel slip estimated, λ̂, as in (11),
that is evaluated through the nonlinear observer and the
similarities between the two graphics are depicted. The
difference between the real wheel slip and the estimation
is small, when x2 is approaching to zero λ increases and

so does λ̂, but the estimation error remains small.

Fig. 10 shows the road friction force, Fx, defined in (2),

and the estimated road friction force, F̂x, as in (10), which
are very much alike, additionally the error between these
two forces, (19), is depicted in Fig. 11.

5. CONCLUSIONS

A series of experiments have been conducted to determine
the performance of the proposed controller for different
cases and conditions. For the experiments, the ABS Lab-
oratory setup of Inteco Ltd. is used (Inteco (2006)). To
imitate the behavior of the vehicle during braking on a
dry and straight road, the wheel is accelerated until the
velocity of the wheel reaches 60 km/h. Once it attains the
limit velocity, the braking operation begins. There is an-
other velocity threshold which states the minimum veloc-
ity level for applying ABS control algorithms. Under this
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Fig. 5. Upper wheel’s angular velocity real time measure-
ment x1 (solid) vs upper wheel estimated angular
velocity x̂1 (dotted) [rad/seg].
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Fig. 6. Upper wheel angular velocity, error estimation
e1 = x1 − x̂1.

minimum value of velocity, the system becomes unstable
if the ABS algorithm is applied. Under such circumstance,
the maximum braking torque should be applied to the
wheels, without considering the target slip value.

This work proposes a nonlinear observer in order to es-
timate the angular velocity of the lower wheel of the
ABS Laboratory setup, by Inteco Ltd. This wheel rep-
resents the road surface, so it provides information about
longitudinal displacement and longitudinal velocity. The
observer design is based on the available angular velocity
of the upper wheel (which represents the vehicle’s wheel),
the static friction disturbances are also known, and the
proposed control input is based on the CLF technique.
A mathematical analysis to demonstrate the stability of
the system is done, and a stability region for the observer
is obtained. The performance of the observer was proved
in both; computer simulations, and real time tests, the
results show a good performance of the observer, correctly
tracking the reference and with small and bounded errors.
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Fig. 7. Lower wheel’s angular velocity real time measure-
ment x2 (solid) vs lower wheel estimated angular
velocity x̂2 (dotted) [rad/seg].
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Fig. 8. Lower wheel angular velocity, error estimation
e2 = x2 − x̂2.
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