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Abstract: This paper is concerned with the problem of robust stabilization via state feedback control for a 
class of both continuous and discrete-time switched nonlinear systems with polytopic time-varying 
uncertainty. These studied systems are modeled by differential or difference equations. Therefore, a 
transformation of the systems representation under the arrow form is performed. Subsequently, by using a 
constructed common Lyapunov function and applying the Kotelyanski lemma associated with the 

matrixM   properties. A new robust pole placement stabilization is proposed. These obtained results 
provide a solution to one of the basic problems for switched nonlinear systems which ensures asymptotic 
stability under arbitrary switching. Compared with the existing results of uncertain switched nonlinear 
systems, these proposed conditions are formulated in terms of the time-varying polytopic uncertain 
parameters and they allow us to avoid searching a common Lyapunov function which is a difficult matter. 
Finally, an application to stabilize a shunt DC motor with uncertain models under variable mechanical 
loads is performed to illustrate the effectiveness of the theoretical results.  
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

1. INTRODUCTION 

As one of the important class of hybrid systems, switched 
dynamic systems can be modeled by a family of continuous 
or discrete-time subsystems and a rule, called a switching 
signal that determines the switching manner between the 
subsystems rule. Mathematically, these subsystems are 
usually described by a collection of indexed differential or 
difference equations. The main motivation for studying 
switched systems comes from the fact that many practical 
systems evolve with switches and hybrid behaviors such as 
chemical processes (Putyrski et al., 2011), transportation 
systems (Hamdouch et al., 2007), power systems and power 
electronics (Sengupta et al., 2009), communication networks 
(Alnowibet et al., 2006), constrained robotics and robot 
manufacture (Back et al., 1993), computer disk drives (Gollu 
et al., 1989), and automated highways (Varaiya, 1993).  

Stability and stabilization are two fundamental and important 
research issues in the control community. Several methods 
have been developed for solving these problems of switched 
systems (Vu et al., 2005; Araghi, et al., 2013; Zhao et al., 
2012; Hespanha et al., 1999; Zhao et al., 2008), such as the 
common Lyapunov function approach (Vu et al., 2005) 
which is mainly investigated for stability under arbitrary 
switching, the average dwell time (Zhao et al., 2012), and the 
multiple Lyapunov functions method (Hespanha et al., 1999; 
Zhao et al., 2008) for studying stability under controlled 
switching. Hence, stability and stabilization under arbitrary 

switching which are considered in this work remain more 
performed when practical systems are involved. Indeed, the 
unique practically applicable approach to this problem is 
based on the construction of a common Lyapunov function 
for all the subsystems. Therefore, this method is usually very 
difficult to apply even for switched linear systems. However, 
it becomes more complicated when switched nonlinear 
systems are involved and relatively few results have been 
reported in this context (Yu et al., 2011; Yu et al., 2012; 
Dayawansa et al., 1999; Mancilla et al., 2000; Liberzon, 
2004). So far, some attempts are presented to construct a 
general Lyapunov function for switched nonlinear systems, 
by using the Lyapunov converse theorems in (Dayawansa et 
al., 1999; Mancilla et al., 2000) and by recourse to some 
nilpotent Lie algebras (Liberzon, 2004).  

On the other hand, from the practical viewpoint, it is of great 
importance to investigate uncertain switched systems. Norm-
bounded and polytopic uncertainties are two commonly 
adopted schemes, and the latter one has been proved more 
general offering solution form any practical applications 
(Zhang et al., 2007; Daafouz et al., 2002; Zhang et al., 2008). 
In our investigation, considering switched nonlinear systems, 
we adopt time-varying polytopic uncertainties which depict 
strong practical significance of this work.  

Based on the above discussion, switched nonlinear systems 
with polytopic uncertainties are worth studying. Up to now, 
due primarily to the complexity of this problem, the available 
results on stability analysis and stabilization of these systems 
are limited (Chiang et al., 2014; Shipei, et al., 2013; Weiming 
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et al., 2014; Orani et al., 2011; Wang et al., 2009). These 
shortcomings motivate this study. 

The purpose of this paper aims to solve the problem of state 
feedback stabilization for a class of both continuous and 
discrete-time switched nonlinear systems under arbitrary 
switching and subject to time-varying polytopic uncertainties. 
Indeed, by transforming the representation of these 
considered systems into the arrow form matrix (Kermani et 
al., 2014 a; Kermani et al., 2014 b; Elmadssia et al., 2013; 
Zhang et al., 2008; Borne et al., 1993; Kermani et al., 2012 a; 
Kermani et al., 2012 b; Benrejeb et al., 2008; Benrejeb et al., 
2006; Borne et al., 2003; Borne et al., 2007; Benrejeb et al., 
1982; Borne, 1987; Hahn; 1967; Grujc et al., 1987; Borne et 
al., 1972; Borne et al., 2008), employing a suitable 
constructed common Lyapunov function and applying the 
Kotelyanski lemma (Kotelyanski, 1952) combined with the 

matrixM   properties (Robert, 1966; Gantmacher, 1966), a 
new robust pole placement stabilization under arbitrary 
switching is deduced.  

In contrast with some existing results on switched nonlinear 
systems with polytopic uncertainties, the contributions of this 
paper is twofold: First, the new pole placement design is 
given to guarantee the closed-loop system asymptotic 
stability under arbitrary switching and may overcome the 
conservatism of searching a common Lyapunov function. 
Second, the new stabilization conditions are formulated in 
terms of the time-varying polytopic uncertain parameters.  

The rest of this paper is organized as follows. In section 2, we 
present the problem formulation and some preliminaries. 
Then, we give the main results on stabilization of the 
considered continuous-time switched nonlinear systems. The 
research problem formulations and the main results of the 
studied discrete-time switched systems are given in section 3. 
Two examples which model a shunt DC motor with uncertain 
models under variable mechanical loads are provided to show 
the effectiveness of the proposed approach. The conclusions 
are summarized in section 5. 

Notations: The following notation will be used in this paper, 
n  denotes the n  dimensional Euclidean space, nI  is the 

identity matrix with appropriate dimensions, .  denotes 

Euclidean vector norm. For any  1i i n
u u   , 

 1
n

i i n
v v     We define the scalar product of the vector 

u  and v  as: 
1

,
n

i i
i

u v u v


 . Denote by ( )Ml  the set of 

eigenvalues of matrix M , TM  its transpose and 1M-  its 

inverse. If ( ), 1 ,i j i j n
M m

£ £
= , we denote 

( ),

* *

1 ,i j i j n
M m

£ £
= with 

,

*
,i j i jm m=  if i j=  and 

,

*
,i j i jm m=  if i j¹ ,  ,i jM m= , ,i j"  and  

{ }1,2,..,N N= .  

 
 

2. CONTINOUS-TIME SWITCHED SYSTEMS  

2.1 Problem statement and preliminaries 

Consider a class of continuous-time uncertain switched 
nonlinear systems of the form:  

( ) ( ) ( ) ( ) ( ) ( ) ( ). .t tt x t B u tx As s+=                                         (1) 

where ( ) nx t ÎÂ  is the state, ( )u t ÎÂ  is the control input, 

( ) ( ).tAs  and ( ) ( ).tBs  are matrices with nonlinear elements of 

appropriate dimensions and ( ) :ts  { }1,2,..,N N+Â  =  is 

the switching signal assumed to be available in real time. 
Therefore, the continuous-time switched system is composed 
of N  subsystems which are expressed as: 

( ) ( ) ( ) ( ) ( ). .i it x t B u tx A += , i NÎ                                    (2) 

where  .iA  and ( ).iB  are matrices with appropriate 

dimensions. 

The system matrices are subject to polytopic uncertainties 

which can be modeled as: ( ) ( ) ( )
1

. .
lN

i il il
l

tA A
=

= må  and 

( ) ( ) ( )
1

. .
lN

i il il
l

B t B
=

= må , where ( )( ). 1,...,  il lA l N=  and 

( )( ). 1,...,  il lB l N=  are the vertex matrices denoting the 

extreme points of the polytope ( ).iA  and ( ).iB , lN
 
is the 

number of the extreme points and the weighting factors 
( )il tm  ( )1,...,  ll N=

 
are time-variant uncertainties which 

belong to:  

( ) ( )
1

:   1
lN

i il
l

t t
=

m m =å , ( ) 0il tm ³
                                       

(3) 

When the controllers are switched between the subsystems, 
the state feedback controllers are formed as:  

( ) ( ) ( ) ( ).tu t K x ts=-                                                            (4)  

where ( ).iK
 are the nonlinear controller gains.  

Now, we first briefly review some preliminaries.  

Kotelyanski lemma. (Kotelyanski, 1952) The real parts of 
the eigenvalues of matrix A , with non-negative off-diagonal 
elements, are less than a real number m  if and only if all 

those of matrix M ; nM I A= m -  are positive, with nI  the 

n  identity matrix. 

The following definitions and remarks will be used in the 
sequel.  

Definition 1. The matrix ( )
1 ,ij i j n

A a
£ £

=  is called an 

matrixM - , if the following conditions are met: 
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 The principal minors of A  are all positive: 

( )
1 2 ... 

0
1 2 ... 

j
A

j

æ ö÷ç ÷>ç ÷ç ÷çè ø
 1,...,j n" Î                                            (5) 

 For any positive real numbers ( )1,...,
T

nh= h h  the 

algebraic equations Ax = h  have a positive solution 

( )1,...,
T

nw w w= .  

Remark 1. ( )
1 ,ij i j n

A a
£ £

=  is the opposite of an matrixM -  

if ( )A-  is an matrixM - . 

Remark 2. A continuous-time system characterized by ( ).A  

is stable if ( ).A  is the opposite of an matrixM - . In this 

case, the main minors of ( ).A  are alternating sign with the 

first is negative and the Kotelyanski lemma allows us to 
conclude about stability of the system characterized by ( ).A . 

Below, we present the definition of an overvaluing system.  

Definition 2. (Borne et al., 2008) The matrix ( ).cM  is said a 

pseudo-overvaluing matrix of the system ( ) ( ) ( ).it x tx A=  

with respect to the vector norm ( ) 1   ...  
T

np x x xé ù= ë û , if the 

following inequality is met: 
( ) ( ) ( ).cD p x M p x+ £                                                          (6) 

where D+  denotes the right hand derivative. 

Consequently, the stability of the comparison system: 

( ) ( ) ( ).cz t M z t=  with the initial conditions such as 

( )0 0z p x= , implies the same property for the initial system. 

2.2. Continuous-time switched systems: main results 

In this section, we give the main result of the closed-loop 
system (1). 

Theorem 1. System (1) with polytopic uncertainties (3) is 
globally robust asymptotically stablilizable with the state 
feedback controller (4) under arbitrary switching rule (1) if 

( ).cM  is the opposite of an matrixM  , with: 

( ) ( )( )*
1

. max .c
c i

i N
M A

£ £

æ ö÷ç= ÷ç ÷çè ø
                                                     (7) 

where: 

( ) ( ) ( ) ( ) ( )( )
1

. . . .
lN

c
i il il il il

l

A t A B K
=

= m -å  

( ) ( ) ( )( ) ( ) ( ) ( )( )

( ) ( ) ( )( ) ( ) ( ) ( )( )

11 1

1 1
             

1

1 1

. ... ... .

. ... ... .

l l

l l

N N
c c n

il i il i
l l

N N
c n c nn

il i il i
l l

t a t a

t a t a

= =

= =

é ù
ê úm mê ú
ê ú
ê ú
ê ú
ê ú= ê ú
ê ú
ê ú
ê ú
ê ú
ê úm m
ê ú
ë û

å å

å å

   
   

        (8) 

Proof. Let nwÎÂ  with components  0, 1,...,mw m n    

and ( ) nx t ÎÂ  is the state vector. 

Define the radially unbound common Lyapunov function 
below for the closed-loop system (1) with polytopic 
uncertainties (3): 

( )( ) ( ), ,V x t t x t w=                                                          (9) 

It is clear that ( )( )0 0,V x t t <¥ .  

The right hand derivative of ( )( ),V x t t  along the trajectory 

of the closed-loop system (1) under the switching signal ( )t  

is given as follows: 

( )( )
( )

( )( ) ( )
, , sgn ,

d x t d x t
D V x t t w x t w

d t d t

+ +
+

+ +
= = (10) 

where: 

( )( )
( )( )

( )( )

1sgn

sgn                        

                               sgn n

x t

x t

x t

æ ö÷ç ÷ç ÷ç ÷ç ÷= ç ÷ç ÷÷ç ÷ç ÷çè ø

                    (11) 

In this way, we obtain: 

( )( ),D V x t t+ = ( )( ) ( ) ( )( ) ( )sgn . ,c
tx t A x t ws  

( ) ( )( ) ( ) ( ) ( )
*

. , . ,c
ctA x t w M x t ws£ <                         (12)  

To complete this proof, we assume that ( ).cM  is the opposite 

of an matrixM  . Therefore, we can find a vector 

( )* *  1,...,n
m m n+ +r ÎÂ r ÎÂ =  satisfying that 

( )( ).
T

cM w =-r , *nw +" ÎÂ .  

Hence, we obtain: 

( )( ) ( ) ( )( ) ( ) ( ). , . , ,
T

c cM x t w M w x k x t= = -r     (13) 

Taking into account (13), relation (12) becomes: 

( )( ) ( ) ( )
1

, , 0
n

m
m

D V x t t x t x t+

=

< -r =- r <å               (14) 

This completes the proof of Theorem 2. 

2.3. Application to uncertain switched systems defined by 
differential equations  

In this section, a new state feedback stabilization design is 
presented for a class of continuous-time uncertain switched 
nonlinear systems described by N  subsystems. All the 
subsystems are modeled by a family of differential equations 
given as below:  

( ) ( ) ( ) ( ) ( ) ( )
1

0 1

.
lNn

jn jn
il il

j l

y t t a y t u t
-

-

= =

æ ö÷ç ÷ç ÷+ m =ç ÷ç ÷ç ÷è ø
åå                    (15) 
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where ( ) ny t ÎÂ , ( ).j
ila  are nonlinear coefficients for each 

i NÎ , ( )1,...,  ll N=  and ( )0,...,  1j n= - . ( )il tm  are time-

varying polytopic uncertain parameters given in (3) and 

( )u t ÎÂ  is the control input.  

Consider the following state variables for system (15):   

( )
( )

( )1

j

j j

dy
x t

dt
+ = , 0,..., 1j n= -                                         (16) 

By substituting (16) into (15), we obtain: 

( ) ( )

( ) ( ) ( ) ( ) ( )

1

1

1
0 1

,   0,..., 1

.
l

j j

Nn
n j

n il jil
p l

x t x t j n

x t t a x t u t

+

-
-

+
= =

ìï = = -ïïïï æ öí ÷ç ÷çï ÷= - m +çï ÷çï ÷ç ÷ï è øïî
åå




              (17) 

or under matrix representation, we obtain: 

( ) ( ) ( ) ( ) ( ) ( )( )
1

. .
lN

il i i
l

t t x t B u tx A
=

m +=å , i NÎ                (18) 

Due to (17), it is easy to see that system (18) is given in the 
controllable form such as:  

( )

( ) ( ) ( )1 1

0 1 0

.
0 0 1

. . .

il

n n
il il il

A

a a a-

é ù
ê ú
ê ú
ê ú= ê ú
ê ú
ê ú
- - -ê úë û


   





, 

0

0

1

ilB B

é ù
ê ú
ê ú
ê ú= = ê ú
ê ú
ê úê úë û


  (19)

 

Led to the following state feedback controller: 

( ) ( ) ( ) ( )
1

.
lN

il il
l

u t t K x t
=

=- må                                               (20) 

where ( ).ilK  are the vectors gains of the controller for each 

i NÎ , and ( )1,...,  ll N= .  

So, all the closed-loop subsystems are characterized by the 
following state space description: 

( ) ( ) ( ) ( ) ( )( ) ( )
1

. . .
lN

il il il
l

ilx t t B K x tA
=

= m -å  

( ) ( ) ( )
1

.
l

il

N
c

il
l

t x tA
=

= må , i NÎ                                             (21)  

with:
 

( )
( ) ( ) ( ) ( ) ( ) ( )1 1

0 1 0

. 0 0 1

. . .

il

c

n nc c c
il il il

A

a a a
-

é ù
ê ú
ê ú
ê ú= ê ú
ê ú
ê ú
ê ú- - -ë û


   





                 (22) 

where: 
( ) ( ) ( ) ( )1. . .

j j n jc
il il ila a k + -= + ,  1,...,  j n                         (23) 

and ( ) ( ).jc
ila  are the coefficients of the instantaneous 

characteristic polynomial ( ) ( ).ilAP l  of the vertex matrix 

( ).c
ilA . It is given by: 

( ) ( ) ( ) ( )
1

.
0

.
il

n
n pn c p

ilA
p

P a
-

-

=

l = l + lå                                      (24) 

Now, by considering the switching signal (1), the closed-loop 
switched nonlinear system is deduced as below: 

( ) ( ) ( ) ( ).c
tt x tx As=                                                             (25)  

Next, the following basic change will be adopted in order to 
simplify the application of the Kotelyanski lemma:  

( ) ( ) ( ).iz t M z t= , i NÎ                                                     (26) 

where ( ) ( )z t Px t=  is the new state vector, P  is the 

corresponding passage matrix and ( ) ( ) ( )
1

. .
lN

i il il

l

M t M
=

= må  

where  .ilM  are vertex matrices in the arrow form given as 

follows:  

( ) ( )

( ) ( ) ( )

1 1

1

1 1

1 1

0 0

0

0. .
0 0

. . .

c
il il

n n

n n
il il il

M P A P-

- -
-

é ùa bê ú
ê ú
ê ú
ê ú= = ê ú
ê úa bê ú
ê ú
ê úg g gë û


   

   


 

  (27) 

( ) ( ) ( )

( ) ( ) ( )

1 2 1

2 2 2
1 2 1

1 1 1
1 2 1

1 1 1 0

0

0

1

n

n

n n n
n

P

-

-

- - -
-

é ù¼ê ú
ê úa a ¼ aê ú
ê ú
a a ¼ aê ú=

ê ú
ê ú¼
ê ú
ê úa a ¼ aê úë û


  

                      (28) 

( )

( ) ( ) ( )

( ) ( ) ( )

1
1

1

.

1
1

1

 1,..., 1

.   1,.., 1

. .

c
il

n

j j q
q
q j

j
jil A

n
n c
il jil

j

 j n

P  j n

a

-
-

=
¹

-

=

ìïïïb = a -a " = -ïïïïïïïïg =- a " = -íïïïïïïg =- - aïïïïïî



å

                            (29) 

and ja , 1... 1j n= -  are distinct arbitrary constant 

parameters. 

Next, the comparison system associated to the vector norm 

( ) 1   ...  
T

np z z zé ù= ë û  is defined by:  

( ) ( ) ( ).cz t M z t=                                                                (30) 

where ( ).cM  is the comparison matrix relative to system 

(25), it is deduced as below:  
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( )

( ) ( ) ( )

1 1

1 1

1 1

0 0

0

0.
0 0

. . .

c

n n

n n

M

t t t

- -
-

é ùa bê ú
ê ú
ê ú
ê ú= ê ú
ê úa bê ú
ê ú
ê ú
ë û


   

   


 

                        (31)  

with:  

( ) ( ) ( )

( ) ( ) ( )

1
1

1
1

. max .

. max . ,  1,..., 1

l

l

N
n n

il il
i N

l

N
jj

il il
i N

l

t t

t t j n

£ £
=

£ £
=

ì æ öï ÷ï ç ÷ï ç= m g ÷çï ÷çï ÷÷çï è øïïíï æ öï ÷ç ÷ï ç ÷= m g = -ï ç ÷ï ç ÷ï ç ÷çè øïïî

å

å
                 (32) 

The aim of this work consists to design a state feedback 
controller (20) by using the pole placement control which 
guarantees asymptotic stability of the closed loop-system 
(25).  

Next, the following theorem presents a new pole placement 
control stabilization for system (25). 

Theorem 2. If all the n  poles { }1 ,..., np p  are chosen to be 

real, distinct and negative. Then, the closed-loop system (25) 
with polytopic uncertainties (3) is robust stabilizing by the 
controller (20) under arbitrary switching (1) and the 
following conditions are satisfied:  

( ) ( ) ( )

( ) ( ) ( )

1
1

1
1

. max . 0,  1,..., 1

. max . 0

l

l

N
jj

il il
i N

l

N
n n

il il n
i N

l

t t j n

t t p

£ £
=

£ £
=

ì æ öï ÷ï ç ÷ï ç ÷= m g = = -çï ÷çï ÷çï ÷çè øïïíï æ öï ÷çï ÷çï = m g = <÷çï ÷ç ÷ï ÷çè øïïî

å

å
          (33)  

where: 

( )

( ) ( ) ( )

( ) ( ) ( )

1
1

1

.

1
1

1

  1,..., 1

.   1,.., 1

. .

il

n

j j q
q
q j

j
jil A

n
n c
il jil

j

p p  j n

P p  j n

a p

-
-

=
¹

-

=

ìïïïb = - " = -ïïïïïïïïg =- " = -íïïïïïïg =- -ïïïïïî



å

                            (34) 

Proof of this theorem is given in appendix A.  

3. DISCRETE-TIME SWITCHED SYSTEMS 

3.1 Problem formulation and Preliminaries 

Consider the following discrete-time switched nonlinear 
systems:  
( ) ( ) ( ) ( ) ( ) ( ) ( )1 . .k kk x k B u kx As s+ +=                              (35)  

where   nx k 
 
is the state vector of the system at time k , 

( )u k ÎÂ  is the control input, ( ) ( ).kAs  and ( ) ( ).kBs  are 

matrices with have nonlinear elements of appropriate 

dimensions and ( ) { }: 1,2,..,k N N+s Â  =  is the 

switching signal. 

The switched system is composed of N  discrete-time 
subsystems which are given by: 
( ) ( ) ( ) ( ) ( ). .i it x k B u kx A += , i NÎ                                 (36) 

when the uncertain model is presented, the matrices ( ).iA  

and ( ).iB  are given by ( ) ( ) ( )
1

. .
lN

i il il
l

kA A
=

= må  and 

( ) ( ) ( )
1

. .
lN

i il il
l

B k B
=

= må , where ( )il km  ( )1,...,  ll N=  
 
are 

time-variant uncertainties given in (3).   

The state feedback controller is given as below:  
( ) ( ) ( )ku k K x ks=-                                                             (37)  

Now, we present some definitions and remarks which will 
play important roles in deriving our main results for discrete-
time switched systems subsequently.  

Remark 3. (Borne, et al., 2007) A discrete-time system given 

by a matrix ( ).A  is stable if matrix ( )( ).nI A-  verified the 

Kotelyanski conditions. In this case ( )( ).nI A-  is an 

matrixM   and all the principal minors of ( )( ).nI A-  are 

positive.  

Definition 3. (Benrejeb, et al., 2006) The matrix ( ).DM  is 

the comparison matrix of the system given by a matrix ( ).A  

with respect to the vector norm p  if the inequality below is 

satisfied:  

( )( ) ( ) ( )( )1 .Dp x k M p x k+ £                                            (38) 

Then, the stability of the comparison system: 

( ) ( ) ( )1 .Dz k M z k+ =  with the initial conditions such as 

( )0 0z p x=  implies the same property for the initial system.  

3.2 Discrete-time switched systems-main results 
 

This subsection presents a new state feedback stabilization of 
the closed-loop system (35). 

Theorem 3. The closed-loop system (35) is robustly 
asymptotically stablilizable with the state feedback controller 
(37) under arbitrary switching (35) and all admissible 
uncertainties (3) if ( )n DI M-  is an matrixM  , with: 

( ) ( )( )
1

. max .c
D i

i N
M A

£ £

æ ö÷ç= ÷ç ÷çè ø
                                                    (39) 

and:  
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( ) ( ) ( ) ( ) ( )( )
1

. . . .
lN

c
i il il il il

l

A k A B K
=

= m -å

( ) ( ) ( )( ) ( ) ( ) ( )( )

( ) ( ) ( )( ) ( ) ( ) ( )( )

11 1

1 1
             

1

1 1

. ... ... .

. ... ... .

l l

l l

N N
c c n

il i il i
l l

N N
c n c nn

il i il i
l l

k a k a

k a k a

= =

= =

é ù
ê úm mê ú
ê ú
ê ú
ê ú
ê ú= ê ú
ê ú
ê ú
ê ú
ê ú
ê úm m
ê ú
ë û

å å

å å

   
   

     (40) 

Proof. Consider the following common Lyapunov function 
for the closed-loop system (35):  

( )( ) ( ), ,V x k k x k w=                                                     (41) 

where nwÎÂ  with components  0, 1,...,mw m n    and 

( ) nx k ÎÂ  is the state vector.  

Along the trajectories of system (35), the difference of the 
Lyapunov function is given as below:  

( )( ) ( )( ) ( )( ), 1 , 1 ,v x k k v x k k v x k kD = + + -  

( ) ( )1 , ,x k w x k w= + -                                             (42) 

Subsequently, under arbitrary switching ( )ks , it is easy to 

verify that:  

( ) ( ) ( ) ( ). , ,c
kA x k w x k w-  

( )( ) ( ) ( )
1
max . , ,c

i
i N

A x k w x k w
£ £

£ -

( )( ) ( )
1
max . ,c

i n
i N

A I x k w
£ £

æ ö÷ç£ - ÷ç ÷çè ø
 

( )( ) ( ). ,n DI M x k w= - -                                               (43) 

where ( ).DM  is introduced in (39).  

We assume now that ( )( ).n DI M-  is an matrixM  . In such 

condition, we can find a vector 

( )* *   1,...,n
p p n+ +r ÎÂ r ÎÂ =  satisfying the following 

relation ( )( ) *. ,
T n

n DI M w w +- = r " ÎÂ , then we can write:  

( )( ) ( ). ,n DI M x k w-  

( )( ) ( ) ( ). , ,
T

n DI M w x k x k= - = r                           (44) 

According to (44) it holds that: 

( )( ) ( ). ,n DI M x k w- - ( ), x k= -r                            (45) 

Finally, we have: 

( ) ( )( ) ( ). ,n DV k I M x k wD £ - -      

( )
1

0
n

p p
p

x k
=

£- r <å                                                         (46) 

This completes the proof of Theorem 3.  

3.3. Application to switched systems defined by difference 
equations 

In this section, we consider a class of discrete-time uncertain 
switched nonlinear systems composed of N  subsystems, all 
of them are modeled by the following difference equation: 

( ) ( ) ( ) ( ) ( )
1

1 0

.
lN n

n j
il il

l j

y k n k a y k j u k
-

-

= =

æ ö÷ç ÷ç ÷+ + m + =ç ÷ç ÷ç ÷è ø
å å          (47)  

where ( ) ny k ÎÂ , ( ).j
ila  are nonlinear coefficients for each 

i NÎ , ( )1,...,  ll N=  and ( )1,...,  1j n= - , ( )il km  are time-

varying polytopic uncertain parameters given in (3) and 
( )u k ÎÂ  is the control input.  

To solve this problem, we introduce the following state 
variables:  

( ) ( )1 ,  0,..., 1jx k y k j j n+ = + = -                                     (48) 

Combining (47) and (48) yields for each i NÎ :   

( ) ( )

( ) ( ) ( ) ( )

1

1

1
1 0

1 ,  1,..., 1

1
l

j j

N n
n j

n il jil
l j

x k x k j n

x k k a x k u k

+

-
-

+
= =

ìï + = = -ïïïï æ öí ÷ç ÷çï ÷+ =- m +çï ÷çï ÷ç ÷ï è øïî
å å

         (49) 

or under matrix representation: 

( ) ( ) ( ) ( ) ( ) ( )( )
1

1 . .
lN

il il
l

ilx k k k B u kA x
=

+ m +=å , i NÎ    (50)

 

 
where ( )x k  is the state,  .ilA  and  .ilB  are vertex 

matrices that have nonlinear elements of appropriate 
dimension.  

It is clear to see that all the models are given in the 
controllable form given in (19). 

The feedback controller is given as follows:   

( ) ( ) ( ) ( )
1

.
lN

il il
l

u k k K x k
=

=- må , i NÎ                                (51)  

So, all the closed-loop subsystems can be written as follows:  

( ) ( ) ( ) ( )( ) ( )
1

1 . .
lN

il il il
l

x k k A BK x k
=

+ = m -å  

( ) ( ) ( )
1

.
l

il

N
c

il
l

k A x k
=

= må , i NÎ                                           (52) 

where the vertex matrix ( ).
il

cA  is defined in (22).   

Therefore, by considering the switching law (35), the closed-
loop switched nonlinear is given as follows:  

( ) ( ) ( ) ( )1 .c
kk x kx As+ =                                                      (53)  
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As done for the continuous time case a change of base for all 
the subsystems defined in (52) under the arrow form yields 
to:  

( ) ( ) ( ) ( )
1

1 .
lN

il il
l

z k k M z k
=

+ = må , i NÎ                            (54) 

where  .ilM
 
is given in (28).  

Finally, the comparison discrete-time system   nz k   is 

given by:  
( ) ( ) ( )1 .Dz k M z k+ =                                                        (55) 

where the comparison matrix ( ).DM  for discrete-time is 

given as below, it is deduced from the matrices 

( ) ( ) ( )
1

. .
lN

i il il
l

M k M
=

= må  by substituting all their elements by 

their absolute values:  

( )

( ) ( ) ( )

1 1

1 1
1 1

0 0

0

. 0

0 0

. . .

D

n n
n n

D D D

M

t t t
- -

-

é ùa bê ú
ê ú
ê ú
ê ú= ê ú
ê úa bê ú
ê ú
ê úë û


   

   

 

                     (56) 

with: 

( ) ( ) ( )
1

1

. max . ,  1,...,
lN

jj
D il il

i N
l

t t j n
£ £

=

æ ö÷ç ÷ç ÷= m g =ç ÷ç ÷ç ÷çè ø
å                (57) 

After this formulation, now we are in position to present a 
new robust stabilization of the closed-loop system (53) by 
using pole assignment control. 

Theorem 4. If all the n  poles { }1 ,..., nz z  imposed by the 

control law (51) of the closed-loop system (53) assumed to be 
real and have modules inferior to the unit, then system (53) is 
robust stabilizing by the control law (51) under arbitrary 
switching rule (35) and all admissible uncertainties (3) and 
the conditions below are met: 

( ) ( ) ( )

( ) ( ) ( )

1
1

1
1

. max . 0,  1,..., 1

. max . 1

l

l

N
jj

D il il
i N

l

N
n n

D il il n
i N

l

t t j n

t t z

£ £
=

£ £
=

ì æ öï ÷ï ç ÷ï ç ÷= m g = = -çï ÷çï ÷çï ÷çè øïïíï æ öï ÷çï ÷ç ÷ï = m g = <ç ÷ï ç ÷ï ç ÷çï è øïî

å

å
        (58) 

with: 

( )

( ) ( ) ( )

( ) ( ) ( )

1
1

1

.

1
1

1

  1,..., 1

.   1,.., 1

. .

il

n

j j q
q
q j

j
jil A

n
n c
il jil

j

z z  j n

P z  j n

a z

-
-

=
¹

-

=

ìïïïb = - " = -ïïïïïïïïg =- " = -íïïïïïïg =- -ïïïïïî



å

                              (59) 

 

Proof of this theorem is given in Appendix B.  

4. ILLUSTRATIVE EXAMPLES 

In the following section, an application to stabilize a real 
system is provided to demonstrate the effectiveness of the 
proposed methods. 

Example 1. (Benrejeb et al., 2008) Consider a switched 
system which model a DC motor with shunt excitation under 
variable mechanical loads. All the subsystems are 
characterized by a transfer function which is preceded by a 
nonlinear element ( ).  corresponding to the nonlinear 

characteristic of the magnetic flux (Lur’e Postnikov 
problem).  

All the subsystems are given by: 
( ) ( ) ( )1 11 11 12 12. μ μA t A t A= + ;

( ) ( ) ( )2 21 21 22 22. μ μA t A t A= +   

and: ( ) ( ) ( )3 31 31 32 32. μ μA t A t A= +  

 
Fig. 1. Model of DC motor with shunt excitation. 

According to Figure 1, the state equation for all the 
subsystems { }1, 2,3i Î  can be written such as: 

( ) ( ) ( ) ( )( )
2

1

.il il
l

x t t A x t Bv
=

= m +å , ( ) ( ). .v u=   

and: ( ) ( ) ( ).ilu t K x t=- , where the vertex matrices are 

defined as follows:  

11

0 1

0 2.5
A

é ù
ê ú= ê ú-ë û

, 12

0 1

0 2
A

é ù
ê ú= ê ú-ë û

,

 
21

0 1

0 1,66
A

é ù
ê ú= ê ú-ë û

, 

22

0 1

0 1.42
A

é ù
ê ú= ê ú-ë û

, 31

0 1

0 1.11
A

é ù
ê ú= ê ú-ë û

,

 
32

0 1

0 0.76
A

é ù
ê ú= ê ú-ë û   

and 

0

1
B

é ù
ê ú= ê úë û

. 

Consider the following time-varying uncertainties 
parameters:  

( ) ( )11 .tm = r , ( ) ( )12 1 .tm = -r , ( ) ( )21 .tm = r ,  

( ) ( )22 1 .tm = -r , ( ) ( )31 .tm = r  and ( ) ( )32 1 .tm = -r  

with ( ).r  being a general nonlinearity such as ( )0 . 1£r £ .  

In this application, we aim to design a state feedback 
controller which guarantees that the resulting closed-loop 
system is asymptotically stable under any selected 
mechanical load. Indeed, the state feedback controller is 
characterized by the following parameters: 

( ) ( ) ( )1 2
11 11 11. .  .K k ké ù= ê úë û , ( ) ( ) ( )1 2

12 12 12. .  .K k ké ù= ê úë û ,

( ) ( ) ( )1 2
21 21 21. .  .K k ké ù= ê úë û , ( ) ( ) ( )1 2

22 22 22. .  .K k ké ù= ê úë û ,

( ) ( ) ( )1 2
31 31 31. .  .K k ké ù= ê úë û and. ( ) ( ) ( )1 2

32 32 32. .  .K k ké ù= ê úë û  
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So, the closed-loop system is given by:   

( ) ( ) ( ) ( ) ( )11 1 2
11 11

0 1
.

. . 2.5 . .
cA

K K

é ù
ê ú= ê ú- - -ë û 

, 

( )
( ) ( ) ( ) ( )12 1 2

12 12

0 1
.

. . 2 . .
cA

K K

é ù
ê ú= ê ú- - -ë û 

,  

( ) ( ) ( ) ( ) ( )21 1 2
21 21

0 1
.

. . 1.66 . .
cA

K K

é ù
ê ú= ê ú- - -ë û 

,  

( ) ( ) ( ) ( ) ( )22 1 2
22 22

0 1
.

. . 1.42 . .
cA

K K

é ù
ê ú= ê ú- - -ë û 

 

( ) ( ) ( ) ( ) ( )31 1 2
31 31

0 1
.

. . 1.11 . .
cA

K K

é ù
ê ú= ê ú- - -ë û 

 

and: ( ) ( ) ( ) ( ) ( )32 1 2
32 32

0 1
.

. . 0.76 . .
cA

K K

é ù
ê ú= ê ú- - -ë û 

 

The vertex matrices in the arrow form are the following: 

( ) ( )
( ) ( )

1
1 211 11

11 11

1
. .

. .
cM P A P-

é ùa
ê ú= = ê úg gê úë û

, 

( ) ( )
( ) ( )

1
1 212 12

12 12

1
. .  

. .
cM P A P-

é ùa
ê ú= = ê úg gê úë û

, 

( ) ( ) ( ) ( )
1

21 21 1 2
21 21

1
. .

. .
cM P A P-

é ùa
ê ú= = ê úg gë û

,

( ) ( ) ( ) ( )
1

22 22 1 2
22 22

1
. .

. .
cM P A P-

é ùa
ê ú= = ê úg gë û

,  

( ) ( )
( ) ( )

1
31 31 1 2

31 31

1
. .

. .
cM P A P-

é ùaê ú= = ê úg gë û
 

and: ( ) ( ) ( ) ( )
1

32 32 1 2
32 32

1
. .

. .
cM P A P-

é ùaê ú= = ê úg gë û
 

with:

( ) ( ) ( ) ( )( ) ( ) ( )

( ) ( ) ( )( )

1 2 2 1
11 11 11 11

2 2
11 11

2 5

2 5

. P . . k . . k .

. . . k .

ì éï ùïg =- a =- a + + a+ê úï ûï ëíïïg =- + +aïïî

 


 

 

( ) ( ) ( ) ( )( ) ( ) ( )

( ) ( ) ( )( )

1 2 2 1
12 12 12 12

2 2
12 12

2

2

. P . k . . k .

. . k .

ì éï ùïg =- a =- a + + a+ê úï ûï ëíïïg =- + +aïïî

 


; 

( ) ( ) ( ) ( )( ) ( ) ( )

( ) ( ) ( )( )

1 2 2 1
21 21 21 21

2 2
21 21

1 66

1 66

. P . . k . . k .

. . . k .

ì éï ùïg =- a =- a + + a+ê úï ûï ëíïïg =- + +aïïî

 



( ) ( ) ( ) ( )( ) ( ) ( )

( ) ( ) ( )( )

1 2 2 1
22 22 22 22

2 2
22 22

1 42

1 42

. P . . k . . k .

. . . k .

ì éï ùïg =- a =- a + + a+ê úï ûï ëíïïg =- + +aïïî

 



( ) ( ) ( ) ( )( ) ( ) ( )

( ) ( ) ( )( )

1 2 2 1
31 31 31 31

2 2
31 31

1 11

1 11

. P . . k . . k .

. . . k .

ì éï ùïg =- a =- a + + a+ê úï ûï ëíïïg =- + +aïïî

 



and: 
 

( ) ( ) ( ) ( )( ) ( ) ( )

( ) ( ) ( )( )

1 2 2 1
32 32 32 32

2 2
32 32

0 76

0 76

. P . . k . . k .

. . . k .

ì éï ùïg =- a =- a + + a+ê úï ûï ëíïïg =- + +aïïî

 


 

Next, by choosing the two poles 1 1p =- and 2 3p =-  are 

real negative, this implies that 1a=-  and 1b= .  

According to Theorem 2, for all admissible uncertainties and 
under any switching law (1), we can deduce the following 
stabilization conditions:  
i) 1 1 0pa= =- <  

ii) ( ) ( ) ( ) ( )1 1
11 11 12 12μ . μ .t tg + g

( ) ( ) ( ) ( )1 1
21 21 22 22μ . μ .t t= g + g

( ) ( ) ( ) ( )1 1
31 31 32 32μ . μ . 0t t= g + g =  

iii) 2 3p =-  

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 1
11 11 12 12

1 1
21 21 22 22

1 1
31 31 32 32

μ . μ . ,

max μ . μ . , 0

μ . μ .

t t

t t

t t

æ ög + g ÷ç ÷ç ÷ç ÷ç ÷ç= g + g <÷ç ÷÷ç ÷ç ÷ç g + g ÷çè ø

 

 
For a particular choice ( ) ( )1 1

11 12. .k k= , ( ) ( )2 2
11 12. .k k= , 

( ) ( )1 1
21 22. .k k= , ( ) ( )2 2

21 22. .k k= ; ( ) ( )1 1
31 32. .k k=  and 

( ) ( )2 2
31 32. .k k=  relations (ii) and (iii) allow us to deduce the 

following stabilization conditions:  
 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

1 1
11 12

2 2
11 12

. . . . 3

. . . . 2 0.5 .

k k

k k

ìï = =ïïíï = = - rïïî

 

 
,  

 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

1 1
21 22

2 2
21 22

. . . . 3 0.03 .

. . . . 2.58 0.24 .

k k

k k

ìï = = + rïïíï = = - rïïî

 

 
 

and:  

( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

1 1
31 32

2 2
31 32

. . . . 2.99

. . . . 3.24 0.35 .

k k

k k

ìï = =ïïíï = = - rïïî

 

 
 

Now, we assume that the nonlinear gain ( ).  is given by the 

following relationship: ( ) ( ) 2

0.5
.

1 0.4

u
u

u
= =

+
  ; where the 

nonlinear gain ( ).  is represented in the shape of Figure 2. 
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Fig. 2. Characteristic of the nonlinear gain ( ). . 

If we choose the uncertain parameters ( ). 0.4r = , the initial 

state vector    0 0 2  1
T

x t    and the switching sequence 

given in Figure 3, the simulation result of the close-loop 
system are shown in Figures 4 and 5, respectively which 
correspond to the evolution of states with respect to time and 
the control input evolution.  
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e
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Fig. 3. Switching function ( )ts  between subsystems.  
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Fig 4. State responses of the close-loop system. 
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Fig. 5. Control signal.  

Example 2. (Benrejeb et al., 2006) This example is deduced 
by the discretization of the linear part of the continuous-time 
switched system of example 1 by a zero-order holder with a 
sampling time 0.2 .eT s=  

So, the vertex matrices are defined as:  

11

0 1

0.6 1.6dA
é ù
ê ú= ê ú-ë û

, 12

0 1

0.67 1.67dA
é ù
ê ú= ê ú-ë û

, 

21

0 1

0.71 1.71dA
é ù
ê ú= ê ú-ë û

, 22

0 1

0.75 1.75dA
é ù
ê ú= ê ú-ë û

, 

31

0 1

0.8 1.8dA
é ù
ê ú= ê ú-ë û

 and 32

0 1

0.85 1 .85dA
é ù
ê ú= ê ú-ë û

.  

The varying-time uncertainties parameters are: 

( ) ( )11 .km = r , ( ) ( )12 1 .km = -r , ( ) ( )21 .km = r ,  

( ) ( )22 1 .km = -r , ( ) ( )31 .km = r  and ( ) ( )32 1 .km = -r . 

By considering the state feedback controller given in (51) 
characterized by the following gains vectors:  

( ) ( ) ( )1 2
11 11 11. .  .K k ké ù= ê úë û , ( ) ( ) ( )1 2

12 12 12. .  .K k ké ù= ê úë û , 

( ) ( ) ( )1 2
21 21 21. .  .K k ké ù= ê úë û , ( ) ( ) ( )1 2

22 22 22. .  .K k ké ù= ê úë û ,

( ) ( ) ( )1 2
31 31 31. .  .K k ké ù= ê úë û  and. ( ) ( ) ( )1 2

32 32 32. .  .K k ké ù= ê úë û  

then, the closed-loop system is given by:   

( ) ( ) ( ) ( ) ( )11 1 2
11 11

0 1
.

0.6 . . 1.6 . .
c

dA
K K

é ù
ê ú= ê ú- - -ë û 

, 

( )
( ) ( ) ( ) ( )12 1 2

12 12

0 1
.

0.67 . . 1.6 . .
c

dA
K K

é ù
ê ú= ê ú- - -ë û 

,  

( ) ( ) ( ) ( ) ( )21 1 2
21 21

0 1
.

0.71 . . 1.71 . .
c

dA
K K

é ù
ê ú= ê ú- - -ë û 

,  

( )
( ) ( ) ( ) ( )22 1 2

22 22

0 1
.

0.75 . . 1.75 . .
c

dA
K K

é ù
ê ú= ê ú- - -ë û 

,  

( ) ( ) ( ) ( ) ( )31 1 2
31 31

0 1
.

0.8 . . 1.8 . .
c

dA
K K

é ù
ê ú= ê ú- - -ë û 

 

and: ( )
( ) ( ) ( ) ( )32 1 2

32 32

0 1
.

0.85 . . 1.85 . .
cA

K K

é ù
ê ú= ê ú- -ë û 

 

The vertex matrices in arrow form are the following:  

( ) ( )
( ) ( )

1
11 11 1 2

11 11

1
. .

. .
c

dM P A P-
é ùa
ê ú= = ê úg gë û

, 

( ) ( )
( ) ( )

1
12 12 1 2

12 12

1
. .  

. .
c

dM P A P-
é ùa
ê ú= = ê úg gë û

, 

( ) ( ) ( ) ( )
1

21 21 1 2
21 21

1
. .

. .
c

dM P A P-
é ùaê ú= = ê úg gë û

,

( ) ( ) ( ) ( )
1

22 22 1 2
22 22

1
. .

. .
c

dM P A P-
é ùaê ú= = ê úg gë û

,  

( ) ( )
( ) ( )

1
31 31 1 2

31 31

1
. .

. .
c

dM P A P-
é ùaê ú= = ê úg gë û
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and: ( ) ( )
( ) ( )

1
32 32 1 2

32 32

1
. .

. .
c

dM P A P-
é ùaê ú= = ê úg gë û

 

with: 

( ) ( ) ( )( ) ( ) ( )

( ) ( ) ( )( )

1 2 2 1
11 11 11

2 2
11 11

1 6 0 6

1 6

. . . k . . . k .

. . . k .

ì éï ùïg =- a + - + a+ +ê úï ûï ëíïïg =- + +aïïî

 


 

( ) ( ) ( )( ) ( ) ( )

( ) ( ) ( )( )

1 2 2 1
12 12 12

2 2
12 12

1 67 0 67

1 67

. . . k . . . k .

. . . k .

ì éï ùïg =- a + - + a+ +ê úï ûï ëíïïg =- - + +aïïî

 


; 

( ) ( ) ( )( ) ( ) ( )

( ) ( ) ( )( )

1 2 2 1
21 21 21

2 2
21 21

1 77 0 71

1 71

. . . k . . . k .

. . . k .

ì éï ùïg =- a + - + a+ +ê úï ûï ëíïïg =- - + +aïïî

 


 

( ) ( ) ( )( ) ( ) ( )

( ) ( ) ( )( )

1 2 2 1
22 22 22

2 2
22 22

1 75 0 75

1 75

. . . k . . . k .

. . . k .

ì éï ùïg =- a + - + a+ +ê úï ûï ëíïïg =- - + +aïïî

 



( ) ( ) ( )( ) ( ) ( )

( ) ( ) ( )( )

1 2 2 1
31 31 31

2 2
31 31

1 8 0 8

1 8

. . . k . . . k .

. . . k .

ì éï ùïg =- a + - + a+ +ê úï ûï ëíïïg =- - + +aïïî

 


 

and:  

( ) ( ) ( )( ) ( ) ( )

( ) ( ) ( )( )

1 2 2 1
32 32 32

2 2
32 32

1 85 0 85

1 85

. . . k . . . k .

. . . k .

ì éï ùïg =- a + - + a+ +ê úï ûï ëíïïg =- - + +aïïî

 


  

Now, according to theorem 4, by choosing the two poles 
1

1 0.81ePTz e= =  and 2
2 0.54eP Tz e= = , this implies the 

following stabilization conditions for all admissible 
uncertainties and under any switching law (35):  

i) 1 0.81 1z = <  

ii) ( ) ( ) ( ) ( )1 1
11 11 12 12μ . μ .t tg + g  

( ) ( ) ( ) ( )1 1
21 21 22 22μ . μ .t t= g + g

( ) ( ) ( ) ( )1 1
31 31 32 32μ . μ . 0t t= g + g =  

iii) 2 0.54z =  

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 1
11 11 12 12

1 1
21 21 22 22

1 1
31 31 32 32

μ . μ . ,

max μ . μ . , 1

μ . μ .

t t

t t

t t

g g

g g

g g

æ ö+ ÷ç ÷ç ÷ç ÷ç ÷ç ÷+ <ç ÷÷ç ÷ç ÷ç ÷ç + ÷çè ø

 

 
For a particular choice ( ) ( )1 1

11 12. .k k= , ( ) ( )2 2
11 12. .k k= , 

( ) ( )1 1
21 22. .k k= , ( ) ( )2 2

21 22. .k k= ; ( ) ( )1 1
31 32. .k k=  and 

( ) ( )2 2
31 32. .k k=  conditions (ii) and (iii) allow us to deduce the 

following stabilization conditions:  

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

1 1
11 12

2 2
11 12

. . . . 1.102 0.068 .

. . . . 1.4 0.07 .

k k

k k

ìï = =- + rïïíï = = - rïïî

 

 
,  

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

1 1
21 22

2 2
21 22

. . . . 1.1813 0.0425 .

. . . . 1.48 0.04 .

k k

k k

ìï = =- + rïïíï = = - rïïî

 

 
 

and: 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

1 1
31 32

2 2
31 32

. . . . 1.2874 0.04 .

. . . . 1.58 0.05 .

k k

k k

ìï = =- + rïïíï = = - rïïî

 

 
 

As done for the continuous-time case, the nonlinear gain ( ).  

is given by the following relationship: 

( ) ( ) 2

0.5
.

1 0.4

u
u

u
= =

+
   given in Figure 2.  

For this example, in case when the uncertain parameter ( ).r  is 

fixed at 0.4 , the initial state vector    0 2  1
T

x   and by 

considering the  same switching sequence given in Figure 3, 
the evolution of the states and the control signal are given in 
Figures 6 and 7, respectively.  

0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

t(s) 

x1
,x

2

State Responses

 

 
x1

x2

 
Fig. 6. Sate evolution of the closed-loop system.  

0 1 2 3 4 5 6
-0.05

0

0.05

0.1

0.15

0.2
Control Signal 

t(s) 

u(
k)

 
Fig. 7. Control signal of the closed-loop system.  

These two examples were treated to show the effectiveness of 
the proposed method. In fact, the controllers designed in 
examples 1 and 2 can guarantee the robust stabilization of the 
closed-loop systems, as well to see that the proposed 
stabilization conditions are sufficient and closely necessary. 
By another side, according to the number of the subsystems 
and the complexity of those subsystems, it is very difficult to 
find a common Lyapunov function for all the subsystems 
given in the examples, in order to guarantee stability of the 
corresponding closed-loop systems under arbitrary switching. 



30                                                                                                                    CONTROL ENGINEERING AND APPLIED INFORMATICS 
 

5. CONCLUSIONS 

This paper has investigated robust pole placement 
stabilization with state feedback controller for a class of both 
continuous and discrete-time switched nonlinear systems 
with time-varying polytopic uncertainties. These conditions 
were deduced by constructing a common Lyapunov function 
and applying the Kotelyanski lemma combined with the 

matrixM   properties.  

Compared with the existing results of switched systems, the 
main advantages of this approach consist in that these 
obtained conditions are formulated in terms of the time-
varying polytopic uncertain parameters and they allow us to 
avoid searching a common Lyapunov function. 
As application, the effectiveness of the theoretical results is 
illustrated for a DC motor with shunt excitation and polytopic 
uncertainties models under variable mechanical loads for the 
both continuous and discrete-time cases.  
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APPENDIX A 

Proof of Theorem 2. (Borne et al., 2008) Consider the close 
loop system (26) given in the arrow form, by choosing the 
poles j jp =a  for = 1,..., 1j n-  are real and negative. Then, 

the closed-loop system is stable if ( ).cM  is the opposite of an 

matrixM - . In such conditions, the principal minors of 

( ).cM  are alternating signs with the first is negative, it 

becomes ( ). 0,   1,..., 1jt j n= = -  where: ( ).jt  are given in 

(33) and the last condition j n=  is:  

( )

( )

1 1

1 1

0 0

0

01 0

0 0

0 0 .

n

n n

n

p

p

t

- -

b

- >
b


   

   


 

;  

That is ( ). 0n
np t= < . So, in such condition, the new 

dynamic is characterized by the distinct poles imposed on the 
system and the switched system is stable under arbitrary 
switching and the poles 0jp <  = 1,...,j n . 

APPENDIX B 

Proof of Theorem 4. (Borne et al., 2008) For system (53) 
with the control law (51), the dynamic of this system is 
characterized by the distinct poles imposed on the system by 
choosing the poles j jz =a  for = 1,..., 1j n-  , it permits us 

to conclude that the system is stable if all the principal minors 

of ( )n DI M-  are positive, it becomes that ( ). 0j
Dt =  for 

= 1,..., 1j n-  and ( ).n
D nt z= , under these conditions, we 

have that switched system (54) is stable under arbitrary 

switching and 1jz <  = 1,...,j n . 


