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Abstract: A novel attitude controller based on Lyapunov stability theory is developed for a quadrotor 
UAV considering different bounded disturbances and parameters’ perturbation. Specifically, the 
proposed controller is able to compensate for a disturbance without requiring concrete information of its 
structure (e.g. period or amplitude). In addition, the controller can handle the situation when external 
disturbances and internal parameters’ perturbation exist simultaneously. Furthermore, sufficient 
conditions are derived for the control law to ensure asymptotic stability of the closed loop system. A 
theoretically rigorous proof has been given. Numerical simulations are carried out to evaluate the 
effectiveness of the control algorithm. Simulation results show that the proposed control strategy has a 
satisfactory performance in both disturbance rejection and anti-multi-parameter perturbation. 
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
1. INTRODUCTION 

Quadrotor Unmanned Aerial Vehicle (UAV) have obtained 
considerable development in the last two decades in view of 
their large variety of application and the fact that they are 
easily transportable and maneuverable. However, the 
quadrotor UAV suffer from various control complexities 
such as: 1) Weak anti-jamming capability; 2) Parameters’ 
perturbation within the system model; 3) Underactuated 
characteristic; 4) Open-loop instability. 

In response to these difficulties, researchers have employed 
various modeling and control development techniques to 
solve aspects 1)–3). For example, the attitude control of a 
quadrotor aircraft subject to a class of time varying and non-
vanished disturbances was studied in (Zhang et al., 2010). An 
observer was designed to estimate disturbances. Based on the 
estimation, a feedback controller with a sliding mode term 
was designed to stabilise the attitude of the quadrotor. The 
designed continuous feedback controller made the attitude 
error uniformly ultimate bounded. Theoretical results were 
confirmed by numerical simulations. For the parameters’ 
perturbation problem, a robust adaptive controller on SO(3) 
was developed (Lee, 2013) to track the attitude and angular 
velocity command without the knowledge of the inertia 
matrix of a rigid body. An estimate of the inertia matrix was 
updated online to provide an asymptotic tracking property 
when the inertia matrix was not available. These 
characteristics were illustrated by the experimental results of 
the attitude dynamics of a quadrotor UAV. For the 
underactuated question， the fuzzy logic control and sliding 
mode control techniques based on backstepping approach  

were integrated to develop a robust fuzzy backstepping 
sliding mode controller (RFBSMC) for an under-actuated 
quadrotor UAV system under external disturbances and 
parameter uncertainties (Khebbache and Tadjine, 2013; Xu 
and Ozguner, 2008). In addition, in order to solve the 
problem of inherent nonlinearities in dynamics model, an 
efficient Model Predictive Control (eMPC) algorithm 
deploying fewer prediction points and requiring less 
computation was presented in (Abdolhosseini et al., 2013, 
2012; Kutay et al., 2005). A model reduction technique 
associated with the dynamics of a quadrotor UAV was also 
put forward so as to minimize the burden of calculations in 
application of MPC into an airborne platform. Recently, a 
nonlinear optimal and suboptimal control technique based on 
control Lyapunov functions (CLF) was developed to achieve 
the goal of energy saving (Santos et al., 2013; Nagaty et al., 
2013; Srinivasan et al., 2009). 

In this paper, the topics of disturbance rejection and anti-
multi-parameter perturbation are further pursued by 
designing a novel nonlinear saturated controller that is 
capable of compensating for external aperiodic bounded 
disturbances and internal parameters’ perturbation. 

The main contribution of this paper lies in three aspects: 
firstly, the designed controller is able to compensate for a 
disturbance without requiring the concrete information of its 
structure (e.g. period or amplitude); secondly, the controller 
can handle the situation when external disturbances and 
internal parameters’ perturbation exist simultaneously; 
thirdly, the design of controller is based on analytical models 
with a theoretically rigorous proof, rather than intelligent 
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methods (for example, fuzzy logic control).All these three 
aspects of research work are not perfect in the existing 
literature. 

The structure of this paper is organized as follows. The 
dynamics model of a quadrotor UAV is presented in section 
2. Section 3 identifies the control objectives and constraints 
under which the controller is developed. An estimation 
algorithm for external disturbances and a saturated control 
force input are designed respectively in section 4. A 
Lyapunov stability analysis is utilized to illustrate the 
asymptotically stabilizing regulation for the pitch channel. 
Simulation results are presented in section 5. Conclusions 
and future works are discussed in section 6. 

2. SYSTEM MODEL 

The quadrotor UAV selected in this paper contains four 
rotors. In order to produce rotational torque, the quadrotor 
should change the rotational speed of the corresponding 
rotors. For example, when the 2nd rotor’s rotational speed 
increases and the 4th rotor’s rotational speed reduces at the 
same time, the quadrotor will yield (shown in Fig.1).  
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Fig. 1. Dynamics model of selected quadrotor UAV. 

In Fig.1, 
1 2 3 4
, ,F F F Fand  denote the corresponding rotor’s lift 

respectively, O denotes the quadrotor’s gravity center in body 
coordinate system, ,X Y and Z  respectively denote roll axis, 
pitch axis and yaw axis in body coordinate system, 

,x y  and 1

z   denote the disturbance forces that are 

equivalent to the gravity center on the corresponding axis. 

In order to simplify the mathematical model of quadrotor 
UAV, the following assumptions need to be taken into 
account: 

1) Taking the quadrotor UAV as a rigid body, ignoring the 
influence of elasticity, and the quality and its distribution are 
invariant. 

2) The earth is treated as a static plane. 

3) Assuming OXZ plane and OYZ plane are two symmetrical 
planes in body coordinate system, which means the product 

of inertia , , 0XY ZY XZI  .  

4) Assuming the acceleration of gravity does not change with 
altitude. 

According to Newtonian mechanics, when a rigid body 
rotates around a fixed axis, the relationship between its 

angular acceleration and rotational torque can be expressed 
as: 

/M I 


                                                                               (1) 

where 1   represents the angular speed, 1
M   

represents the rotational torque, 1
I   denotes the moment 

of inertia on corresponding axis. 

Combining assumptions 1) ~ 4) above and the Newtonian 
mechanics equation (1), the 3-DOF orientation of quadrotor 
UAV can be modeled in body coordinate system as 
following: 
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where ,   and 1  represent real-time pitch ,roll and yaw 
respectively, l  represents the arm length from the gravity 

center to each rotor’s axis, ,x yI I and 1

zI   denote the 

moment of inertia on the corresponding axis, 1 2,   and 
1

3   denote resistance coefficients, C  denotes 

the proportional coefficient of the lift to the rotational torque. 

The control force inputs are selected as (3). 
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where 1

1 2 3,u u and u     denote synthesized control force 

inputs of pitch ,roll and yaw respectively. 

Therefore, the dynamics model can be re-written as:  
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Remark 1: From (4), it is clear that pitch, roll and yaw have 
same forms. Therefore, the following designed controller 
combined with necessary parameters’ modification will be 
equally applicable to the attitude control of roll and yaw. 

To simplify writing and reading, the pitch dynamics model is 
re-written as (5). 

1 2 1
( )c u c c t    

 
                                                           (5) 
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When there is no disturbance ( )t , (5) can be simplified as 
the following nominal model: 

1 2
c u c  

 
                                                                       (6) 

3. PROBLEM STATEMENT 

The objective of the design process is to specify a control 
force input signal that will regulate the pitch angle to a 
desired value while the quadrotor UAV is being subjected to 
unknown external disturbances (e.g. the wind disturbance) or 
internal parameters’ perturbation.  

The design process is complicated due to the common fact 
that the quadrotor is open-loop unstable and the lack of 
knowledge of disturbances. In order to facilitate the control 
development, the target pitch tracking error signal 

1
( )e t  and the filtered tracking error signal 1

( )r t  are 
defined in the following manner: 

de                                                                                 (7) 

er e 


                                                                            (8) 

where 1

d
    denotes a desired pitch angle and 

1   represents a positive, constant control gain. The 
proposed control strategy is developed under the assumption 
that the pitch angle and angular velocity signals are available 
for the measurement. 

Remark 2: ( )r t in (8) evaluates comprehensively the tracking 

error itself and the first order derivative of the tracking 
error. The first derivative of error representing the rate of 
change has a significant impact on the dynamic performance 

of the closed loop control system (e.g. when || ||e


 is too large, 

it may induce a high-frequency oscillation in the dynamic 
adjustment process, even though the system remains final 
closed-loop stable.). Therefore, the designed control law 
based on ( )r t in (8) can meet the requirements of both 

dynamic and static performances, rather than just 
guaranteeing the system closed-loop stable. 

4. DESIGN OF CONTROLLER 

The development of controller is simplified by rewriting the 
second-order system (5) in terms of filtered tracking error 
signal ( )e t and ( )r t  in the following manner: 

1 12( )( ) ( )c u c r e c tr       


                                      (9) 

Based on the structure of ensuing stability analysis, the 
control force input u is designed in the following manner: 
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where   1

1 2
, kk     represent   positive   constants,   1^

( )t    

represents an estimation for ( )t , 1

0
   is a positive constant 

that represents the maximum acceptable disturbance 
force, sgn( )  is the standard signum function. 

After substituting the control input (10) into open loop 
dynamics (9), the closed loop dynamics for ( )e t and ( )r t  can 
be formulated as:  
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4.1 Disturbances Estimation 

The control input (10) contains the estimation information of 
unknown disturbances. Here, the model reference adaptive 
method is used to develop the estimator. 

The output of the actual pitch in (5) subtracts the desired 
output in nominal model (6), and the following expression is 
obtained:  


2 1 ( )c c t    

 
                                                           (12) 

where 1~
( )t    represents the preliminary estimation of 

disturbance ( )t , 1    represents the deviation between the 
actual output and the desired output. Its value is equal 

to ( )
t

  , 
t

  is the output of nominal model (6). 

From (12), the value of ( )
~

t is obtained: 


2 1( ) ) /t c c  
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                                                           (13) 

In (13), the preliminary estimation ( )
~

t  requires the 
knowledge of the first and second order derivative of the 
error in controller response. This error term can itself be 
noisy due to the errors in disturbance and parameter 
identification. The second order derivative of the error term 
will be even nosier. As such, the saturation limiter is 
necessary and an estimator for ( )t  is generated online via 
the following expression: 
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The schematic diagram of disturbance estimation is shown in 
Fig.2. 
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Fig. 2. Schematics of disturbances estimation ^
( )t . 

Remark 3: In fact, ^
( )t in expression (14) considers errors 

caused by internal parameters’ perturbation in addition to 
external disturbances. Because both the internal parameters’ 
perturbation and the external disturbances may cause 
deviation between the actual output  (   contains errors 
caused by internal parameters’ perturbation) and the 

expected output 
t

 (
t

 doesn’t contain errors caused by 

internal parameters’ perturbation). This deviation that is 

(= )
t

    has been included in ^
( )t (see (14)), in other 

words, the errors caused by internal parameters’ 

perturbation have also been taken into account by ^
( )t . 

Therefore, the designed control law (10) based on ^
( )t  in 

expression (14) can handle the situation when the internal 
parameters’ perturbation exists. The subsequent simulation 
experiment 2 will illustrate it. In addition, the saturation 
limiter has taken into account the actual anti-jamming 
capability of the quadrotor. Therefore, this estimation 
approach is consistent with the actual situation. 

4.2 Asymptotically Stabilizing Controller Design 

Theorem: If the control gains are selected to satisfy the 
condition: 

  

2 22 2

1 1

2 2

1

1

2 [ ] [| (0) | | (0) |

1 1
| (0) | (1 ln 2)]

2
+

k c
e e

c c

c e
k


  


  

 



  (15) 

where (0)e  and (0)e


 denote the initial pitch angle/angular 
velocity tracking error in (5), then the control input (10) can 
ensure that the pitch tracking error ( )e t  is driven 
asymptotically to zero, in the sense that: 

lim ( ) 0
t

e t
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                                                                        (16) 

Proof: A Lyapunov function ( )V t is defined as: 
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Remark 4: ( )V t evaluates comprehensively the 
characteristics of the filtered tracking error signal ( )r t , 
tracking error signal ( )e t and the estimation 

error ^t t       .  

After taking the time derivative of (17) and substituting (7), 
(8) and (11) into it, the following expression is obtained: 
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There are three terms in V


. Because ^[ t t       

0 0     , term3 is always non-positive obviously.     

Next, term2 is examined: 

Case 1: 0r  . The following expression is obtained: 
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In this case, 2 0term   is established. 

Case 2: 0r  . The following expression is obtained: 
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In this case, 2 0term   is also established. 

Case 3: 0r  . 

(18) 
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In this case, 2 0term   is obviously. 

Thus, sufficient condition that makes V
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  always negative or 
zero can be adjusted into the following expression: 
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To simplify writing, the control gains 3k and 4k are defined 

as: 
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In order to complete the stability analysis, two cases, when 
( ) 0r t   or ( ) 0r t  , are also examined. 

Case 1: ( ) 0r t  . Based on the fact of ( ) 0r t  , the following 
expression is obtained: 

1tanh( ) 0k r                                                                      (24) 

Thus, (23) can be simplified into the following form: 
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Case 2: ( ) 0r t  . Since ( ) 0r t  , the following condition 
exists: 

1tanh( ) 0k r                                                                      (26) 

At this time, (23) can be rewritten in the following manner: 

1 1

2[ tanh( )] [ tanh( )]
1

2
TV k r k r ee e     

                (27) 

where 2 2
   is defined in the following manner: 

                                            

3

1

3 3

1 1

4

2 2 2 tanh( )

2 2 tanh( ) tanh( )
k

k r

k r

k k rr

k r k r










 

 
 
 
 
 
 

                (28) 

In order to ensure V


is always negative or zero, the control 
gains must be selected in a fashion such that the matrix   of 
(28) is positive definite. Thus, the control gains must be 
selected to guarantee that the following conditions are 
satisfied: 

0
2


                                                                     Condition 

(I) 

0| |  , that is : 

                      

1 1

3 23
4

tanh( ) 2 tanh( )
0

2 2
( ) [ ]

k r k r

k r k r
k


   Condition 

(II) 

In order to satisfy Condition (I), 0  is needed. This 
condition has been met in (8). Next, Condition (II) is mainly 
studied. Condition (II) can be re-organized into the following 
form: 

2
2

2

1

2
3

4
4

0
2 4 tanh ( )

k r
k

k r


                                       (29) 

After utilizing the fact in (Dixon et al., 1999; Feemster et al., 
2006), the following inequality is used: 

1 1

1
| |

tanh( )

r
r

k k r
                                                         (30) 

Therefore, condition (29) can be strengthened to (31). 

2 2

1

2
3

4
4

1 1
(| | )

2 4

k
k r

k


                                             (31) 

Then, another inequality can be obtained by the Lyapunov 
function (17): 

1

1 1 1 1 1

( )
1 1 1

ln(cosh( )) ( ln 2)| |V t k r r
k c c k c

                (32) 

By inequality (32), the following inequality is obtained: 

1

1 ( )
1

ln 2 | |V t r
k

c                                                            (33) 

After substituting (33) into (31), the condition can be further 
strengthened to (34). 

2

1 1

2 2

34 1
1 1

2 ( ( ) ln 2 )
k k

k k c V t                                (34) 

As long as inequality (34) and 0   are satisfied at the same 

time, 0V 


holds. That is, ( )V t  is a monotonically decreasing 
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function. At this time, (0)V is the maximum value of ( )V t  in 
the whole control process. 

Accordingly, the sufficient condition of 0V 


can be 
obtained: 

2

1 1

2 2

34 1
1 1

2 ( (0) ln 2 )
k k

k k c V                                (35) 

Next, the condition (0)V  will be analyzed and its analytical 
expressions can be given. When 0t  , the Lyapunov function 
(17) can be organized into the following form: 

1

1 1

1

1 1

1

1

2

2

2

2

(0)
1 1

ln[cosh( (0))] (0)
2

1 1
(0) | (0)

2

1 1
(0) | (0)

2

1 1
(0) | (0) | (0)

2

[ | ]

|

[| | ]

V k r e
k c

k r e
k c

r e
c

e e e
c



 











 



 

                             (36) 

Namely, 

2

1 1(0)
1

(0) | (0) | (0)
2

| |
.

V e e ec c                             (37) 

Accordingly, with conditions (35) and (37), the following 
inequality is obtained: 

2

1

2

3

2 2

4

1
1

2 [ (0) | (0) |

1
+ (0) 1 ln 2)]

2

| |

(
k

k k e e

ec

 



 

  



                    (38) 

After substituting 
1 1

2 2
3 4,

c k

c c
k k

 
  into (38), the 

following final expression of sufficient condition that makes 

21

2
V e


established is obtained: 

2 22 2

1 1

2 2

1

1

2 [ ] [| (0) | | (0) |

1 1
| (0) | (1 ln 2)]

2
+

k c
e e

c c

c e
k


  


  

 



 

Remark 5: As long as the disturbance force ( )t  or internal 
parameters’ perturbation is bounded, the control input u  
(10) meeting constraint (15) can ensure that the closed-loop 
system is asymptotically stabilizing. Here, only the ranges of 
control gains have been given. The analytical approach 

about how to select exact values of 
1

k  and
2

k isn’t given here. 

The optimal 
1

k  and
2

k  need to be adjusted according to the 

simulation or actual test results.  

5.  SIMULATION RESULTS 

In order to validate the performance of saturated controller, a 
quadrotor is selected and its parameters are measured and 
calculated as

1
0.197 , 0.05ml   and 20.0852y kg mI   . 

Accordingly, the values of 1c and 2c in (5) are as following: 

1 22.31, 0.116c c                                                              (39) 

The values of control gains that make the system achieve 
satisfactory tracking performance are selected according to 
(15): 

1 25.3, 2.0, 70.0k k                                                   (40) 

Experiment 1: The experiment of disturbance rejection 

The desired pitch angle is set to a constant 030d   .The 

initial pitch angle and angular velocity signals in system (5) 
are given by: 

00(0) 5.0 (0) sec/                                                (41) 

Assume in the regulation process, there is a time-varying 
disturbance force with the following form: 

( )

sin(10 ) [0,3]

(3, 4]

(4,5]

0.0 (5, 6]

t

t N t

N t

N t

N t

 

   

   

  

   







                    (42) 

The maximum disturbance force that the quadrotor UAV can 
withstand in pitch channel is set to 2N, in the sense 

that 0 2  .The simulation process lasts for 6 seconds. The 
regulation effect is shown in Fig.3. The trajectory of tracking 
error is shown in Fig.4. The control force input u  and the 

disturbance estimation ^
( )t  are shown in Fig.5 and Fig.6. 
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Fig. 3. Regulation effect under a time-varying disturbance. 
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Fig. 4. Tracking error ( )e t under a time-varying disturbance. 
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Fig. 5. Control force input . u  
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Fig. 6. Disturbances estimation ^
( )t . 

Experiment 2: The experiment of parameters’ perturbation 

The desired pitch angle, initial pitch angle and angular 
velocity signals remain the same as Experiment 1. 

Assume in the regulation process, there is a 10% parameters’ 
perturbation and no external disturbances in system (5). That 
is:  

1 22.54, 0.128c c                                                            

(43) 

( ) 0.0t N                                                                          

(44) 

The simulation process also lasts for 6 seconds. The 
regulation effect is shown in Fig.7. The trajectory of error is 
shown in Fig.8. The control input u  and the disturbance 

estimation ^
( )t  are shown in Fig.9 and Fig.10 respectively. 
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Fig. 7. Regulation effect under parameters’ perturbation. 
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Fig. 8. Tracking error ( )e t under parameters’ perturbation. 
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Fig. 9. Control force input u . 
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Fig. 10. Disturbances estimation ^
( )t . 

Experiment 3: The comprehensive experiment 

(0) and (0)  


 remain the same as (36), 030d   . 

Assume in the regulation process, there is an external 
disturbance as shown in (42) and parameters’ perturbation as 
shown in (43) at the same time. 

The regulation effect is shown in Fig.11. The trajectory of 
tracking error is shown in Fig.12. The control force input u  

and the disturbance estimation ^
( )t  are shown in Fig.13 and 

Fig.14 respectively. 
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Fig. 11. Regulation effect under a complex disturbance. 
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Fig. 12. Tracking error ( )e t under a complex disturbance. 
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Fig. 13. Control force input u . 
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Fig. 14. Disturbances estimation ^
( )t . 

From Fig.3 to Fig.14, the following analysis can be made: 

1) The anti-jamming performance of controller is 
satisfactory. When there is a sinusoidal disturbance whose 

amplitude is equal to 3N, the disturbance estimation ^
( )t will 

enter saturated zone (see Fig.6). In this case, there is an 
estimation error. But the closed-loop system is still 
asymptotically stabilizing under the control force input u  
(see Fig.3) and there is no steady-state error. Moreover, the 
tracking error is monotonic convergence (see Fig.4). In 
addition, when the disturbance just appears or switches, the 
control force input u has small amplitude fluctuations. This 
phenomenon is reasonable and is in controllable range (see 
Fig.5). 

2) The anti-parameters’ perturbation performance of the 
controller is excellent. When the parameters’ perturbation is 
up to 10% amplitude and there is no disturbance, the 
amplitude of disturbance estimation is very small (the 

maximum value is approximately equal to -3||-10 10 ||=0.01 , 

see Fig.10). This shows that the disturbance estimation 
algorithm is reliable. The regulation effect, tracking error 

( )e t  and control force input u  all have a smooth transition. 
Their dynamic process is satisfactory (see Fig.7, Fig.8 and 
Fig.9). In addition, from simulation results, parameters’ 
perturbation has a smaller impact on the regulation process 
than external disturbances (see Fig.3, Fig.7, Fig.5 and Fig.9). 

3) When the external disturbance and internal parameters’ 
perturbation exist simultaneously, the control input u  is still 
able to guarantee the closed-loop system is asymptotically 
stabilizing (see Fig.11 and Fig.12). In the initial appearance 
of disturbance (it lasts for about 0.3 seconds, see Fig.13 and 

Fig.14), the control input u and disturbance estimation ^
( )t  

have some jitter but not much. After that, the smooth control 
input and stabilizing track of external disturbance can be 
achieved. The slight jitter of control input u in the 3rd, 4th 
and 5th seconds is due to the sudden switch of the external 
disturbance (see Fig.13). 

6. CONCLUSIONS 

A nonlinear saturated attitude controller to stabilize a 
quadrotor UAV has been presented. Satisfactory simulation 
results have been achieved. The most important contribution 
of this paper is to propose a novel control strategy that is not 
sensitive to unknown disturbances’ structure and parameters’ 
perturbation. The saturated controller obtained via a 
Lyapunov function is useful to achieve asymptotic stability in 
the case with the presence of various typical kinds of 
unknown disturbances and parameters’ perturbation. 

Future work will be focused on the expansion of the 
controller so that not only attitude but also other elements of 
translational motion, i.e. position and velocity are collectively 
controlled by this nonlinear saturated force controller. 
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