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Abstract: In this paper an optimal data-holding scheme is introduced which compensates the undesirable 
effects of ZOH. This effect will be improved by using a simple optimal filter, therefore the optimal data-
holding scheme is consist of a standard ZOH and a filter. For designing this optimal filter two type cost 
functions or performance measures are defined in which phase delay or robust stability are considered. In 
this paper, firstly an optimal filter for minimizing these two cost functions will be introduced which its 
coefficients is optimized by using the imperialist Competitive Algorithm (ICA) method. Secondly a bi-
objective cost function is presented in which both the phase delay and robust stability are considered and 
then the optimal filter will be designed for minimizing this new cost function. The Simulation and 
Experimental Results show that efficiency of the proposed optimal filter or proposed data-holding 
scheme is more than that of the previous optimal filters in each cost function. 
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1. INTRODUCTION 

When a continuous system is controlled by using a digital 
computer as a controller, a digital-to-analog converter (DAC) 
and a holding device must be used together with the 
controller. A zero-order hold (ZOH) device is commonly 
used as a standard holding device. It holds its output on the 
level of the most recent data ݕሺ݊ܶሻ. The main inconvenience 
of ZOH is that it reduces the phase delay. To reduce the 
phase delay caused by ZOH, in (Yekutiel, 1980) the 
piecewise-constant higher order hold (PC-HOH) was 
proposed to predict the value of ݕሾሺ݊ ൅ 0.5ሻܶሿ by evaluating 
a truncated Taylor’s expansion. Then, against of the ݕሺ݊ܶሻ, it 
is hold constant as a plant input or controller output in the 
proposed data-holding scheme. Following this idea, the 
Newton Extrapolation Polynomial Method (NEPM) was 
proposed in (Beliczynski et al., 1984). In NEPM, the Newton 
Extrapolation Polynomial was applied to predict the value of 
ሾሺ݊ݕ ൅ 0.5ሻܶሿ. In both methods, a filter was introduced to 
compensate the negative phase by predicting the value of 
ሾሺ݊ݕ ൅ 0.5ሻܶሿ. It is clear that by using the filter the negative 
phase delay caused by ZOH is compensated but the 
frequency response of the filter gain was not modified. 
Therefore it has magnitude distortion. In (Leonard, 1999), a 
robust stability criterion was introduced to consider the 
magnitude distortion of the applied filter. Then the optimal 
first-order phase lead filter was applied to induce the phase 
delay and to reduce the robust stability separately. It is called 
Optimal Filter Method (OFM). The robust stability criteria 
has considered never again. 

In (Shahnazi et al., 2005a), the optimum PC-HOH was 
proposed in which the ݕሾ݊ܶ ൅ ∆ሿ is optimally predicted. To 
do this, the optimal value of ∆ was selected between [0 T] 
while the phase lag of ZOH was optimally compensated. 

Following this idea, In (Shahnazi et al., 2005b) the NEPM 
was modified by optimizing the q value in prediction of the 
ሾሺ݊ݕ ൅ ሻܶሿ where 0ݍ ൑ ݍ ൏ 1. Totally, it has been shown in 
(Shahnazi et al., 2005a,b ) that optimum NEPM and PC-HOH 
are more efficient methods in compensating the phase delay 
in comparison with the previous methods. 

In each previous approach: 1- some type of expansion 
polynomial such as Taylor and Newton were applied to 
construct the optimal filter. By using those polynomials, the 
filter coefficients are depended together. Therefore, the 
obtained filter may not be optimum because its coefficients 
are searched in a limited area caused by this dependency. 2- 
The optimal filter was often designed to minimize the phase 
delay criteria.  

In this paper, 1- a polynomial with no dependency between 
the coefficients is selected to construct the optimal filter. 2- A 
bi-objective cost function in which both the phase delay and 
the stability robustness are considered is defined. Then, this 
type of cost function and those two types of old cost 
functions are applied to design the optimal filter in OPC-
HOH, ONEPM and proposed methods. 3- Totally, the 
Imperialist Competitive algorithm as a meta-heuristic method 
is used to optimally estimate the coefficients of the proposed 
filter. The results show that the proposed filter and 
consequently the proposed data-holding device have superior 
performance rather than others in each criterion.  

To compensate the delay of ZOH, many methods were 
proposed and applied in different closed loop control 
structures. In (Raviv et al., 1999), Adding pole/zero pair to an 
existing digital controller to compensate the phase lag caused 
by ZOH has been proposed. In (Bibian et al., 2000), two 
predictive schemes based on a linear extrapolation technique 
are developed to compensate the sampling time delay which 
exists in digital control. In (Schmirgel et al., 2006), to 



CONTROL ENGINEERING AND APPLIED INFORMATICS    33 

 

     

 

compensate the delay and sampling time effects, Based on 
the Smith predictor concept, a model predictive control 
algorithm is implemented on the current control loop level of 
the cascaded drive control system. In (He et al., 2007) an 
algorithm is proposed and studied on the Dc-Dc converter to 
compensate the time delay of discretization. In (Wang et al., 
2008) the ZOH discretization effect is discussed on the 
higher–order sliding-mode control systems. In (Nussbaumer 
et al. 2008), two prediction methods (i.e., a linear prediction 
and the smith prediction), are used to compensate time delays 
caused by digital control of a tree phase buck type PWM 
rectifier system. In (Vilcanqui et al., 2014), frequency 
compensation using a LMS-based Adaptive FIR filter 
between the controller and the reference signal is proposed to 
correct the amplitude and phase distortion caused by the 
sampling rate.  

In section 2, first, the brief discussion on the problem is 
presented. Second, details of the old methods are presented. 
Finally, details of the proposed optimum filter are described. 
In section 3, the imperialist competitive algorithm is 
presented. In section 4, the proposed Bi-Objective cost 
function is introduced. Also, with each cost function, the 
proposed filter and its related results are compared with those 
of the other methods. In section 5, a simulation test result on 
an academic system and an experimental test result on the 
rectifier plant are presented and applied to compare the 
performances of aforementioned methods. In Section 6, 
Discussion about the obtained results is presented. Finally, 
the conclusions are summarized in Section 7. 

2. PROBLEM DESCRIPTION 

In controlling continuous systems by digital processors, the 
controller is usually designed continuously but applied in Z-
domain for the system. Therefore a holding device is used 
which is usually a ZOH device. In Fig. 1 the closed loop 
structure of digital controlling of continuous systems is 
shown (Yekutiel, 1980). Therefore, the phase delay caused by 
holding device is mixed with the system and controller phase. 
In this paper, it’s just been tried to compensate the phase 
delay effect of ZOH device. This phase delay can be seen in 
the ZOH transfer function: 

ሻݓሺ݆ܪܱܼ ൌ
ଵି௘௫௣	ሺି௝ఠ்ሻ

௝ఠ
ൌ

்௦௜௡ሺ଴.ହఠ்ሻ

଴.ହఠ்
ݔ݁  (1)							ሺെ݆0.5߱ܶሻ݌

The phase delay of ZOH in ߱ ൌ 0.5, ߱௦ ൌ ߨ ܶ⁄  will have 
the maximum value of -90. Therefore closed loop system's 
phase margin is actually less than continuous closed loop 
system's phase margin.  

As shown in Fig. 2, a compensating filter ܨሺݖሻ is been used 
for compensation of the phase delay caused by ZOH 
(Yekutiel, 1980). By substituting ݖ ൌ  ሺെ݆߱ܶሻ, the	݌ݔ݁
frequency behaviour of F(z) can be calculated and shown by 
F(݆߱). Therefore: 

ሺ݆߱ሻܪ ൌ
ଵ

்

ଵି௘௫௣ሺି௝ఠ்ሻ

௝ఠ
 ሺ݆߱ሻ          (2)ܨ

In the end, the phase compensation problem is changed to 
phase minimization of ܪሺ݆߱ሻ. The magnitude of ܪሺ݆߱ሻ 

changes in frequency domain due to magnitude of ܨሺ݆߱ሻ. 
Therefore, it can be induce the gain margin and the robust 
stability of closed loop system. Two constraints must be 
considered in designing of ܨሺ݆߱ሻ in this area. First,            
ݖሺܨ ൌ 1ሻ ൌ 1 so that the negative effect of amplitude of 
 ሺ݆߱ሻ to be limited (not minimized) especially in zeroܪ
frequency. Second Fሺzሻ has minimum phase zeros (stable 
zeros) which is the necessary condition of jury’s Lemma 
(Shahnazi et al., 2005b). So the optimization problem is a 
constrained problem. 

 

Fig. 1. A closed loop digitally controlled system (Yekutiel, 
1980). 

 

Fig. 2. The proposed closed loop digitally controlled system 
(Yekutiel, 1980) 

Two types of cost functions or performance measures for this 
problem was defined as followed (Leonard, 1999): 

ଵሺܺሻܬ ൌ ׬ ,ሺ߱ߔ| ܺሻ|ଶ݀߱
ఠಳೈ
଴

ଶሺܺሻܬ ൌ ׬ ,ሺ߱ߔ| ܺሻ|݀߱
ఠಳೈ
଴

          (3) 

ଷሺܺሻܬ ൌ ׬ |1 െ ,ሺ߱ܪ ܺሻ|ଶ݀߱
ఠಳೈ
଴

ସሺܺሻܬ ൌ ׬ |1 െ ,ሺ߱ܪ ܺሻ|݀߱
ఠಳೈ
଴

          (4) 

In which ܺ is an undefined vector which constructs the 
coefficients of ܨሺݖሻ filter. ω୆୛ is the closed loop bandwidth 
of the plant which is being controlled and 	ߔሺ߱, ܺሻ is the 
phase of ܪሺ݆߱ሻ. The relation between ߱஻ௐ and the sampling 
frequency ߱௦ can be founded as follows (Pierre et al., 1995): 

߱௦ ൌ ݇.߱஻ௐ														6 ൑ ݇ ൑ 25           (5) 

It is obvious that in cost functions J1 and J2, the optimal value 
of X is selected as to phase delay be minimized in the 
bandwidth, ߱஻ௐ. It has been shown in (Leonard, 1999), that 
the lesser the |1 െ  ሺ݆߱ሻ| is, the better stability robustnessܪ
will be gained. Therefore J3 and J4 can be used for increasing 
the stability Robustness. 

2.1  Piecewise Constant Higher-Order-Hold (PC-HOH) 

In this method (Yekutiel, 1980) the output value of     
ሺ݊ܶݕ ൅ ∆ሻ was expanded as follows: 

ሺ݊ܶݕ ൅ ∆ሻ ൌ ∑ ∆೔

௜!
ሺ௜ሻሺ݊ܶሻ௠ݕ

௜ୀ଴ ൅ ܱሺ∆ሺ௠ାଵሻሻ           (6) 

In which ܱሺ∆ሺ௠ାଵሻሻ are the high order terms and ݕሺ௜ሻ is the 
ith order derivative of the ݕሺݐሻ. In this method, at first the 
high order terms in (6) were neglected and then by using first 
backward difference approximation of ݕሺ௜ሻሺ݊ܶሻ, the proposed 
PC-HOH filter was obtained as follows. 
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ሻݖ௠௉஼ିுைுሺܨ ൌ ∑ ∆೔

௜!
ቀ
ଵି௭షభ

்
ቁ
௜

௠
௜ୀ଴            (7) 

In which ∆ൌ ܶ 2⁄  and ܨ௠௉஼ିுைுሺݖሻ is the mth order PC-HOH 
filter that is presented in table 1. 

Table 1. Filter transfer function related to PC-HOH. 

 m=1 m=2 

ሻ 1.5ݖ௠௉஼ିுைுሺܨ െ 0.5zିଵ 
1.625 െ 0.75zିଵ

൅ 0.125zିଶ 

2.2  Newton Extrapolation Polynomial Method (NEPM) 

In this method (Beliczynski et al., 1984) the mth order 
Newton Polynomial was used for approximating of      
ሾሺ݊ݕ ൅  ሻܶሿ. Finally, the NEPM filter was proposed asݍ
follows: 

ሻݖ௠ோ௉ெሺܨ ൌ

∑ ௜ܤ
௠ሺݍሻିݖ௜ ൌ ∑ ሺെ1ሻ௜ ቀݍ െ 1 ൅ ݅

݅
ቁ ቀݍ ൅݉

݉ െ ݅
ቁ ௠						௜ିݖ

௜ୀ଴
௠
௜ୀ଴ (8) 

In which ݍ ൌ 0.5 and ܨ௠ோ௉ெሺݖሻ is the mth order NEPM 
filter. In table 2, the NEPM filter for different m is presented. 

Table 2.  Filter transfer function related to NEPM. 

 m=1 m=2 

ሻ 1.5ݖ௠ோ௉ெሺܨ െ 0.5zିଵ 
1.875 െ 1.25zିଵ

൅ 0.375zିଶ

2.3  Optimal Filter Method (OFM) 

In this method (Leonard, 1999) for compensating the phase 
delay, the optimal filter 	ܨሺܼሻ was proposed as follows: 

ଵܨ
ைிெሺݖሻ ൌ

ଵା௕௭షభ

ଵା௕
											െ 1 ൏ ܾ ൏ 1         (9) 

In which ܨଵ
ைிெሺݖሻ is the first-order OFM filter. Finally, the b 

was calculated to minimize the phase of ܪሺ݆߱ሻ by defining 
the ܬଵሺܾሻ as follows: 

ଵሺܾሻܬ ൌ ׬ ,ሺ߱ߔ| ܾሻ|ଶ݀߱
ఠಳೈ
଴          (10) 

In table 3 the values of b and ܬଵሺܾሻ are presented for different 
values of ݇. 

Table 3.  Optimal OFM filter for different k. 

k b J1(b) 
k=2 -0.618 2.4551 
k=4 -0.476 0.0444 
k=6 -0.404 0.0030 
k=8 -0.374 4.0e-4 

k=10 -0.3592 8.41e-5 
k=15 -0.3449 5.04e-6 
k=20 -0.3398 6.49e-7 

2.4  Optimum PC-HOH (OPC-HOH) 

In this method (Shahnazi et al., 2005a) the optimal value of ∆ 
in (7) was obtained for the minimum of J1 which was defined 
in (3). ܪሺ߱, ∆ሻ and ߔሺ߱, ∆ሻ in this method for different 
values of m are presented in (11) and (12). 
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2.5  Optimum NEPM (ONEPM) 

In this method (Shahnazi et al., 2005b) by defining the 
optimal value of q in the (8) for the minimum value of J1 
which was defined in (3), the Optimum NEPM (ONPEM) 

was proposed. ܪሺ߱, ,ሺ߱ߔ ሻ andݍ  ሻ are presented for m=1, 2ݍ
in (13) and (14). 

 (13) 
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2.6  The proposed Optimal Filter 

In this method a compensating filter of mth order which 
minimizes one cost function is assumed as: 

௠ܨ
௉௥௢௣௢௦௘ௗሺݖሻ ൌ ∑ ௜ିݖ௜ߙ

௠
௜ୀ଴ 				         (15) 

௠ܨ
௉௥௢௣௢௦௘ௗሺݖሻ is the optimal proposed filter of mth order and 

ሺ1ሻܨ ௜ is the ith coefficient of filter. In addition toߙ ൌ 1 
condition, the stability of the compensator zeros is also the 
necessary condition. Therefore the optimal selection problem 
of the proposed compensator filter is a constrained 
optimization problem which can be defined as follows:  

ሺܺሻ൯ܬ௑ୀሾఈబ⋯ఈ೘ሿ൫݁ݖ݅݉݅݊݅ܯ

	ݐ݄ܽݐ	݄ܿݑݏ ൜
∑ ௜ߙ
௠
௜ୀ଴ ൌ 1

଴ߙሺሾݏݐ݋݋ݎ|ݔܽܯ |௠ሿሻߙ⋯ ൏ 1
        (16) 

Which ܬሺܺሻ is one cost function. The above constrained 
problem can be changed to an unconstrained problem by 
defining the two positive coefficients ߚଵ and ߚଶ as follows: 
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ሺܺሻܬ௑ୀሾఈబ⋯ఈ೘ሿሺ݁ݖ݅݉݅݊݅ܯ ൅ ଵሺ|1ߚ െ ∑ ௜ߙ
௠
௜ୀ଴ |ሻ

൅ߚଶ݊݃݅ݏሺݔܽܯሺ|ݏݐ݋݋ݎሺሾߙ଴ ௠ሿሻ|ሻߙ⋯ ൒ 1ሻ൯
       (17) 

If the two constraints are hold, the cost function of (16) and 
(17) would be equal. In this paper, by optimizing the (17) 
using the ICA method, the proposed filter shown in (15) is 
obtained.  

3. IMPERIALIST COMPETITIVE ALGORITHM 

The ICA as a multi-agent optimization algorithm simulates 
the social political process of imperialism and imperialistic 
competition (Atashpaz-Gargari et al. 2007). Like other 
evolutionary optimization algorithm, the ICA starts with an 
initial population. Population individuals called country. 
There are two types of countries; some of the best countries 
are selected to be the ‘‘imperialist’’ states and the remaining 
countries form the ‘‘colonies’’ of these imperialists (The 
country power is inversely proportional to its cost). Then, 
these countries are divided among the imperialists based on 
their ‘‘power’’. Each imperialist together with its colonies 
forms an ‘‘empire’’. The main processes of ICA include 
Assimilation and Revolution inside each empire, Imperialistic 
competition among all empires and Elimination of powerless 
empires. Under assimilation policy, the colonies move toward 
their relevant imperialist in each empire. Under Revolution 
policy, some colonies of each empire move suddenly to other 
positions that are randomly selected. Under imperialistic 
competition the weak empire will miss its weak colonies and 
consequently its power will gradually decrease. Under the 
competition policy, one of the more powerful empires 
possesses the weakest colonies of the weakest empire. 
Finally, the weakest empire that has no colony will be 
eliminated and its imperialist will participate in imperialist 
competition like a weak colony. Therefore, under Elimination 
policy, all countries converge to one empire and then the 
algorithm is finished. The total power of an empire depends 
on both the power of the imperialist country and its colonies 
power. This fact is modelled by defining the total power of an 
empire as the power of the imperialist country plus a 
percentage of the mean of its colonies power. The flowchart 
of the ICA (Atashpaz-Gargari et al. 2007) is shown in Fig. 3. 

 

Fig. 3. Flowchart of the imperialist competitive algorithm. 

3.1  Original ICA  

The normalized power (cost) of an imperialist is defined as: 

࢒࡯ ൌ ࢚࢙࢕ࢉࢌ
ሺ࢒,࢖࢓࢏ሻ െ ࢚࢙࢕ࢉࢌሺ࢏࢞ࢇ࢓

ሺ࢒,࢖࢓࢏ሻሻ          (18) 

Where ௖݂௢௦௧
ሺ௜௠௣,௟ሻis the power (cost) of the lth imperialist and ܥ௟ 

is its normalized power. By using the normalized power of 
imperialists, the colonies number of lth empire (ܰܥ௟) is 
obtained as follows: 

࢒࡯ࡺ ൌ ቆቤࢊ࢔࢛࢕ࡾ
࢒࡯

∑ ࢏࡯
࢖࢓࢏ࡺ
స૚࢏

ቤ .  ቇ          (19)࢒࢕ࢉࡺ

Where ௖ܰ௢௟ is the colonies number of all empires and ௜ܰ௠௣ is 
the number of imperialist. Then, for each empire, its colonies 
are randomly selected according to its ܰܥ௟. The total cost of 
lth empire (ܶܥ௟) is obtained by the (20) and is introduced as 
follows: 

࢒࡯ࢀ ൌ ࢚࢙࢕ࢉࢌ
ሺ࢒,࢖࢓࢏ሻ ൅ .ࣈ

∑ ࢚࢙࢕ࢉࢌ
ሺ࢏,࢒࢕ࢉሻ࢒࡯ࡺ

స૚࢏

࢒࡯ࡺ
          (20) 

Where ߦ is a value between 0 and 1. The normalized total 
cost of lth empire (ܰܶܥ௟) is introduced as follows:  

࢒࡯ࢀࡺ ൌ ࢒࡯ࢀ 	െ	࢒࢞ࢇ࢓ሺ࢒࡯ࢀሻ          (21) 

Using the normalized total cost of empires, the possession 
probability of lth empire is obtained from the below equation.  

࢒ࡼ ൌ ቤ
࢒࡯ࢀࡺ

∑ ࢏࡯ࢀࡺ
࢖࢓࢏ࡺ
స૚࢏

ቤ	           (22) 

The empire with bigger possession probability is more likely 
to win the imperialistic competition.  

The Assimilation policy in original ICA is defined by moving 
the colony toward relevant imperialist as follows: 

ሼ࢞ሽ࢝ࢋ࢔ ൌ ሼ࢞ሽࢊ࢒࢕ ൅ ,ሺ૙ࢁ ഥࢼ ൈ ሻࢊ ൈ ሼࢂ૚ሽ         (23) 

Where ሼݔሽ௡௘௪ and ሼݔሽ௢௟ௗ are new and previous location of 
the colony respectively. ̅ߚ is a parameter greater than 1 and d 
is the distance between the colony and its relevant 
imperialist. 	ܷሺ0, ߚ̅ ൈ ݀ሻ is a random scalar value that is 
uniformly distributed between 0 and ̅ߚ ൈ ݀.	ሼ ଵܸሽ is a unity 
vector that shows the direction between the colony's previous 
location and its relevant imperialist location. 

3.2 Design the optimal filter by using the ICA  

The ICA is extensively used to solve different optimization 
problems such as other meta-heuristic optimization methods. 
In this paper, the ICA is used to design the proposed m-order 
filter. As initial population, 100 countries have been chosen 
randomly while the position of each country is defined by the 
filter coefficients. The related cost function with each country 
was obtained by (17). Then from these countries, ௜ܰ௠௣ ൌ 10 
countries with best position (i.e. with least cost function 
values) have been chosen as the imperialists. To form the 
empires, the colony of each imperialist must be selected. The 
colonies number of the lth imperialist (࢒࡯ࡺሻ is obtained by 
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using (19) and then the colonies of each empire are chosen 
randomly to construct the empire.  

Totally, with ࣈ ൌ 0.1 and ̅ߚ ൌ 2, the colonies under 
Revolution and Assimilation and Imperialistic Competitive 
policies are being moved until reaching a better and new 
position with less cost function value. This process will be 
repeated 200 times (iteration number) and after that the 
position of the best imperialist (i.e. a filter with the least cost 
function value) is considered as the final result of the ICA 
optimization algorithm. It will be checked in each iteration 
whether there is an empire without colonies and if so the 
elimination policy will be applied. Therefore the algorithm 
will stop whether after the iteration number or converging to 
one empire. 

4. DESIGNING OPTIMAL FILTER 

In this section three types of cost functions: 1- phase delay 
reduction, 2- Robust stability increment, and 3- phase delay 
reduction and robust stability increment simultaneously, are 
to be considered. For each of these functions, OPC-HOH, 
ONEPM filters and the optimal proposed filter will be 
designed and compared to each other. The coefficients of the 
optimal proposed filter will be optimized by using ICA 
method. The first and second cost functions have been 
studied previously and many works are presented based on 
them. The third cost function will first be introduced and then 
the optimal filters will be designed and compared with each 
other based on this new defined cost function. The main 
contributions of this paper are presenting a new structure for 
the ZOH compensator optimal filter and introducing a new 
cost function for designing this ZOH compensator optimal 
filter. 

4.1  Minimizing the phase delay  

In order to design an optimal filter for reducing the phase 
delay caused by ZOH the following cost function is 
considered: 

ଵሺܺሻܬ ൌ ׬ ,ሺ߱ߔ| ܺሻ|ଶ݀߱
ఠಳೈ
଴ 										

ܺ ൌ ሾߙ଴ ௠ሿߙ⋯
        (24) 

The optimal proposed filter is obtained by substituting ܬଵሺܺሻ 
as ܬሺܺሻ in (16) and (17) for different values of m and k. The 
obtained results for ߱௦ ൌ 10 are presented in tables 6-9. In 
table 4 the optimal values of ∆ and ݍ for different values of k 
and m in OPC-HOH and ONEPM methods are presented. 
These results show that with a fixed value of m and by 
increasing the value of k, the values of ∆ and ݍ are 
converging to definite values. In table 5 and 6 the value of 
cost function J1 for different values of k and m in ONEPM, 
OPC-HOH and proposed method are presented. The obtained 
results for m=1 and each value of k show that all obtained 
filters are the same. These results also show that the proposed 
method has the most and the OPC-HOH has the least phase 
delay compensation for m=2 and k<6. The proposed method 
has the most (i.e. smallest J1 ) and the ONEPM has the least 
(i.e. biggest J1) phase delay compensation for m=2 and 
for	݇ ൒ 6. In table 7 the obtained optimal digital filters by 

using these three mentioned methods are presented for k=6 
and different values of m. 

Table 4. Parameters of optimum PC-HOH and NEPM for 
different k and m. 

J1 m=1 m=2 
 q ∆ q ∆

k=2 1 0.6283 0.6632 0.6269 
k=4 0.9098 0.5717 0.4475 0.4103 
k=6 0.6767 0.4252 0.4210 0.3500 
k=8 0.5969 0.3751 0.4340 0.3323 
k=10 0.5611 0.3526 0.4488 0.3250 
k=15 0.5267 0.3309 0.4722 0.3186 
k=20 0.5149 0.3235 0.4832 0.3166 

Table 5. Cost function of optimum NEPM and PC-HOH 
and proposed Method for different k and m=1. 

J1 m=1 
ଵܬ 

ை௉஼ିுைு ܬଵ
ைோ௉ெ ܬଵ

௉௥௢௣௢௦௘ௗ  
k=2 2.5397 2.5397 2.5397 
k=4 0.0450 0.0450 0.0450 
k=6 0.0030 0.0030 0.0030 
k=8 4.12e-4 4.12e-4 4.12e-4 
k=10 8.71e-5 8.71e-5 8.71e-5 
k=15 5.13e-6 5.13e-6 5.13e-6 
k=20 6.86e-7 6.86e-7 6.86e-7 

Table 6. Cost function of optimum NEPM and PC-HOH 
and proposed method for different k and m=2. 

J1 m=2 
ଵܬ 

ை௉஼ିுைு ܬଵ
ைோ௉ெ ܬଵ

௉௥௢௣௢௦௘ௗ  
k=2 2.0278 1.9300 1.7630 
k=4 0.0133 0.0037 0.0028 
k=6 4.96e-4 2.32e-4 3.05e-5 
k=8 4.94e-5 1.24e-4 1.23e-6 
k=10 8.64e-6 4.76e-5 1.03e-7 
k=15 4.04e-7 5.00e-6 1.17e-9 
k=20 4.91e-8 8.20e-7 5.3e-10 

Table 7. Optimal digital filter transfer function of 
different method by minimizing J1 (m=1, 2). 

Method m=1 m=2 
OPC-
HOH 

1.6767
െ 0.6767Zିଵ 

1.7122 െ 0.8673Zିଵ

൅ 0.1551Zିଶ 

ONPEM 
1.6767
െ 0.6767Zିଵ 

1.7201 െ 1.0192Zିଵ

൅ 0.2991Zିଶ

Proposed 
1.6767
െ 0.6767Zିଵ 

1.7188 െ 0.9635Zିଵ

൅ 0.2447Zିଶ

4.2  Maximizing the robustness stability  

In order to design the optimal filter with the purpose of 
maximizing the robustness stability in presence of ZOH, the 
following cost function is considered: 

ଷሺܺሻܬ ൌ ׬ |1 െ ,ሺ߱ܪ ܺሻ|ଶ݀߱
ఠಳೈ
଴ 	

ܺ ൌ ሾߙ଴ ௠ሿߙ⋯
           (25) 
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By assuming the above cost function ܬଷሺܺሻ as ܬሺܺሻ in (16) 
and (17) for different values of k and m, the optimal filter is 
obtained. The obtained results for ߱௦ ൌ 10 are presented in 
tables 8-11. In table 8 the optimal values of ∆ and	ݍ for 
different values of k and m in OPC-HOH and ONEPM 
methods are presented. These results show that with a fixed 
value of m and by increasing the value of k, the values of ∆ 
and ݍ are converging to definite values. In table 9 and 10 the 
value of cost function J3 for different values of k and m in 
ONEPM, OPC-HOH and proposed method are presented.  

Table 8. Parameters of optimum PC-HOH and NEPM for 
different k and m. 

J3 m=1 m=2 
 q ∆ Q ∆

k=2 0.0644 0.0405 0.0787 0.0494 
k=4 0.3791 0.2382 0.3248 0.2577 
k=6 0.4456 0.2800 0.3928 0.2921 
k=8 0.4693 0.2949 0.4265 0.3017 
k=10 0.4803 0.3018 0.4467 0.3072 
k=15 0.4912 0.3087 0.4722 0.3112 
k=20 0.4951 0.3111 0.4833 0.3126 

Table 9. Cost function of optimum NEPM and PC-HOH 
and proposed method for different k and m=1. 

J3 m=1 
ଷܬ 

ை௉஼ିுைு ܬଷ
ைோ௉ெ ܬଷ

௉௥௢௣௢௦௘ௗ  
k=2 2.9468 2.9468 2.9468 
k=4 0.2421 0.2421 0.2421 
k=6 0.0384 0.0384 0.0384 
k=8 0.0097 0.0097 0.0097 
k=10 0.0033 0.0033 0.0033 
k=15 4.45e-4 4.45e-4 4.45e-4 
k=20 1.07e-4 1.07e-4 1.07e-4 

Table 10. Cost function of optimum NEPM and PC-HOH 
and proposed method for different k and m=2. 

J3 m=2 
ଷܬ 

ை௉஼ିுைு ܬଷ
ைோ௉ெ ܬଷ

௉௥௢௣௢௦௘ௗ  
k=2 2.9386 2.8471 2.4239 
k=4 0.1754 0.0915 0.0449 
k=6 0.0216 0.0053 0.0029 
k=8 0.0048 5.69e-4 4.02e-4 
k=10 0.0015 9.67e-5 8.57e-5 
k=15 1.87e-4 5.55e-6 5.09e-7 
k=20 4.36e-5 1.21e-6 6.83e-7 

Table 11. Optimum digital filter transfer function of 
different method by minimizing J3 (m=1, 2). 

Method m=1 m=2 
OPC-
HOH 

1.4457
െ 0.4457Zିଵ 

1.5730 െ 0.6810Zିଵ

൅ 0.1081Zିଶ

ONPEM 
1.4457

െ 0.4457Zିଵ 
1.6663 െ 0.9399Zିଵ

൅ 0.2735Zିଶ

Proposed 
1.4457

െ 0.4457Zିଵ 
1.6938 െ 1.0495Zିଵ

൅ 0.3556Zିଶ 

The obtained results for m=1 and each value of k show that 
all obtained filters are the same. These results also show that 

the proposed method has the most (i.e. smallest J3) and the 
OPC-HOH has the least (i.e. biggest J3) robustness stability. 
In table 11 the obtained optimal digital filters by using these 
three mentioned methods are presented for k=6 and m=1, 2. 

4.3  Bi-Objective Criterion: trade-off between the phase 
delay and the robustness stability  

There are many methods for designing a multi objective cost 
function which could be used here. The Weighted Sum 
Approach (Miettinen, 1999) is the simplest one. By using this 
method the cost function J5 for a trade-off between phase 
delay reduction and robustness stability increment defined as 
follows: 

ହሺܺሻܬ ൌ ׬ ሺߔ|ߣሺ߱, ܺሻ|ଶ ൅ 1|ߛ െ ,ሺ߱ߔ ܺሻ|ଶሻ݀߱
ఠಳೈ

଴
		

଺ሺܺሻܬ ൌ ׬ ሺߔ|ߣሺ߱, ܺሻ| ൅ 1|ߛ െ ,ሺ߱ߔ ܺሻ|ሻ݀߱
ఠಳೈ

଴
		

ܺ ൌ ሾߙ଴ ௠ሿߙ⋯

      (26) 

γ and λ are the weighing parameters where 1   . 

Considering the different values of J1 and J3 for different 
values of k (tables 14-18), the values of γ and λ are selected in 
such a way that the effects of both purposes in the cost 
function would be approximately the same. The considered 
variations of  γ in accordance with k is presented in table 12. 
By assuming the above cost function as ܬሺܺሻ in (16) and (17) 
for different values of k and m, the optimal filter is obtained 
by using ICA Method. In table 13 the optimal values of ∆ and 
 for different values of k and m in OPC-HOH and ONEPM ݍ
methods are presented.  

Table 12. Amount of γ weight for different k (m=1, 2). 

γ m=1 m=2 
k=2 0.4621 0.4211 
k=4 0.1567 0.0587 
k=6 0.0725 0.0104 
k=8 0.0407 0.0031 
k=10 0.0257 0.0012 
k=15 0.0114 0.0023 
k=20 0.0064 0.0008 

Table 13. Parameters of optimum PC-HOH and NEPM 
for different k and m. 

J5 m=1 m=2 
 Q ∆ q ∆

k=2 0.2615 0.1643 0.1977 0.1820 
k=4 0.6530 0.4103 0.4304 0.3865 
k=6 0.6378 0.4007 0.4206 0.3491 
k=8 0.5879 0.3694 0.4340 0.3321 
k=10 0.5581 0.3507 0.4488 0.3250 
k=15 0.5262 0.3306 0.4722 0.3186 
k=20 0.5148 0.3235 0.4832 0.3166 

In table 14 and 15 the value of cost function J5 for different 
values of k and m in ONEPM, OPC-HOH and Proposed 
method are presented. The obtained results for m=1 and each 
value of k show that all obtained filters are the same. These 
results also show that the proposed method has the most and 
the OPC-HOH has the least phase delay compensation for 
m=2 and k<6. The proposed method has the most (i.e. 
smallest J5) and the ONEPM has the least (i.e. biggest J5) 
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phase delay compensation for m=2 and for	݇ ൒ 6. In table 16 
the obtained optimal digital filters by using these three 
mentioned methods are presented for k=6 and m=1, 2. 

Table 14. Cost function of optimum NEPM and PC-HOH 
and proposed method for different k and m=1. 

J5 m=1 
ହܬ 

ை௉஼ିுைு ܬହ
ைோ௉ெ ܬହ

௉௥௢௣௢௦௘ௗ  
k=2 3.2170 3.2170 3.2170 
k=4 0.1170 0.1170 0.1170 
k=6 0.0073 0.0073 0.0073 
k=8 9.40e-4 9.40e-4 9.40e-4 
k=10 1.90e-4 1.90e-4 1.90e-4 
k=15 1.07e-5 1.07e-5 1.07e-5 
k=20 1.40e-6 1.40e-6 1.40e-6 

Table 15. Cost function of optimum NEPM and PC-HOH 
and proposed method for different k and m=2. 

J5 m=2 
ହܬ 

ை௉஼ିுைு ܬହ
ைோ௉ெ ܬହ

௉௥௢௣௢௦௘ௗ  
k=2 3.0981 2.8926 2.3450 
k=4 0.0311 0.0124 0.0082 
k=6 7.89e-4 2.94e-4 1.49e-4 
k=8 6.58e-5 1.26e-4 9.37e-6 
k=10 1.06e-5 4.76e-5 1.15e-6 
k=15 8.45e-7 5.00e-6 2.55e-7 
k=20 8.33e-8 8.2e-7 2.21e-8 

Table 16. Optimum digital filter transfer function of 
different method by minimizing J5 (m=1, 2). 

method m=1 m=2 
OPC-
HOH 

1.6701
െ 0.6701Zିଵ 

1.7100 െ 0.8643Zିଵ

൅ 0.1544Zିଶ

ONPEM 
1.6378

െ 0.6378Zିଵ 
1.7194 െ 1.0181Zିଵ

൅ 0.2988Zିଶ 

Proposed 
1.6378

െ 0.6378Zିଵ 
1.7181 െ 0.9723Zିଵ

൅ 0.2543Zିଶ

5.  PERFORMANCE EVALUATION 

In this section for performance evaluation of the designed 
filters, the results of a simulation test and an implementation 
test are presented. An academic system was considered in the 
simulation section. The optimal compensating filter was 
designed and the obtained results in the frequency domain 
were analysed. In the implementation section, the output 
voltage and input current control system of a rectifier was 
considered. The optimal filter based on the sampling time of 
this system and with the purpose of minimizing J5 was 
designed and the obtained experimental test results in the 
time domain were compared with each other. 

5.1 Simulation test 

In Fig. 4 the compensation with a led/lag for a double-integer 
plant is shown so that the efficiencies of the obtained optimal 
filters with this structure be compared. In doing so, the 
continuous controller by using bilinear transform                    

ቂݏ →
ଶ

்
ሺݖ െ 1ሻ/ሺݖ ൅ 1ሻቃ is substituted with its digital 

version. The sampling time is selected in such a way that 
߱௦ ൌ  Therefore for k=6 the bandwidth ߱஻ௐ will be .ݏ/ݎ	10
equal to 1.6. Finally the digital controller is obtained as 

ሻݖሺܩ ൌ
ଵ.ଽሺ௭ି଴.଻ଽସሻ

௭ା଴.଴଻଼
. In tables 17-21 the results of continuous 

and digital controller for k=6, m=1, 2 and cost functions J1, J3 
and J5 are presented. In table 18, the first order filters results 
are shown for J1, J3 and J5. These results show that the phase 
margin of J5 is alike with that of J1 and the gain margin of J5 
is approximately alike with that of J3. Therefore the obtained 
results from cost function J5 are a trade-off between those of 
the cost functions J1 and J3 as so expected. 

In table 19, the two order filters results are presented for J1. 
These results show that the gain margin, phase margin, closed 
loop bandwidth and step overshoot of the proposed filter are 
approximately better than those of the other methods. The 
other results are approximately the same. In table 20, the two 
order filters results are presented for J3. These results show 
that the phase margin and closed loop bandwidth of the 
proposed filter is better than those of the others. But the gain 
margin and step overshoot of the proposed method is not 
better than those of the others. In table 21, the two order 
filters results are presented for J5. These results show that the 
gain margin, phase margin, closed loop bandwidth and step 
overshoot of the proposed filter are approximately better than 
those of the others. The other results are approximately the 
same. 

2
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Fig. 4. Plant and continuous controller (Yekutiel, F. 1980). 

In Fig.5 to Fig.7 the frequency response of two order filters 
are presented for k=6 and cost functions J1, J3 and J5. In Fig. 
5 the phase and amplitude of the obtained filters with the 
purpose of reducing phase delay for k=6 are shown. These 
results show that the proposed method has a good phase 
delay compensation in ωT=[0 1]. Therefore, the obtained 
filter by using ICA method has compensated the caused 
phase delay in low and middle frequencies. Comparing the 
magnitude diagram of the filters in frequency domain shows 
that the proposed filter has the best performance in robustness 
stability. 

Table 17.  Closed loop performance comparison. 

System Continuous 
Digital + 

ZOH 
Phase Margin [deg] 50.0338 36.5924 
Gain Margin [db] ∞ 9.09 
Open Loop BW(0db) [r/Sec] 1 1.0275 
Closed Loop BW (0db) [r/Sec] 1.2372 1.7695 
Closed Loop Peak- 
Freq [db]/ [r/Sec] 

2.586 - 
0.630 

4.108 -
0.931 

Step Over Shoot % 28.03 46.11 
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In Fig. 6 the phase and magnitude diagrams of the obtained 
filters with the purpose of increasing robustness stability for 
k=6 are shown. The magnitude diagram of the filter obtained 
by using ICA (proposed filter) shows the better performance 
of this filter in ωT=[0 1]. In contrary its phase diagram shows 
a weak performance in compensating the phase delay in 
comparison with the two other methods in ωT=[0 1].  

Table 18.  Closed loop performance comparison (m=1). 

Cost Function J1 J3 J5 
System ( Digital + 
ZOH + Filter) 

Optimum 
Filter 

Optimum 
Filter 

Optimum 
Filter 

Phase Margin [deg] 53.5813 49.4363 53.4927 
Gain Margin [db] 6.0719 6.1079 6.1079 
Open Loop 
BW(0db) [r/Sec] 

1.2970 1.2930 1.2930 

Closed Loop BW 
(0db) [r/Sec] 

2.9970 2.9853 2.9853 

Closed Loop Peak-
Freq [db]/ [r/Sec] 

2.236 - 
2.419 

2.347 - 
0.620 

2.182 - 
2.408 

Step Over Shoot % 31.7775 29.4543 31.56 

Table 19.  Closed loop performance comparison (m=2). 

Cost Function J1 
System ( Digital + 
ZOH + Filter) 

OPC-HOH 
Filter 

ONEPM 
Filter 

Proposed 
Filter 

Phase Margin [deg] 55.5926 55.0355 55.4879 
Gain Margin [db] 6.2983 6.3142 6.3290 
Open Loop 
BW(0db) [r/Sec] 

1.1746 1.0696 1.1070 

Closed Loop BW 
(0db) [r/Sec] 

1.7783 2.5756 2.3931 

Closed Loop Peak-
Freq [db]/ [r/Sec] 

2.121 - 
0.5538 

2.344 - 
0.5770 

2.252 - 
0.5678 

Step Over Shoot % 27.1016 27.7338 25.8756 

Table 20.  Closed loop performance comparison (m=2). 

Cost Function J3 
System ( Digital + 
ZOH + Filter) 

OPC-HOH 
Filter 

ONEPM 
Filter 

Proposed 
Filter 

Phase Margin [deg] 52.2441 53.7054 53.4657 
Gain Margin [db] 7.0884 6.6668 6.4405 
Open Loop 
BW(0db) [r/Sec] 

1.1392 1.0641 1.0243 

Closed Loop BW 
(0db) [r/Sec] 

2.5682 1.2689 3.1419 

Closed Loop Peak-
Freq [db]/ [r/Sec] 

2.299 - 
0.5927 

2.407 - 
0.5901 

2.507 - 
 0.5954 

Step Over Shoot % 24.1909 27.1324 29.7440 

Table 21.  Closed loop performance comparison (m=2). 

Cost Function J5 
System ( Digital + 
ZOH + Filter) 

OPC-HOH 
Filter 

ONEPM 
Filter 

Proposed 
Filter 

Phase Margin [deg] 55.5362 55.0134 55.3943 
Gain Margin [db] 6.3111 6.3190 6.3349 
Open Loop 
BW(0db) [r/Sec] 

1.1740 1.0695 1.0998 

Closed Loop BW 1.6046 2.5774 2.4345 

(0db) [r/Sec] 
Closed Loop Peak-
Freq [db]/ [r/Sec] 

2.124 -  
0.5544 

2.345 - 
0.5773 

2.270 - 
0.5698 

Step Over Shoot % 27.0619 27.7264 26.2133 

In Fig. 7 the phase and magnitude diagrams of obtained 
filters with the purpose of minimizing J5 are presented for 
k=6. These results show that the proposed method has a good 
trade-off between phase delay compensation and stability 
robustness in ωT=[0 1]. Thus, the proposed filter has a better 
performance in achieving the desired purpose in the medium 
and low frequencies. 

 
Fig. 5. Angle and magnitude of the Filters by minimizing J1 
(m=2): ZOH is blue (line), ONEPM filter is blue (dash-dot), 
proposed filer is red (line) and OPC-HOH filter is red (dash-
dot). 

 
Fig. 6. Angle and magnitude of the filters by minimizing J3 
(m=2): ZOH is blue (line), ONEPM filter is blue (dash-dot), 
proposed filer is red (line) and OPC-HOH filter is red (dash-
dot). 
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Fig. 7. Angle and magnitude of the filters by minimizing J5 
(m=2). ): ZOH is blue (line), ONEPM filter is blue (dash-
dot), proposed filer is red (line) and OPC-HOH filter is red 
(dash-dot). 

5.2. Experimental test 

In this section, the optimum filters effect on a digitally 
controlled rectifier is discussed in time domain. The full-
bridge rectifier and associated control system scheme is 
shown in Fig.8. The controller includes a voltage controller 
that regulates the output DC voltage and a current controller 
which suppresses the input current harmonics and ensures the 
unity power factor operation of the rectifier. The controller 
design has been fully investigated in the literature (Singh et 
al., 2003), (Kanaan et al., 2009) and (Vahedi et al., 2015). 

 

 

Fig.8. Full-Bridge Rectifier and PI Control System Scheme. 

The input AC voltage is 25V peak and output DC voltage is 
regulated at 30V and after a step change at 50V. Line 
inductor (Lf) is 2.5mH. Output capacitor (Cdc) is 1mF and the 
RL load consists of 37Ω and 10mH. The illustrated controller 

has been implemented on a dSpace 1103 DSP real-time 
controller to generate and send required pulses to the rectifier 
switches.  

The filters in table 22 are the results of optimizing the cost 
function J5 with ௦ܶ ൌ  which its calculation process ܿ݁ܵߤ	200
has been mentioned in the previous sections. The magnitude 
and phase of these filters are also shown in Fig. 9. These 
results show that the performance of the proposed filter in 
ωT=[0 1] is better than the other methods. 

Table 22: Optimum digital filter transfer function of 
different methods by minimizing J5 (ܛ܂ ൌ ૛૙૙	ૄ܋܍܁). 

method m=2 
OPC-HOH 1.7031 െ 0.8550Zିଵ ൅ 0.1519Zିଶ

ONPEM 1.7170 െ 1.0147Zିଵ ൅ 0.2976Zିଶ

Proposed 1.7182 െ 0.9724Zିଵ ൅ 0.2543Zିଶ 

For performance evaluation of the compensating filters in 
time domain, the closed loop system step response with 
continuous controller was compared to the closed loop 
system step response with discontinuous controller (with 
compensating filter). It is obvious that the lesser difference 
between these two step responses shows the better 
performance of the designed filter. 

The obtained results of the experimental test are shown in 
Fig. 10 to Fig.13. In Fig. 10 the output voltage (blue) and 
input current (red) responses under continuous (Analog) 
closed loop control are shown. In Fig. 11 to Fig.13 the 
practical test results by discontinuous control with the 
compensating filters of the table 22 and Tୱ ൌ 200	μSec are 
shown. In Fig. 11 the digital control results with the proposed 
filter is presented. In Fig. 12 and Fig.13 the digital control 
results with OPC-HOH filter and ONPEM filter are shown 
respectively. The applied Parallel PI controllers’ coefficients 
are presented in table 23. These coefficients are obtained by 
try and error. 

As one appropriate criterion, the integral of time-weighted 
absolute error (ITAE) criteria can be used to compare two 
step responses in the time domain. It is obvious that in this 
criterion the errors in longer time have more importance. In 
other words, the errors in low frequencies have higher 
weights. 

ܧܣܶܫ ൌ න .ݐ |݁ሺݐሻ|		݀ݐ
ஶ

଴
 

Where e(t) is the difference between the step response 
obtained by applying the optimal filters and that of obtained 
by using continuous controller. The value of ITAE for the 
results obtained from applying filters of table 22 is presented 
in table 24. This result shows that the step response obtained 
by applying proposed filter is more alike (less ITAE) with the 
system continuous step response. In other words the 
compensation of the error caused by discretization is 
especially better in low and medium frequencies. 
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Fig. 9. Angle and magnitude of the Filters by minimizing J5 
(m=2): ZOH is blue (line), ONEPM filter is blue (dash-dot), 
proposed filer is red (line) and OPC-HOH filter is red (dash-
dot). 

 

Fig. 10. Output voltage (blue) and Input current (red) step 
response of analog closed loop controlled rectifier system. 

 

Fig. 11. Output voltage (blue) and input current (red) step 
response of closed loop controlled rectifier system (Digital 
control together with the proposed filter). 

 

Fig. 12. Output Voltage (blue) and input current (red) step 
response of closed loop controlled rectifier system (Digital 
control together with the OPC-HOH filter). 

 

Fig. 13. Output voltage (blue) and input current (red) step 
response of closed loop controlled rectifier system (Digital 
control together with the ONPEM optimum filter). 

Table 23: applied digital parallel PI controller.  

௦ܶ: Sampling Time ܲܫ௜௡௡௘௥ ܲܫ௢௨௧௘௥ 

PIሺzሻ ൌ P ൅ I
Tୱ

z െ 1
 

P = 10 
I = 0.01 

P = 0.001 
I = 10 

Table 24: ITAE criterion of voltage step response under 
experimental test. 

Criteria 
OPC-HOH 

Filter 
ONPEM 

Filter 
Proposed 

Filter 
ITAE 0.1997 0.3398 0.1876 

  
6. DISCUSSION 

In the previous methods because of applying famous 
polynomial like Newton Extrapolation Polynomial the 
problem of selecting a filter became an one-variable problem. 
For example in OPC-HOH method the unknown variable is 
the ∆ parameter and in ONPEM the unknown variable is the 
 parameter. By defining this parameter, every coefficients of ݍ
filter of nth order is defined. Two major advantages of 
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applying these methods are: first; the stability of zeroes of 
obtained filter is assured and second; the DC gain of the 
obtained filter is always equal to 1. In the proposed method, 
the number of unknown variables of problem is equal to 
m+1, where m is the order of the filter. In other words, the 
filter's parameters are the unknown coefficients of the 
problem. For stability guaranteeing and obtaining the DC 
gain equal to 1, the cost function is modified as (17). 
Therefore it can be said that in designing the filter of m-order 
by applying the proposed method, there are more degrees of 
freedom compared to previous methods and it would be 
natural that better results be obtained. 

In simulation test section, the frequency responses of closed 
loop system by applying different filters (J1, J3 and J5) were 
compared with each other. The frequency response of 
obtained filters are also drawn and analysed. The results of 
the closed loop frequency response analysis have shown that 
the filters performance in low and middle frequencies is 
absolutely better. In the experimental test section, the results 
obtained by applying filters for reducing J5 on a rectifier 
output voltage and input current control system in time 
domain were analysed. The output voltage response of the 
closed loop system by applying these filters and for ௦ܶ ൌ
 is compared with the closed loop system response ܿ݁ܵߤ	200
by using continuous control. This comparison has shown that 
the closed loop system response by applying the proposed 
filter together with discrete controller is the most similar 
response to that of the closed loop system with the 
continuous controller.  

6. CONCLUSIONS 

In this paper the ICA optimization method is been used for 
designing a filter which is used for compensating the 
undesirable effect of ZOH device. Three cost functions have 
been considered in this study: 1.for reducing the phase delay 
2.for increasing the robustness stability and 3.for reducing the 
phase delay and increasing the robustness stability at the 
same time. The simulation and experimental results show that 
the proposed optimal filter, compared with other methods, 
has a better performance in the low and medium frequency 
domain with any of these three cost functions. 
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