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Abstract: In the deregulated power system, the Independent System Operator (ISO) has to update the 
value of Available Transfer Capability (ATC) on Open Access Same Time Information System (OASIS) 
for the secure bilateral/multilateral transaction planning. The off-line methods for calculating ATC 
requires large computation time and or not suitable for on-line estimation, hence the on-line updating of 
ATC requires an accurate method with lesser computation time. In this paper, Radial Basis Function 
Neural Network (RBFNN) with input feature reduction has been proposed for on-line ATC estimation for 
both bilateral and multilateral transactions under normal condition. Multiple and Multi Neural Network is 
developed and their performance is analyzed. The training data for Neural Network is generated using 
Repeated Power Flow (RPF) Algorithm. One of the challenges in the development of Neural Network in 
the power system is the selection of suitable input variables because a power system contains thousands 
of variables. For this purpose, a straight forward and quick procedure called the Sequential Feature 
Selection (SFS) is used to extract the most influenced variables, as features from a large set of variables. 
Simulation work is performed on standard IEEE 24 bus Reliability Test System (RTS) and IEEE 118 bus 
system. The feasibility of implementation of the proposed Neural Network for on-line ATC evaluation is 
discussed. The result of the proposed model is compared with the conventional RPF and developed BPA 
models. Test result shows the effectiveness of the Neural Network approach for on-line estimation of 
ATC. 

Keywords: Available Transfer Capability Deregulated Environment, Radial Basis Function, Repeated 
Power Flow and Sequential Feature Selection. 



1. INTRODUCTION 

In a competitive electricity market, generation companies and 
distribution utilities are engaged by bilateral/multilateral 
transactions. Accurate estimation of ATC plays a crucial role 
in deregulated environment. The ATC of a system is the 
maximum amount of power that can be transferred between 
source and sink without violating the voltage and line limit 
(NERC, 1996) Mathematically ATC is defined as Total 
Transfer Capability (TTC) minus sum of the Transmission 
Reliability Margin (TRM), Existing Transmission 
Commitments (ETC) and capacity benefit margin (CBM) 
Valuated ATC are posted in an open access same time 
information system (FERC, 1996) after reporting to the 
Independent system operator. 

Different methods for calculating ATC are proposed in the 
literature. DC load flow method (Christe et al., 2000)  are bit 
faster than their ac counterparts but model only real power 
flow in the lines rather than MVA, and assume the network to 
be loss free. .Multiple ATCs (Hamound, 2000) are computed 
between more than one pair of locations using PROCOSE 
which uses dc model. (Yan et al., 2002) proposes transfer 

based security constrained OPF with probabilistic method to 
incorporate TRM in ATC calculation. Power transfer 
distribution factor method (PTDF) is used by many electric 
utilities for determination of ATC (Kumar et al., 2004). 
(Ejebe et al., 1998) used corrector and predictor method for 
ATC calculation. It is accurate, but its calculations are 
complex and time consuming. The RPF (Khaburi et al., 2010) 
due to the repeated solving of power flow, after meeting the 
constraints is time consuming and not suitable for on line 
application. The OPF (Joo et al., 2004) method determine 
ATC by formulating an optimization problem in order to 
maximize the power transmission between specific generator 
and load subject to satisfying power balance equations and 
system operating limits. Hence the optimal power flow 
methods are time consuming. 

Several methods have been made to speed up and improve 
the accuracy of calculation of ATC. (Khairuddin et al., 2004) 
proposed a fuzzy logic, which requires three inputs 
irrespective of system size for the determination of ATC. The 
ANN (Luo et al., 2000) requires a large input vector so that 
the training and testing time required is more. Input feature 
selection (Jain et al., 2007) method is incorporated for static 
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ATC with contingency effect in MLP and found to be 
efficient. (Rao et al., 2008) proposes an MLP with BPA using 
ACPTDF for the determination of ATC, and the transaction 
is carried between two areas in IEEE 30 bus system and the 
results are encouraging. An Adaptive Neural network (Sefriti 
et al., 2012) for tuning of parameters in neural networks in 
combination with Fuzzy is proposed and the method if 
incorporated for power systems leads to handling of large 
amount of data’s  for ATC calculation.  Support Vector 
machine (Vaithilingam, 2013) is implemented to find ATC 
and the time taken for training is found to be independent of 
the size of the system. A non-holonomic Adaptive neural 
network for capability calculations is proposed by (Francisco 
G et al., 2014). Methods reported in literature can estimate 
single output ATC for different operating conditions, and 
multiple outputs ATC (Prathiba et al., 2014) without 
reduction in inputs. 

This paper proposes RBF network for on-line estimation of 
ATC with reduced input features. Sequential Forward 
selection (SFS) method is adopted for selecting an optimal 
feature set. The time taken by RBFN for training is less and 
the distance based activation function used in the hidden 
nodes gives the ability to detect the outliers during the 
estimation. In addition with the reduced input features, 
performance of the network is higher with smaller 
computational effort. The effectiveness of the neural 
networks is tested on IEEE 24 Reliability Test System (RTS) 
and IEEE 118 bus system. The results are compared with 
RPF and developed BPN networks. 

 This paper is organized as follows: Section 2 provides 
computation of ATC. In Section 3 proposed method for ATC 
estimation is briefed. The training algorithm and the 
methodology to formulate the input-output data set for the 
ANN is discussed in Section 4. The proposed methodology is 
implemented in Section 5and case study is given in Section 6 
to demonstrate the effectiveness of the presented method. 
Finally, a conclusion is made in Section 7. 

2. COMPUTATION OF ATC 

The objective is to estimate the Available Transfer Capability 
(ATC) for a Bilateral/Multilateral contract by increasing the 
generation at seller bus/buses and at the same time increasing 
the same amount of load at the buyer bus/buses, until the 
power system reaches system limits. 

Mathematically, each bilateral transaction, between a seller at 
bus-i and power purchaser at bus-j, satisfies the following 
power balance relationship: 

ܲீ  െ ܲ ൌ 0																																																																																ሺ1ሻ 

Where,ܲீ  and ܲ are the real power generation at bus-i and 
real power consumption at bus-j. The bilateral transaction 
concept can be generalized to multilateral case, where the 
seller may inject power at several nodes and the buyer can 
draw loads at same or several nodes. A transaction power 
balance of injection of power and drawing of power should 
be satisfied. 

Mathematically, each multilateral transaction, between a 
seller at bus-i and power purchaser at bus-j, satisfies the 
following power balance relationship and is expressed as 

ܲீ 




െ ܲ




			ൌ 0	, ݇				1,2, …… .  ሺ2ሻ																																ݐ

Where,ܲீ 
  and ܲ

   stand for the power injections into the 
source bus-i and power taken out at the sink bus-j, and tkis the 
total number of multilateral transactions 

ATC is calculated as  

ܥܶܣ ൌ ܲ െ ܲ
 			,			∀			∈  ሺ3ሻ																																																			ݐ

The above equation is used for bilateral transactions and 
equation 4 is used for multilateral transaction calculations 

ܥܶܣ 			ൌ 		 ܲ




െ ܲ




				,			݇				1,2, …… .  ሺ4ሻ																	ݐ

Where, ܲ
  is the maximum transfer load at the ithbus, ܲ

is 
the base case load and tk is the total number of transactions. 
Provided TRM and CBM are assumed to be zero for the sake 
of simplicity. 

Satisfying the following operating conditions 

ܲ െ  ܸ ܸ ܻ

ୀ∈ே

cos൫ߠ  ߜ െ ൯ߜ ൌ 0																																ሺ5ሻ 

ܳ െ  ܸ ܸ ܻ

ୀ∈ே

sin൫ߠ  ߜ െ ൯ߜ 	ൌ 0																															ሺ6ሻ 

ܸ  ܸ  ܸ௫																																																																									ሺ7ሻ 

ܵ  ܵ  ܵ௫																																																																	ሺ8ሻ 

Where 

N - Set of all buses 

Pi, Qi  - Real and reactive power at the ith bus 

Yij,ߜ  - Bus matrix elements 

Vi, 	ߜ - Magnitude and angle of ith bus 

Repeated power flow approach for bilateral transaction starts 
from a base case, and repeatedly solves the power flow 
equations each time increasing the power transfer by a large 
increment until an operation limit is reached, here it is 
thermal and voltage limit. The power transfer is then 
decreased one step after that it is increased by smaller steps 
until operation limit is reached. This is done to find 
accurately the value of ATC. The maximum possible increase 
in demand which causes no operating limit violation is the 
ATC. 

To calculate ATC for Multilateral transaction which involves 
more than one seller and one buyer follows the same 
procedure. Here, power is injected at different buses and 
taken out at some other buses simultaneously, such that the 
sum of all generations are equal to all loads in the transaction.  
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The advantage of this approach is its simple implementation 
and the ease to take security constraints into consideration. 
The above method of calculating ATC takes more time for 
computation and it is not suitable for on-line ATC 
computation. In this paper, this method is adopted to generate 
the training and test data for the feature selected RBFNN, 
approach which is suitable for on-line applications. 

3. PROPOSED APPROACH FOR ATC ESTIMATION 

The ATC for real time application by Radial Basis Function 
Neural network approach is proposed. The objective is to 
estimate the ATC for bilateral/multilateral transactions under 
different loading conditions. The real and reactive power for 
different loading condition is given as the input for NN and 
the output of NN is the ATC value in MW for different 
transaction.  The schematic diagram of learning stage of 
neural network is shown in Fig.1. Neural network approach 
for any application has three stages: feature selection of 
inputs, training and testing stages. During the training stage 
the network is trained using the set of selected randomly 
generated data sets by using feature selection which extracts 
the most influence load data’s for determination of ATC. 
This extraction method reduces the dimensionality of inputs 
to ANN thus substantiating the use of ANN for on line 
application.  While training the network, the input and output 
are first normalized between 0 and 1. The input variables 
after normalization are presented to the neural network for 
training.  

After training, the networks are evaluated through a different 
set of input–output data. Once the training and testing of the 
network is over, then the network will be ready for on-line 
application. Review of Radial Basis Function (RBF) is given 
in the section IV and the development of the same for the 
present application is given in section V. 

 

Fig. 1. Schematic diagram of NN learning stage. 

4. REVIEW OF RADIAL BASIS FUNCTION (RBF) 
NEURAL NETWORK 

A feed–forward networks (Laurence V. Fauzett., 1993) RBF 
employs supervised learning algorithm for training. The 
activation function used for the hidden units is selected from 
a class of function called basis function. Properties of RBF’s 

such as localization, approximation, interpolation made them 
attractive in many applications.   

RBFN has only one nonlinear hidden layer and linear output 
layer. During training, all of the input variables are fed to 
hidden layer directly without any weight and only the weights 
between hidden and output layers have to be modified using 
error signal. BPA model requires weight updation in all three 
layers (Sefriti et al., 2012).Thus RBFN requires less training 
time in comparison to BPA model (Devaraj et al., 2002). The 
diagram of   RBFN used in the present work is shown in Fig. 
2. The RBF network is a three layer feed forward network. 
The transfer function of hidden nodes is same as that of 
multivariate Gaussian density function (Francisco et al., 
2014).  

 

Fig. 2. RBF Neural Network Multiple output Structure. 

The output of the jth unit  ∅ሺݔሻ in the hidden layer is given 
by the mathematical expression as 

∅ሺݔሻ ൌ ݔ݁ ቈെ
ฮݔ െ ฮݑ

ߪ2
ଶ 

ଶ

																																																						ሺ9ሻ 

Where x is the input vector, uj,	ߪ are the centre and spread of 
the corresponding Guassian function. .ു. ു denotes the Euclidean 
distance between x and uj. The connections between the 
hidden units and the output units are weighted sums. The 
output value yk of the kth node is given by, 

ݕ ൌ ܹ∅ሺݔሻ  ܹ



ୀଵ
																																																	ሺ10ሻ 

The parameters of the RBF units are determined in three 
steps of the training activity (Devaraj et al., 2011).First, unit 
centres uj are determined by the K-means clustering 
algorithm. Then the widths are determined by a heuristic 
approach that ensures the smoothness and continuity of the 
fitted function. The width of any hidden node is taken as the 
maximum Euclidean distance between the identified centres. 
Finally, weights connecting the RBF units and the output 
units are calculated using multiple regression techniques 
using a least-squares objective function. The normalized 
input and output data are used for training of the RBF neural 
network. Radial Basis Function Network (RBFN), which has 
nonlinear mapping capability, has become increasingly 
popular in recent years due to its structural implicitly and 
training efficiency. The potential advantage of Radial Basis 
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Function Network (RBFN) is its ability to augment new 
training data without the need for retraining. 

5. DEVELOPMENT OF RBFN FOR ATC ESTIMATION 

The various steps involved in the development of multi 
output NN – based ATC estimation model are presented 
below 

5.1 Training Set Generation 

For generating the training set, a large number of load 
patterns were generated by perturbing the loads randomly 
(70% to 130%) at all the buses. The transaction depends on 
various factors such as load level, generation level, line 
status, generator status etc., The frequently changing 
parameter is the load and so it is taken as input to the NN. 
The training set generation is done in off-line mode (Ajit 
kumar Singh et al., 2013).The dimension of inputs used in 
IEEE 24-RTS is 250x34, where both real and reactive powers 
are taken with 250 varying load  bilateral/multilateral 
transactions. 

5.2 Input features selection 

When electric power is transmitted from one location to 
another, the entire transmission network responds to that 
transaction. Flow of power in the transmission lines and bus 
voltages depend on the network topology, real and reactive 
power of the load bus, other transactions on the network etc. 
The ATC of any transmission interface would, therefore, 
become a function of all these variables. In this paper the 
input selected for training the neural network were real and 
reactive loads at all the buses. All the real and reactive loads 
may not have larger impact on the calculation of ATC, but 
only few of them will have. Hence the features having greater 
influential on the calculation of ATC were identified by using 
Sequential feature selection.  

5.3 Sequential Feature selection Technique 

Feature selection, a form of dimensionality reduction, is a 
process of selecting a small optimal set of attributes called 
features, which will give more useful information for 
classification. Engineering judgments can also be used for 
selecting the variables, but the probability of important 
variables getting rejected is more. Feature selection methods 
are grouped into two categories namely filter and wrapper 
method. 

In filter method, features are scored and ranked based on 
certain statistical criteria and the features with the highest 
ranking values are selected. Frequently used filter methods 
include t-test, chi-square test, Wilcoxon Mann-Whitney test, 
Mutual information, Pearson correlation coefficients and 
Principal component analysis. Filter methods are fast but lack 
robustness against interactions among features and feature 
redundancy (Gheyas, 2010). 

In wrapper approach, feature selection is wrapped in a 
learning algorithm. The learning algorithm is applied to 
subsets of features and tested on a hold-out set and prediction 
accuracy is used to determine the feature set quality. 

Generally, the wrapper method is more effective than the 
filter method because it is a problem-specific method and has 
better generalization ability. Wrapper methods are broadly 
classified into two categories based on the search strategy: (i) 
greedy and (ii) randomized/stochastic. Greedy wrapper 
method has less computation time than stochastic wrapper 
method (Kalyani et al., 2011). 

Sequential Feature Selection is a greedy wrapper method, 
which adds or removes from a candidate subset based on 
evaluation of criterion. Sequential Backward Selection (SBS) 
and SFS are the two commonly used sequential feature 
selection methods. SBS method starts with the set of all 
features and progressively eliminates the least promising ones 
until no further increase in objective function is reached. SBS 
stops if the performance of learning algorithms 
drops.Moreover, in the case of problems dealing with high-
dimensional data, SBS finds difficulties in identifying effect 
of variables on target and also becomes highly time 
consuming (Gheyas et al., 2010). 

5.4 Sequential Forward selection Technique 

SFS starts with an empty feature set and iteratively selects 
one feature at a time, starting with the most promising 
feature, and evaluating the criterion function based on a 10-
fold cross validation. Criterion function is an evaluation 
function used to test the quality of feature subset. The 
criterion function used in the present work is loss measure 
that is calculation of MSE in cross validation of each 
candidate feature subset. This process is continuous until no 
further decrease in criterion function is obtained by adding 
more features (Kalyani et al., 2011). 

5.5 SFS Algorithm 

Step 1 : Start with an empty set Z0 =ሼ0ሽ. 

Step 2 : Set the feature count K=1. 

Step 3 : Select the best pattern attribute X* giving minimum 
error rate,    i.e. 

  X*=			݉݅݊
௫ೖ

ሾܬሺܼିଵ  ܺ∗ሻሿ																													ሺ11ሻ 

Step 4 : Set ZK =ܼିଵ  ܺ∗ ;		݇ ൌ ݇  1. 

Step 5 : Move to step 2 until there is no further decrease in 
the criterion function J. 

5.6 Training and testing of neural network 

The neural network used for ATC estimation consists of three 
layers. The input layer has neurons equal to the number of 
inputs selected and output layer has eight neurons. The first 
stage of RBF network learning is the identification of the 
cluster centres through K-means clustering algorithm which 
uses Euclidean distance as a measure of dissimilarity. The 
number of hidden units depends on the input units. Best 
number of hidden unit is determined by training several 
networks and estimating the generalization error. Trial and 
error procedure is followed to select the suitable number of 
neurons in the hidden layer.  
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Twenty iterations of the clustering algorithm followed by 
liner regression are performed to estimate the parameters of 
the network. The selected variables after normalization are 
given as input to the neural network for training. After 
training, the networks are evaluated through a different set of 
input–output data. Separate networks dedicated for each 
normal and contingency state are developed using the data 
set. Now the developed models of RBFN can estimate ATC 
values for different operating conditions. 

6. RESULTS AND DISCUSSION 

The proposed RBFN-based unified approach was applied to 
IEEE24-RTS, and IEEE-118 bus system (Power System test 
case, 1993) for on-line estimation of ATC under normal state. 
Different types of transactions involving both bilateral and 
multilateral contracts have been considered. Bus voltage 
limits, line flow limits and generators real and reactive power 
limits have been considered for determination of the static 
ATC. The ATC is calculated in terms of real power transfer 
only. For determination of ATC, both real and reactive power 
loads at selected sink bus have been increased. The reactive 
power is increased as a percentage of real power increase. 
The outcome of the trained network is compared with BPNN 
and the performance by the conventional Repeated Power 
Flow algorithm. For the test system, totally four different 
Neural Network Models have been developed for 
determining Static ATC under different operating conditions.  
For each test system, 150 data are used for training and 100 
data sets are used for testing.  The NN models are developed 
using the MATLAB toolbox. The ATC estimation is carried 
out on Intel (R) Core (TM) i5-3317U CPU 1.70 GHZ. 
Processor.  

The developed neural network models are, 

Case 1 : Multiple Neural Networks with and without Input 
Reduction 

Case 2 : Multiple-Output Neural Network with and without 
and Input Reduction 

The details and performance of the Individual and Unified 
Neural Network models developed for the RBFN and BPNN 
test systems are presented here. 

6.1   Static ATC assessment in IEEE RTS 24 Bus system 

IEEE RTS 24 bus system consists of 11 generator buses, 13 
load buses and 38 transmission lines. For generating training 
data for the ANN, the loads at the load buses are varied 
randomly between 70% to 130% of base load. Based on the 
algorithm presented in section 3, a total of 250 input-output 
pairs were generated with 150 for training and 100 for 
testing. There are 6 frequently occurring transactions 
including 5 bilateral and one multilateral transaction which 
have been considered for ATC determination. Transaction T1 
is between seller bus 23 and buyer bus-3. Multilateral 
transaction T6 is between seller buses 23 and 15 and buyer 
buses 10 and 3. The seller buses 23 and 15 share the increase 
in load of buyer buses in the ratio of 0.6 and 0.4 respectively. 
The details of different transaction are given in table 1. 

 

Table 1. Transaction details 

Transaction 
Source bus 

(Transaction share) 
Sink bus 

(Transaction share) 

T1 
T2 
T3 
T4 
T5 
T6 

23(1.0) 
21(1.0) 
22(1.0) 
23(1.0) 
22(1, 0) 
23, 10 (0.6, 0.4) 

3(1, 0) 
6(1, 0) 
5(1, 0) 
15(1, 0) 
9(1, 0) 
15, 3 (0.6, 0.4) 

Case 1 : Multiple Neural Networks with and without 
Input  Reduction 

In this case individual networks dedicated for each 
transaction have been developed to determine the ATC. The 
real and reactive power load at all the buses is taken as input 
and respective ATC is taken as output for neural network. Six 
neural networks are developed and trained with RBFN, and 
their performance is compared with BPN.   A total of 34 
variables were used as input to the BPN and RBFN based 
neural network. The input layer of BPN contained 34 neurons 
and the output layer consists of one neuron for all the six 
transactions. The optimum numbers of neurons in the hidden 
layer were found to be 10 for all the transactions. Thus the 
structure of BPN used is (34-10-1). The network was trained 
with 150 data sets and tested with 100 data sets. The average 
absolute error is 0.119 and the training time is 23.63 secs.  

To demonstrate the effectiveness of the proposed RBFN 
model it has been trained and tested with the same pattern as 
BPN has been trained. Six different RBFNs were designed 
for estimating ATC values for the six transactions considered. 
The optimum sizes of these six RBFN were found to be (34-
25-1),(34-75-1),(34-50-1),(34-50-1),(34-48-1),(34-70-1) with 
the vigilance parameters equal to 0.415 
,0.461,0.32,0.32,0.31,0.512 for the six transactions. The 
number of hidden units for RBFN network is calculated by 
Euclidean distance based clustering. The normalized input 
and output data are used for training of the RBF neural 
network. During training of the RBF network, care has been 
taken to avoid network memorization or over training. The 
optimal learning is achieved at the global minimum of testing 
error. It was observed that the training in this case was faster 
and also its performance was better as compared to the BPA 
model. The training of RBF neural network requires less 
computation time as compared to the BPA model, since only 
the second layer weights have to be calculated using error 
signal.The network was trained with 150 datas and tested 
with 100 data sets. The average absolute error is 1.0837x10 -4 

and the training time is 14.718 secs.  

The performance of these two neural networks was compared 
with the conventional RPF method, for different loadings 
which is given in Table 4 for only one transaction. It can be 
seen that the ATC value computed by RBFN closely matches 
with that computed by the RPF method. The RBFN network 
has been found to compute he ATC values for all the 
transactions and different loading conditions almost 
instantaneously. Results from Table 2 reveals that the
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 propose RBFN network estimates ATC values more 
accurately, apart from that the RBFN exhibits better 
generalization performance than the BPN network in most of 
the cases 

Table 2. Performance of MNN without SFS 

Transaction 
 
 

Training Time 
(Secs) 

Testing Error  
           (MSE) 

BPN RBF BPN RBF 

T1 
T2 
T3 
T4 
T5 
T6 

1.575 
3.901 
3.931 
5.600 
4.882 
3.743 

1.010 
3.276 
2.496 
2.449 
2.808 
2.932 

6.7x10-3 

7.5x10-3 

7.6x10-2 

3.1x10-2 

1.0x10-2 

8.0x10-3 

9.17x10-5 
1.22x10-4 
1.45x10-4 
7.83x10-4 
1.93x10-4 

8.89x10-5 

The parameters and performance of single output network for 
transaction 23-3 at normal operating condition is compared 
with (Prathiba et al., 2014) and presented in Table 3. 

Table 3. Comparison of Single output Neural Network 
Without SFS for transaction 23-3 

Type of 
Network 

No.of 
basis 
Function 

Training 
Time 
(secs) 

Testing 
Error 
(MSE) 

RBFN 25 1.010 9.17x10-5

 

BPN(Prathiba etal., 
2014) 

10 1.5756 6.7x10-3

 

The Table 3 compares the training and testing performance of 
the individual network model for bilateral transaction 23-3 
under normal operating condition. Total number of input 
variables for the transaction is 34, which includes the real and 
reactive power load at all the buses and the respective ATC is 
taken as output for neural network. The BPA network needs 
ten hidden layers. The mean squared error is 6.7x10-3.The 
time taken by the networks (Prathiba et al., 2014) is 
1.5756secs.The developed RBFN network needs 1.010 secs 
and the mean square error is 9.17x10-5. Thus the RBFN 
exhibits better generalization performance than the BPN 
network in this case. 

Table 4. Comparison of Single output Neural Network 
Without SFS for Transaction 23-3for loading 

Loading 
Condition 
% 

ATC in MW 
BPA 
(Prathiba 
etal.,2014) 

RBFN RPF 

80.82 160.33 158.43 159.00 
86.95 148.39 147.23 147.30 
90.95 140.93 138.98 139.00 
96.85 126.34 126.06 126.00 
100.59 116.92 117.04 117.15 

Table 4 shows the static ATC for transaction 23-3 for 
different operating condition obtained using Neural network 
and it is compared with the conventional RPF and BPN. The 
percentage error for 100.59% loading with developed RBFN 

network is found to be 0.0938 as compared to 0.213 with 
BPA (Prathiba et al.,2014) and thus validates the uniqueness 
of the developed model. Similarly the estimation of ATC and 
the error calculated for all the transactions are found to be 
accurate and time taken for training the network is also 
comparatively less with the already developed models thus 
validating the objective of on line estimation of ATC using 
RBFN. While RBFN network exhibit the same properties as 
back propagation networks such as generalization ability and 
robustness, they also have additional advantage of fast 
learning and ability to detect outliers during estimation.  

A large number of input features increases complexity of the 
neural network as well as its training time. Sequential 
forward selection was used to identify the optimal features 
set. A total of 34 in numbers of real and reactive power load 
are used as input to the network. The extracted variables and 
the percentage of dimensionality reduction vary for 
Individual developed model depending upon the transaction 
and are listed in Table 5. 

Table 5. Input Selection for Multiple Neural Networks 

Transaction Selected Features(Loads  at buses) 

23-3 

 

21-6 

 

22-5 

 

23-15 

 

23-10,15-3 

 

PL = 1,3,4,7,8,9,10,11,12,15 

QL = 18,19,20,21,22,23,29,30 

PL = 1,3,4,5,6,7,9,10,11,12,13,15,17 

QL = 18,19,21,22,23,24,25,27,29,30,32 

PL = 1,3,4,5,6,7,9,10,11,12,13,14,15,17 

QL = 18,19,20,21,22,23,24,26,27,29,30 

PL = 3,4,5,6,7,,9,10,11,12,13,14,15,17 

QL = 18,19,20,21,22,23,24,26,27,29,30 

PL = 1,3,4,7,8,9,10,11,12,15 

QL = 18,19,21,22,23,29,30 

Total number of input variables for all the transaction is 34. 
The percentage of dimensionality reduction using SFS 
technique is presented in Table 6.Dimensionality reduction is 
given by the ratio of number of optimal selected features to 
the total number of input variables. 

Table 6. Dimensionality Reduction using SFS 

Transaction Features Selected % Reduction 

T1 
T2 
T3 
T4 
T5 
T6 

18 
23 
27 
24 
30 
17 

52.94  
67.76 
79.41 
70.58 
88.23 
50.0 

These reduced data’s after normalization along with the 
output are used to train the network. Ten iterations of the 
clustering algorithm followed by linear regression are 
performed to estimate the parameters of the network. As the 
value of basis function is not known in advance, a trial and 
error procedure is followed to select the optimum number. 
After training, the networks are tested with the test data set to 
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assess the generalization capability of the developed network. 
Table 7 compares the performance of the proposed RBF 
network-based approach with the commonly used BPN 
network. The networks are trained with back propagation 
algorithm to reach the same error level achieved by RBF 
networks during the training. After training the networks are 
tested with the test data. From this table, it is observed that 
RBF networks take 14.679 secs time for training, but they 
require more number of hidden nodes as compared to BPN 
networks, where the training time is 20.532secs. Apart from 
that the RBF networks exhibits better generalization 
performance than the BPN network in most of the cases and 
the average error for RBFN is 4.32x10-4 and for BPN the 
error is 0.0106. 

Table 7. Performance of MNN with SFS 

Transaction 
Training Time 

(Secs) 
Testing Error 

(MSE) 

BPN RBF BPN RBF 

T1 
T2 
T3 
T4 
T5 
T6 

2.428 
2.901 
2.516 
5.491 
4.274 
2.923 

2.433 
2.106 
2.215 
2.589 
2.792 
2.542 

5.8x10-3 

7.3x10-3 

8.7x10-3 

2.9x10-2 

1.1x10-2 

6.4x10-4 

1.49x10-4 
6.69x10-4 
7.26x10-4 
9.65x10-4 
8.18x10-5 

1.16x10-5 

The estimated ATC with feature reduction for all the six 
models are presented in Table 8. From the Table it can be 
observed that RBFN, with features selected using SFS 
technique, provides accurate results. The comparison of 
normalized ATC obtained for the various testing patterns 
using RBF and BPN is made and the results are as shown in 
the Figures 3 and 4 for the transactions TI and T6. It is 
inferred that RBF results are very much closer to the actual 
results than the BPN results. 

 

Fig. 3. Comparison of patterns of NN with SFS for T1. 

 

Fig. 4. Comparison of patterns of NN with SFS for T6. 

Table 8. ATC for Multiple Neural Networks with SFS 

Load % 
ATC with 

RBFN 
MW 

ATC  with 
BPN 
MW 

ATC with 
RPF 
MW 

Limiting 
Factor 

From RPF
Bilateral Transaction T1  

105.32 105.153 105.035 105.200  
V3 115.37 77.764 76.629 77.200 

126.37 41.112 44.257 41.700 
Bilateral Transaction T2  

91.72 135.015 133.657 134.500  
V10 116.9 75.296 74.878 75.300 

128.66 47.438 47.438 47.35 
Bilateral Transaction T3  

98.04 223.446 224.488 223.60  
V5 111.79 191.752 190.892 191.00 

115.37 181.848 180.971 181.050 
Bilateral Transaction T4  

90.62 921.862 922.989 922.000  
V24 114.27 782.527 786.848 782.100 

123.05 728.005 727.983 728.250 
Bilateral Transaction T5  

94.24 303.856 300.272 303.150  
V9 102.41 271.742 273.881 271.750 

126.07 129.550 129.317 130.100 
Multilateral Transaction T6  

79.59 150.432 150.426 150.450  
V3 96.58 118.472 119.877 118.100 

118.62 62.646 62.412 62.450 

The absolute errors of RBFN and BPN testing patterns results 
is compared and as shown in figures 5 and 6 for transactions 
T1 and T6 respectively. From the figures it is observed that 
the RBF is providing ATC with more reasonable accuracy for 
the transactions. 

 

Fig. 5. Errors in ATC estimation for T1 with SFS. 

 

Fig. 6. Errors in ATC estimation for T6 with SFS. 
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Case 2 : Multiple-Output Neural Network with and 
without input reduction: 

Case 2 presents the performance of multiple-output neural 
network with and without input reduction. Each transaction 
contains different selected inputs by SFS technique. So 
selecting inputs for multiple-output network is challenging. 
In this work, trial and error method is used to select inputs 
from six transactions selected inputs based on minimum 
training error. The finally selected inputs for multi-output 
network is real and reactive power load at buses   are 16 in 
number and are  P L1, P L3, P L4, P L7, P L8, P L9,PL10, P L11, P L12, 
P L15, Q L18, Q L21, Q L22, Q L23, Q L29, Q L30.The Multiple 
outputs estimated ATC with and without feature reduction 
are presented in Table 9 for different loading conditions. The 
feature selection technique used here provides accurate 
results. This may be attributed to the fact that this technique 
identifies the best optimal feature set. SFS method uses a 
simple criterion function called error rate and iteratively 
selects the optimal features. Once the optimal features are 
identified the dimension of data matrix is reduced with 
respect to the input features. These features are fed as input to 
the developed model. The performance of the multiple-output 
RBF network-based with and without reduced features with 
the commonly used BPN network is compared in Table 10 
and 11.The networks are trained with back propagation 
algorithm to reach the same error level achieved by RBF 
networks during the training. After training the networks are 
tested with the test data. From these tables, it is observed that 
RBF networks take less time for training, but they require 
more number of hidden nodes as compared to BPN networks. 
Apart from that the RBF exhibits better generalization 
performance than the BPN network in most of the cases. 

Table 9. Multiple Outputs ATC with and without SFS 

% Load 
RBFN (MW) BPN(MW) 

Without 
SFS 

With SFS 
Without  

SFS 
With 
 SFS 

81.15 158.46 158.40 157.66 157.90 
90.62 139.73 139.76 139.71 139.76 
96.58 126.74 126.64 126.74 126.64 

101.23 115.44 115.54 115.44 115.12 
109.77 93.44 92.75 92.12 92.71 
114.84 78.67 78.78 78.32 78.84 
119.03 66.07 66.00 64.21 63.87 
126.07 42.61 42.76 43.21 43.24 

Table 10. Performance of MNN without  SFS (34-10-6) 

Training Time 
(Secs) 

Testing Error 
(MSE) 

BPN RBFN BPN RBFN 

6.318 3.385 1.39x10-4 9.235x10-5 

Table 11. Performance of MNN with SFS (16-10-6) 

     Training Time 
           (Secs) 

Testing Error 
(MSE) 

BPN RBFN BPA RBFN 

  5.9 2.04 1.26x10-4 7.39810-5 

The number of input features for the reduced multiple output 
neural networks are reduced to 47% of the original inputs, 
and hence the developed Unified Network is capable of 
estimating ATC accurately. Table 12 shows training time and 
generalization capability of various RBFN models developed.  

Table 12. Performance of Unified and Individual NN 

Network 
Variants 

Time   (secs) Error % 

RBFN Individual Model 

Without SFS 14.679 1.0837x10-4 

With SFS 8.7 4.32x10-4 

RBFN Unified Model 

Without SFS 3.3852 9.235x10-5 

With SFS 2.045 7.396x10-5 

BPN Individual Model 

Without SFS 23.63 0.119 

With SFS 19.12 0.0106 

                               BPN Unified Model 

Without SFS 6.318 1.39x10-4 

With SFS 5.990 1.26x10-4 

It is found that the generalization capability of proposed 
RBFN unified model can estimate ATC for more than one 
operating condition without compromising the accuracy. This 
reduces the computation time in real folds. In a real time 
operation of deregulated power system, the ISO has to 
estimate ATC values for many possible proposed 
transactions. The process of estimating ATC value for all the 
proposed transactions will be cumbersome and time 
consuming. As the RBFN unified model can estimates ATC 
value for more than one proposed transactions in a single shot 
the ISO can evaluate many transactions in short time and 
accurately. Further the computation time is lesser than the 
other AI based methods. Hence this method is best suited for 
ATC estimation. 

6.2 Static ATC assessment in IEEE 118-Bus Test System 

The IEEE 118-bus test system is used to demonstrate the 
feasibility of the proposed model for normal case. It has 54 
generator buses and 186 transmission lines.  All other data 
are the same as the standard IEEE 118-bus data (Power 
System Test Case Archieve, 1993). Changing the load and 
generations randomly between 70% to 110% of their base 
values respectively, and 250 load scenarios were generated. 
For each of the load scenarios, ATC, for this system, has 
been determined for five bilateral transactions and a 
multilateral transaction. The Transaction details are given in 
Table 13. Multilateral transaction T6 is between seller buses 
5 and 6 and buyer buses 40 and 60. The seller buses 72 and 
80 share the increase in load of buyer buses in the ratio of 0.6 
and 0.4 respectively. The ATC between any transmission 
interfaces is a function of network topology, generation 
dispatch and customer demand level. It is mostly affected by 
the real and reactive power loads. Hence, the real and 
reactive power loads at all the PV and PQ buses (total 189 in 
number) were used as the data set for input features selection 
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to the neural network. A large number of input features 
increases complexity of the network as well as its training 
time. Hence, SFS technique was used to identify the 
important variables.  

Table 13.  Transaction details 

Transaction 
 

Source bus 
(Transaction share) 

 

Sink bus 
(Transaction share) 

 
T1 
T2 
T3 
T4 
T5 
T6 

32(1.0) 
12(1.0) 
24(1.0) 
65(1.0) 
46(1, 0) 
5,6 (0.6, 0.4) 

          75(1, 0) 
          60(1, 0) 
          40(1, 0) 
          100(1, 0) 
          80(1, 0) 
40,60 (0.6, 0.4) 

Case 1: Multiple Neural Networks with and without 
Input Dimensionality Reduction 

In this case separate networks dedicated for each transaction 
have been developed to determine the ATC. The real and 
reactive power load at all the buses is taken as input and 
respective ATC is taken as output for neural network. Six 
neural networks are developed and trained with RBFN, and 
their performance is compared with BPNN. 

Table 14 compares the performance of the proposed RBF 
network-based approach without reduced features with the 
commonly used BPN network. The networks are trained with 
back propagation algorithm to reach the same error level 
achieved by RBF networks during the training. After training 
the networks are tested with the test data. From this table, it is 
observed that the total training time required by RBFN is 
26.09 secs whereas BPN took 71.75 secs for complete 
training. The average error of RBF model is 9.068 x10-4.  The 
BPN networks requires ten number of hidden nodes for all 
the transactions ,but the number of basic functions required 
by the RBFN is more depending upon the transactions. Apart 
from that the RBF networks exhibits better generalization 
performance than the BPN network in most of the cases. 

Table 14. Performance of Multi NN without SFS 

Transaction 
 

Training Time 
(Secs) 

Testing Error 
(MSE) 

BPN RBF BPN RBF 
T1 
T2 
T3 
T4 
T5 
T6 

14.10 
3.38 
16.72 
17.06 
16.98 
3.51 

3.82 
3.66 
4.54 
5.91 
4.75 
3.41 

8.4x10-5 

7.9x10-5 

2.83x10-4 

2.07x10-4 

2.6x10-4 

7.60x10-5 

3.61x10-4 
5.31x10-5 
4.1x10-5 
4.7x10-3 
1.6x10-4 

4.89x10-5 

A large number of input features increases complexity of the 
neural network as well as its training time. Hence it is 
essential to select optimum number of inputs, which are able 
to clearly define the input-output mapping. 

Sequential forward selection was used to identify important 
variables by calculating the relevance of the variables to the 
target output. A total of 189 in numbers of real and reactive 
power load are used as input to the network. These reduced 

data’s after normalization along with the output are used to 
train the network. Total number of input variables for all the 
transaction is 189. Dimensionality reduction is given by the 
ratio of number of optimal selected features to the total 
number of input variables. The extracted variables and the 
percentage of dimensionality reduction vary depending upon 
the transaction and are listed in Table 15. 

Fifteen iterations of the clustering algorithm followed by 
linear regression are performed to estimate the parameters of 
the network. As the value of basis function is not known in 
advance, a trial and error procedure is followed to select the 
optimum number. After training, the networks are tested with 
the test data set to assess the generalization capability of the 
developed network. The estimated ATC with feature 
reduction for all the six models are presented in Table 16. 
From the Table it can be observed that RBFNN, with features 
selected using SFS technique, provides accurate results, in 
comparison with the conventional RPF method. 

Table 15. Dimensionality Reduction with SFS 

Transaction Features Selected % Reduction 

T1 
T2 
T3 
T4 
T5 
T6 

48 
31 
37 
53 
48 
31 

25.39 
16.4 
19.57 
28.04 
25.39 
16.4 

Table16. ATC for Multiple RBFNN with SFS 

Load %
ATC with 

RBFN 
MW 

ATC with BPA 
MW 

ATC with 
RPF 
MW 

Limiting 
Factor 

From RPF
Bilateral Transaction T1  

 V118 
 84.0 168.5 168.61 169.05 

107.3 143.27 141.93 143.15 
Bilateral Transaction T2  

V38 84.0 212.74 216.07 212.75 
102.69 173.90 176.33 173.9 

Bilateral Transaction T3  
87.22 112.58 112.11 112.6  

           V3890.39 107.44 106.89 107.45 
Bilateral Transaction T4  

93.4 519.12 518.72 519.6  
T 119107.3 293.59 291.43 294.85 

Bilateral Transaction T5  
76.89 507.47 508.51 506.8 T 63 
97.86 506.39 498.443 503.7 

Multilateral Transaction T6  
V38 77.43 215.61 217.703 215.65 

108.02 158.26 160.85 158.5 

Table 17 compares the performance of the proposed RBF 
network-based approach with the commonly used BPN 
network. The networks are trained with back propagation 
algorithm to reach the same error level achieved by RBF 
networks during the training. After training the networks are 
tested with the test data. From this table, it is observed that 
RBF networks take 22.2886 secs time for training, but they 
require more number of hidden nodes as compared to BPN 
networks, where the training time is 43.6437 secs. Apart from 
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that the RBF networks exhibits better generalization 
performance than the BPN network in most of the cases 

Table 17. Performance of Multi NN with SFS 

Transaction 
 

Training Time 
(Secs) 

Testing Error 
(MSE) 

BPA RBF BPA RBF 
T1 
T2 
T3 
T4 
T5 
T6 

6.26 
2.43 
11.3 
11.3 
10.18 
1.99 

4.52 
2.12 
5.24 
4.68 
4.50 
1.21 

8.11x10-5 

8.63x10-3 

1.44x10-4 

2.07x10-4 

2.41x10-4 

8.9x10-3 

3.15 x10-5 
3.51x10-9 
1.73x10-6 
3.83x10-5 
2.27x10-5 
3.92x10-7 

The comparison of normalized ATC obtained for the various 
testing patterns using RBF and BPN is made and the results 
are as shown in the Figures 7and 8 for the transactions T2 
and T6. It is inferred that RBF results are very much closer to 
the actual results than the BPN results 

 

Fig. 7. Errors in ATC estimation for T1 with SFS. 

 

Fig. 8.  Errors in ATC estimation for T6 with SFS. 

Case 2: Multiple -Output Neural Network with and 
without input reduction 

Case 2 presents the performance of multiple-output neural 
network with and without input reduction. Each transaction 
contains different selected inputs by SFS technique. So 
selecting inputs for multiple-output network is challenging. 
In this work, trial and error method is used to select inputs 
from six transactions based on minimum training error. The 
finally selected inputs for multi-output network are real and 
reactive power load at buses are 22 in number and they are P 
L8, P L11, P L16, P L19, P L22, P L24, P L26, P L31, P L32, P L36, PL41, P 
L48, P L49, P L51, P L59, P L70, P L71, PL97, Q L121, Q L125, Q L142, Q 
L155. Dimensionality reduction of 8.4%is done. The Multiple 

outputs estimated ATC with and without feature reduction for 
different loading conditions are presented in Table 16.  

Table 18. ATC for Multiple Networks with SFS for T6 

% Load 

ATC with RBFN       
(MW) 

ATC with BPN        
(MW) 

Without 
SFS 

With SFS 
Without 

SFS 
With 
SFS 

79.55 182.292 182.280 181.92 181.62 
93.79 149.826 149.810 148.34 148.32 

102.97 228.148 227.713 228.05 227.62 
107.3 109.581 109.491 108.91 108.58 

Table 19 and 20 compares the performance of the multiple-
output RBF network-based with and without reduced features 
with the commonly used BPN network. 

Table 19. Performance of Multiple outputs Neural 
 Networks with all features (189-10-6) 

Training Time 
(Secs) 

Testing Error 
(MSE) 

BPN RBFN BPN RBFN 
  17.8 6.879 1.85x10-4 3.609x10-5 

 

Table 20. Performance of Multiple outputs Neural 
Network with SFS (17-10-6) 

Training Time 
(Secs) 

Testing Error 
(MSE) 

BPN RBFN BPN RBFN 
  10.358 2.204 1.16x10-4 9.17810-5 

The number of input features for the reduced multiple output 
neural networks are reduced to half in number, and hence the 
unified Network is capable of estimating ATC accurately.  

Table 20 Performance of Unified and Individual NN 

Network                       Variants 
Time   (secs) Error % 

RBFN Multiple Networks Model 
Without SFS 26.09 9.068x10-4

With SFS 18.77 4.32x10-4 
RBFN Multi- Output  Model 

Without SFS 6.879 3.609x10-5

With SFS 2.204 9.17810-5 
BPN Multiple Networks Model  

Without SFS 71.75 1.66x10-4

With SFS 40.47 1.972x10-4 
                        BPN Multi- Output  Model   
Without SFS 17.8         1.85x10-4

With SFS 10.358           1.16x10-4 

The values calculated with SFS and without SFS are same 
with minimum error. The performance of the RBFN network 
is superior to the BPN network in terms of testing and 
training time and thus validates the accurate on-line 
estimation of ATC. Table 20 compares the training time and 
generalization capability of various RBFN models developed  
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It is found that the generalization capability of proposed 
RBFN multiple output model can estimate ATC for more 
than one operating condition without compromising the 
accuracy. This reduces the computation time in real folds. In 
a real time operation of deregulated power system, the ISO 
has to estimate ATC values for many possible proposed 
transactions. The number of input features for the reduced 
multiple output neural networks are reduced to ninety 
percent, and hence the multiple outputs Network is capable of 
estimating ATC accurately.Figure19 shows training time and 
generalization capability of various RBFN models developed.  

 

Fig. 9. Comparison of developed Networks with and without 
SFS 

The process of estimating ATC value for all the proposed 
transactions will be cumbersome and time consuming. As the 
RBFN unified model can estimates ATC value for more than 
one proposed transactions in a single shot the ISO can 
evaluate many transactions in short time and accurately. 
Further the computation time is lesser than the other AI based 
methods. Hence this method is best suited for ATC 
estimation. 

7.  CONCLUSION 

In a real time operation of deregulated power system, the ISO 
has to estimate ATC values for many possible proposed 
transactions and for different operating conditions. The 
evaluation of ATC, by most of the conventional methods, 
requires large computation time. To overcome this, an 
approach based on Reduced input Radial basis function 
Neural Network(RBFNN) Unified Model has been proposed 
to determine the static ATC under wide range of variations. 
The reduced features for unified and individual models have 
been selected using Sequential Feature Selection technique 
and the performance of the developed Unified and Individual 
Models for NN are compared. Simulation results on the 24-

RTS bus system and IEEE 118 Bus system reveal the 
following. 

 The RBFN trained Unified Model with features selected 
using Sequential Forward Selection outperformed as 
compared to that Individual model. 

 The proposed RBFN trained Unified model is able to 
determine ATC value as accurately as obtained through 
the conventional RPF method. 

 The proposed RBFN Unified model is much faster as 
compared to other developed models and conventional 
methods and is found to be suitable to estimate ATC 
values for more than one proposed transactions and for 
different operating conditions in short time 
simultaneously. This enhances the performance of ISO. 
The Unified RBFN model can estimate ATC with good 
accuracy and with reasonable time. This makes the 
RBFN model suitable for real time applications. 
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