
CEAI, Vol.17, No.3 pp. 98-104, 2015 Printed in Romania

Attitude Control and Stabilization of a Two-Wheeled Self-Balancing
Robot

Omer Saleem Bhatti*, Khalid Mehmood-ul-Hasan**,
Muhammad Anas Imtiaz*

* Electrical Engineering Department, FAST - NU,

Lahore, Pakistan,(e-mail: omersaleembhatti@gmail.com, anas_imtiaz@yahoo.com)
** Electrical Engineering Department, UET,

Lahore, Pakistan, (e-mail: kmhasan@uet.edu.pk)

Abstract: The paper demonstrates development of attitude control and stabilization technique of a self-
balancing robot. The main aim is to ensure its vertical stability, even in the presence of an external
bounded impulsive force. By electronically programming a hard-coded vertical reference position, the
proposed robotic system can be balanced at the desired set-point angle. The orientation and the extent of
inclination of the robot body in either direction are measured with inertial-sensor based feedback. The
proposed system uses a combination of first-order spatial filters in order to remove the noise and to merge
the analog sensor readings. Comparative performance analysis is also done between a simple PID
controller and an auto-tuned PID controller for the optimization of attitude control and stabilization of the
self-balancing platform.

Keywords: Attitude control, auto-tuned PID, inertial sensors, filters, PID, self-balancing robot.

1. INTRODUCTION

Two-wheeled balancing robots have immense significance in
the area of robotics and control systems engineering. They
offer to develop an intricate control system that is capable of
maintaining stability of an otherwise unstable system. This
balancing robotic system imitates the behavior of an inverted
pendulum and in effect works on the same principle as the
Pole and Cart theory. Hence, these principles are taken into
account while designing a robot that is capable of balancing
upright on its two wheels that are aligned on the same axle.
The two wheels are situated below the base and allow the
robot chassis to maintain an upright position by moving in
the direction of tilt, either forward or backward, in an attempt
to keep the centre of the mass above the wheel axles. These
robots are highly non-linear and under-actuated. Since they
are able to balance themselves on only two co-axial
motorized wheels, it is very easy for them to maneuver on
various terrains. Without active control, these systems
become unstable and collapse. Apart from balancing the
posture in a stable upright fashion, they are also able to
regain their posture and stand erect, even when a bounded
external force is applied to them. This force acts as a
disturbance to the system. These robots sense their inclination
(rotational pitch angle) continuously, compare it with the set-
point reference provided by the user and correct their
orientation by keeping it at the desired pitch angle. The
system also keeps track of the maximum recovery pitch angle
(the threshold angular displacement of the robot from the
vertical before it collapses). Inverted pendulum being an
inherently unstable system tends to fall in either direction. A
conceptual view of the proposed robotic system is shown in
Fig. 1. The balancing torque is given by (1).

T	 ൌ 	Mgsinሺθሻ																																											 (1)	

where,
M = moment arm (perpendicular distance between center of
mass and distance from pivot)
g = acceleration due to gravity
θ = inclination (angle with the vertical)

Fig. 1. Conceptual view of the robot.

When θ = 0 degree, the robot is in balanced position and no
balancing torque in needed. With θ> 0 or θ< 0, the balancing
torque moves the robot in the direction against falling torque.
In this way, the robot tries to retain its balanced position.
Development of a flexible self-balancing robotic platform
comprises of several essential units. These units include a
reliable systems model, sensors, signal processors, a stable
control scheme and actuators. These units have been properly
discussed by (Nawawi et al., 2007). In the past, the
researchers have extensively used MATLAB toolbox to
efficiently model and control a self-balancing robot (Araghi,
et al., 2011).Interactive software tools and virtual prototyping
techniques, such as ADAMS, can be used to build and

CONTROL ENGINEERING AND APPLIED INFORMATICS 99

simulate a stable mechanical system model (Qian Hao et al.,
2007). Several non-linear control schemes have been
proposed and their performance has been verified by rigorous
experimentation. Neural network controllers have been used
in mobile inverted pendulum experiments to control the
pendulum angle and the position of the cart (S. Jung et al.,
2007). Simulation results with PID backstepping control
algorithms have proven that with three control loops, this
algorithm can offer a quicker response to balance the two-
wheeled platform (Nguyen Gia Minh Thao et al., 2010).
State-feedback controllers and Linear Quadratic Regulators
(LQR) have also been experimentally validated to provide
robustness for the balance control of a self-balancing robot
(Solis and Takanishi, 2010; Junfeng and Wanyang, 2011).

2. EXPERIMENTAL SETUP

The voltage signal is the input and the rotational pitch angle
serves as the output. The high level block diagram of the
robot is shown in the Fig.2.

Fig. 2. High Level Block Diagram.

The inertial sensors (gyroscope and accelerometer) are used
to provide analog signals regarding the attitude and
orientation of the robot to the microcontroller, PIC18F452
(Microchip, 2006). The microcontroller processes them,
compares them with the hard-coded equilibrium set-point,
and then issues appropriate motor commands to actuate the
DC geared motors via the power electronic motor driver
circuit.

2.1 Sensors & Measurements

The information regarding the orientation and the attitude of
the robot is measured with the aid of analog gyroscope,
LPR550AL (ST Micro Electronics n.d.), and accelerometer,
ADXL335 (Analog Devices (a), n.d.), sensors. The
gyroscope tells us about the rate of change of angle (dθ/dt) of
the robot body in the forward/backward direction. The
accelerometer tells us about the acceleration along the desired
axis (d2x/dt2). The purpose of using both of these sensors,
instead of one, is due to the fact that the accelerometer
readings have noise while the gyroscope reading has an
inherent drift. Hence, in order to overcome the individual
short-comings of the two sensors, they are fused
appropriately. This feedback provides reliable information

regarding the robot’s orientation. Using the basic
trigonometric relations, this acceleration is used to compute
angular displacement (θ) of the robot body along with the
direction of tilt, as shown in Fig.3. If one axis (x-axis) is used
to calculate the tilted angle of the accelerometer, the
trigonometry relationship of (2) is used (Analog Devices (a),
n.d.).

θ ൌ	 sinିଵ ቀ
୚౥౫౪ି୚౥౜౜౩౛౪

ୗ
ቁ																																		 (2)

where,
Vout= Accelerometer Output (Volt)
Voffset= Accelerometer Offset = 1650 mV
S = Accelerometer Sensitivity = 800 mV/g
θ = Angle of Tilt (radians)

Fig. 3. Single Axis used for Tilt Sensing (Analog Devices (b),
n.d.).

Fig. 4. Complementary Filter for Sensor Integration.

Once these values are read, they are fed directly to the
microcontroller (PIC18F452) which initially converts them to
equivalent digital values via the internal 10 bit ADC of PIC.
The readings are stored in a 16 bit integer variable, namely
“gyro_reading” and “accel_reading”. The samples are taken
and updated at a regular interval of 10 msec. This helps to
ensure a reliable performance of robot.

2.2 Signal Conditioning

The accelerometer readings have noise while the gyroscope
readings have an inherent drift. Therefore, before further
processing, the digital signals corresponding to θ and dθ/dt
are fed to the first order Median-Filter and Mean-Filter, to
remove the random additive noise from the individual sensor
readings. The simplest procedure was to take 100 samples,
remove the upper and lower 15 samples and then take the
average of the remaining 70 samples. The pseudo-code is as
follows.

1. START;
2. TAKE 100 SAMPLES;
3. SORT VALUES IN ASCENDING ORDER;
4. REMOVE FIRST 15 VALUES;
5. REMOVE LAST 15 VALUES;
6. SUM REMAINIG 70 VALUES;
7. DIVIDE BY 70;
8. END.

100 CONTROL ENGINEERING AND APPLIED INFORMATICS

These filtered values are then combined together via a first
order digital complimentary filter, represented by (3).

f	 ൌ 	 ሺaሻሺyሻ ൅	ሺ1 െ aሻሺxሻ							 (3)

where,
a = τ / (τ + dt),
y = gyroscope reading,
x = accelerometer reading,
f = filtered-output

A properly implemented filter would combine the raw angle
with the gravity angle, as shown in Fig.4. It fixes the inherent
problems of sensor noise, drift and horizontal acceleration
dependency. It helps rejecting all the short-term fluctuations.
The time interval between successive program loops is
known as the Sample Period, dt. The time constant, τ, is the
time interval on which it operates on a given signal. So the
signals that have time period smaller than this time constant
are filtered out, while the longer signals stay unaltered. To
reduce the gyroscopic drift, a lower time constant should be
implemented. But on the other hand, this leads to a lot of
horizontal acceleration noise. Hence a compromise is made
by experimentally tweaking its value and adopting the best
one for the application.

2.3 Closed Loop Control

This digital value is used henceforth for the purpose of
comparison and correction of robots orientation and attitude
to put it in its stable upright posture. The filtered output of the
sensors, when the robot body is exactly in stable upright
position, is taken as the equilibrium reference or equilibrium
set-point by the control scheme. Once the robot is set into
action, it continuously checks and compares its current state
with the equilibrium set-point. The difference of these two
entities generates the error signal, e(t). The sign of this error
signal denotes whether the robot is leaning forward (if e(t) >
0) or backward (if e(t) < 0). The magnitude of the e(t)
specifies the extent to which it has fallen. These error signals,
once computed, are stored. The current error is fed to the P
controller after being multiplied with KP. The I controller
takes the sum of recent errors. Hence the ten recent errors are
added over the time interval (between successive error
readings) and sent to the I controller, where they are
multiplied with KI. The rate of change/difference between
two recent errors is subjected to the D controller where they
are multiplied with KD. Eventually all these three terms are
added and the output u(t) of PID control scheme is obtained,
as illustrated in Fig.5.

Fig. 5. Closed Loop Control Architecture.

The mathematical relationship of PID is shown in (4).

uሺtሻ ൌ K୔eሺtሻ ൅	K୍ ׬ eሺtሻ
୲
଴ 	dt ൅ Kୈ

ୢ

ୢ୲
eሺtሻ																	 (4)

where,

KP = Proportional Gain
KI = Integral Gain
KD = Derivative Gain

The output of the PID controller is checked continuously, so
that it may stay between a minimum and maximum value.
This helps in avoiding the wind-up state. The tuning of KP,
KD, KI constants is usually done with the aid of simulations
and rigorous experimentation. Now, the variation of the PID
control output magnitude between these bounds helps in
deciding the variation in the duty cycle of the Pulse-Width-
Modulated (PWM) signal. The resultant PWM signal helps
controlling the speed and direction of rotation of the DC
geared motors, via an H-Bridge motor driver circuit. This
way, if the robot body tilts in a given direction, the motors
respond immediately by moving in the direction of
inclination at an appropriate speed, in order to bring the
wheels exactly below the centre of mass of the robot body.
The 'Derivative' term amplifies higher frequency noise that is
generated by the sensors. Thus, the higher values of the
derivatives lead to large changes in the output of the PID
controller. A practical solution that has been adopted to
remove these high frequency components of noise is by
putting a first order low pass filter programmatically on the
derivative term. Consequently, the poles of the derivative
term are tuned such that the noise does not affect the output.

2.4 Motor Control

The motor control is probably the simplest of all the tasks.
For driving the motor, L298 based dual H-Bridge motor
driver circuit is used as shown in Fig.6. It can fully control
and drive two motors simultaneously. Also the motors require
a unique PWM signal. This signal is fed to the motor driver
circuit in order to control the speed of the motor rotation. The
pulse length can be varied to change the speed of the motor.
Generally, the PWM frequency is about 1000 Hertz, with a
period cycle of 1.0 msec.

2.5 Power Source

To provide DC power to all the electronic devices explained
earlier, a DC battery has been utilized.

Fig. 6. H-Bridge Motor Control Circuit.

A Sealed-Lead-Acid (SLA) battery has been used. The
specifications of the battery are 12V and 1300mAh.Each of
the two motors require at most 500mA of current while

CONTROL ENGINEERING AND APPLIED INFORMATICS 101

operating, whereas the sensors and the digital circuit requires
approximately 100mA of current. Since the total current
required by the system is roughly 1100mA, thus the battery
utilized can provide a standby time of 70 minutes, before
discharging completely.

2.6 Robot Structure

The material used in the design is able to offer durability,
strength, maintainability, energy efficiency and operating
capability of the robot. These parameters are also responsible
to contribute in the final size and hence the weight of the
robot. The weight is an important factor in designing the
wheel and base structure of the robot. If the weight applied at
the base is very high, the wheels and the hubs holding them
would bend outward, making it quite difficult to maintain the
robot in upright posture. The total weight of the robot is
1.513 Kg. The robot contains two horizontal plates. One is
very near to the floor level and other is right above it. The
two plates are separated by spacers. The battery of the robot
is installed beneath the lower plate, geometrically placed in
between the co-axial wheels. The power electronic circuitry
is placed right above this lower plate. The upper plate
contains the microcontroller circuitry on it. The computer
aided design of the proposed robot structure is shown in
Fig.7.

Fig. 7. Computer aided design of the robot.

Fig. 8. Fabricated Structure of Robot.

Plexi-Glass of 0.75mm thickness is used to build the chassis
of the robot because it is strong, durable and light in weight.
A larger moment of inertia enhances the static stability. After
experimentation, a mechanically balanced structure is
fabricated that is easier to control via the embedded system. It
is shown in Fig.8. The final dimensions of the robot are
18.5cm × 10.5cm × 10.0cm.

The flow of sub-routines is illustrated in Fig. 9.

Fig. 9. Flow-chart of sub-routines.

3. CONTROL SYSTEM DESIGN

For a better understanding of the firmware that is responsible
for the control of robots position, it is divided in a number of
sub-routines.

3.1 PID Control

Before implementing the PID routine in software, it is
mandatory to learn a couple of basics. A PID controller has
basically three main components: Proportional controller,
Integral controller and Derivative controller. Each of these
terms is multiplied with a coefficient, namely KP, KD and KI.
The variation in controller gain ‘KP’ has a direct impact at the
robot’s behavior. A higher value of KP usually ensures a
faster controller response. However, a fairly large value of KP
leads to undesirable oscillations along with system overshoot.
The derivative term helps speeding up the P controller’s
response to a change of input. Consequently, D controller
causes the robot to reach the equilibrium state faster. Finally,
the I controller serves to reduce the steady-state error of the P
controller. The steady-state error is made negligible, but the
equilibrium state is reached somewhat slowly. The flow chart
of the software routine of PID control is shown in Fig. 10.

102 CONTROL ENGINEERING AND APPLIED INFORMATICS

Fig. 10. Flow-chart of PID control routine (Microchip, n.d.).

Initially, the PID controller was implemented using the
manual tuning, also known as the simple hand-tuning,
technique. Adjusting the parameters of KP, KD and KI is an
important task. Hence the KP, KD and KI constants are set to
zero in the program. The robot/system is powered up using a
12V power supply. If the base does not move and the robot
topples over freely, it validates that all constants are read as
zeros. The KP constant is gradually increased in small steps,
until there is a little oscillation in the base. As a rule of
thumb, KI must not exceed 10% of the KP. The KI is then
increased until the robot platform balances itself for a long
duration, while still oscillating about its mean position. When
the KI has been optimized, the robot body will not only be
balanced, but also its oscillations about the equilibrium
position will be small and smooth. Eventually, the KD is
increased in the similar fashion as the other two constants
until the platform becomes stable. Once these KP, KD and KI
co-efficient are found experimentally, they are hard-coded in
the PID software routine. The routine outputs the direction of
the motor and it also calculates the duty cycle of the PWM
signal that is to be provided to the motors (Thomas Bräunl,
2008).

3.2 Automatically Tuned PID Control

Tuning the coefficients KP, KI and KD manually is always a
nuisance. Therefore the industrial applications employ the
auto-tuning feature when using the PID controller. This
feature aids in adjusting the three parameters automatically.
In the proposed robot, the relay method is employed to auto-
tune the parameters. Theoretically, it is quite similar to

Zeiger-Nicholas Frequency Domain (ZNFD) method. As
shown in Fig.11, the PID controller is being replaced by the
relay right before the plant. While tuning the parameters via
ZNFD method, the KI and KD are made zero, whereas KP is
manually adjusted to a point such that the closed-loop system
starts oscillating in a periodic manner, neither decaying nor
growing in magnitude. This value of KP is recorded as KU.
The time period of these oscillations is measured and
recorded as TU. Then using the mathematical relation in
Table 1, the three parameters are calculated. Unlike the
ZNFD method, the relay method attempts to find the KU and
TU on its own.

Fig. 11. Relay for auto-tuning of PID parameters (Dew,
2014).

Fig. 12. Input and Output of Relay (Arduino PID Autotune
Library, 2012).

Once found, this auto-tuner then performs back-calculations
to tune the parameters. Referring to the Fig. 12, as we start
from the steady state, the input to the relay is the error signal,
e(t). The relay outputs a step response. The amplitude of this
step response is ‘D’ and is fixed for a given relay. After each
subsequent zero-crossing of the input, the output step changes
its direction as shown in the Fig. 12. TU is the time period of
input signal, whereas the distance between the maxima and
minima of the input signal is denoted by ‘A’ as shown in the
Fig. 12. The value of A is variable and like TU, it has to be
found by the system. Finding the value of A and TU is quite
simple. When the oscillatory input signal is read by the
microcontroller, its peaks are identified. In each sampling
time frame window, the maximum value is found by reading
and comparing the new value of the input signal with the
previous largest value, and keeping the larger one as MAX
(Arduino PID Autotune Library, 2012). Similarly the same
new value is also compared with the previous smallest value
and the smaller one amongst them is stored as MIN. The
difference between the MAX and MIN is equal to the value
of A, as shown in (5).

CONTROL ENGINEERING AND APPLIED INFORMATICS 103

A ൌ MAX െMIN												 (5)

Table 1. PID parameters for the Auto-tuner (Arduino PID
Auto-tune Library, 2012)

Control KP KI KD

P 0.5KU - -

PI 0.4KU 0.48KU/TU -

PID 0.6KU 1.2KU/TU 0.075KU/TU

The period TU is found by detecting two zero-crossings and
computing the time between them. For this purpose, the
number of samples between the two zero-crossings is found
and using (6), TU is calculated.

T୙ ൌ n ൈ Tୗ								 (6)

where,
TS = sampling time
n = number of samples

Once these KU and TU are found, we next compute the KU via
(7). The PID coefficients are found using the mathematical
relations given in Table 1.

K୙ ൌ 	
ସ	ൈୈ

πൈ୅
					 (7)

where,
D = Amplitude of relay output step response
A = peak-to-peak signal value of the input

4. RESULTS

The microcontroller communicates the robot body’s tilt
(pitch) angle with LABVIEW over serial link. The setup used
for testing and recording the simulations results is shown in
Fig. 13. The sampling time used in the application is 10
msec.

Two tests are commenced on the robot to control its attitude
and stabilize it in the upright position. The first test is done
by using a manually-tuned PID controller. The KP, KD and KI
co-efficient are found experimentally to be equal to12.05,
1.075and 0.355respectively. They are hard-coded in the PID
software routine. The step-response of the system is shown in
Fig. 14. The graph is plotted with robot body’s tilt angle
(degrees) and the time (seconds) along the x-axis.

The second test is done by using the automatically tuned PID
controller. The KP, KD and KI co-efficient are found using the
relay method. These coefficients are adjusted automatically.
The step-response of the system is shown in Fig. 15. The
graph is plotted with robot body’s tilt angle (degrees) and the
time (seconds) along the x-axis. It can be clearly seen from
the response(s) in Fig. 14 and Fig. 15, that the system
energizes the motors of the robot to oscillate it back and
forth. Once the robot has gained sufficient energy, the
balance control scheme(s) implemented via the PID
controller and its auto-tuning variant, tend to keep it erect.

The rise time is experimentally found by looking at the time
required by the response to reach from 10% to 90% of its step
height in Fig. 14 and Fig. 15. Similarly, the settling time is
found by observing the time taken by the response to fall
within ±2% of the steady state value. Finally the percentage

overshoot is calculated by using (8). The rise time (TR),
settling time (TS), percentage overshoot (%OS) and steady-
state error (eSS) of the two responses are summarized in Table
2.

Fig. 13. Experimental Setup.

%OS ൌ 	
஘౉౗౮ି஘౏౏

஘౏౏
ൈ 100		 (8)

where,
θMax = Highest peak value of the response in the graph
θSS = Steady-state value of response in the graph

Fig. 14. Response with simple PID controller.

Fig. 15. Response with auto-tuned PID controller.

Table 2. Summary of robot’s body angle response

Control Type TR (sec) TS(sec) %OS eSS

PID 0.30 3.10 13.89% ±6o

Auto-PID 0.25 1.45 25.10% ±1o

5. CONCLUSION

The auto-tuning feature saves the trouble of going through
the problematic and redundant task of manually tuning all the
PID coefficients, but a comparative analysis of the responses
in Fig. 14 and Fig. 15, reveals that the overshoot in the

104 CONTROL ENGINEERING AND APPLIED INFORMATICS

system with auto-tuned PID is quite large. However, unlike
the manually-tuned PID controllers, the auto-tuned system
shows a smaller steady state error and smaller rise time and
settling time. The steady state error is reduced by 5o, whereas
the rise time (TR) and settling time (TS) are reduced by 0.05
sec and 1.65 sec respectively.

It is shown in this paper, that application of auto-tuned PID
controllers tend to balance the two-wheeled self-balancing
robots in a much more effective manner that the manually-
tuned PID controllers. Scientifically speaking; with the
application of the auto-tuned algorithm, the steady state error,
rise time and the settling time of the dynamic system has
improved. The comparison and hence the improvement in the
transient as well as the steady state analysis of the system
with manually tuned and the auto-tuned controller, also
validates the proposed technique. This also manifests that the
auto-tuned PID controllers can adapt to changes in the
physical properties of the robot. That is to say, if the robot’s
battery drains over time, the robot will update its PID
coefficients and would try to cope with the effect of battery
loss to some extent. However in the case of ordinary PID
controller, since the coefficients are hard-coded, the robot
would get unstable and collapse under such circumstances.
Similarly if the mass of the robot is changed during
operation, the PID coefficients of system would adjust
themselves automatically in order to continue stabilizing. The
relay method for auto-tuning provides us with the ease of
implementation and great flexibility in usage. It gives us
fairly good values of KP, KD and KI to balance and control the
attitude of our robotic system. Thus, we are able to balance a
two-wheeled platform in a very effective and an innovative
way. However, in exchange, some performance sacrifices are
made such as excessive overshoot.

There is still a lot of room for further research and
enhancements that can improve the performance of this
platform. Instead of using the manually-tuned PID and the
auto-tuned PID controllers, adaptive fuzzy PID controller can
be used to tune the KP, KD and KI co-efficient in real time.
Although the adaptive fuzzy PID control technique would be
computationally expensive and slow. But being more
sensitive to the changes it would yield a much better dynamic
performance for the stability and balance control of the two-
wheeled self-balancing robot.

REFERENCES

Analog Devices (a), ‘AN-1057 Application Note,’ [Online].
Available: www.analog.com/static/imported-
files/application_notes/AN-1057.pdf. [Accessed May
2014].

Analog Devices (b), ‘Small, Low Power, 3-Axis ±3 g
Accelerometer ADXL335,’ [Online]. Available:
www.analog.com/static/imported-
files/data_sheets/ADXL335.pdf. [Accessed May 2014].

Araghi, M.H., Kermani, M.R. (2011), ‘Computer-Aided
System Design for Educational Purposes: An
Autonomous Self-Balancing Two-Wheeled Inverted
Pendulum Robot,’ IEEE Conference Publications, 24th
Canadian Conference on Electrical and Computer
Engineering (CCECE), pp. 001357- 001360.

Dew, ‘Discrete-time PID Controller Implementation,’ 4 May
2014. [Online]. Available:
http://controlsystemslab.com/category/articles/control-
engineering/pid/. [Accessed May 2014].

http://brettbeauregard.com/, ‘Arduino PID Autotune Library,’
28 January 2012. [Online]. Available:
http://brettbeauregard.com/blog/2012/01/arduino-pid-
autotune-library/. [Accessed May 2014].

MicroChip, ‘PIC18FXX2 DataSheet,’ 2006. [Online].
Available:
http://ww1.microchip.com/downloads/en/DeviceDoc/395
64c.pdf. [Accessed May 2014].

Microchip, n.d. ‘Software PID Control of an Inverted
Pendulum Using the PIC16F684’. [Online] Available at:
http://ww1.microchip.com/downloads/en/AppNotes/009
64A.pdf [Accessed May 2014].

Nawawi, S.W., Ahmad, M.N., Osman, J.H.S.
(2007),‘Development of a Two-
Wheeled Inverted Pendulum Mobile Robot,’ IEEE
Conference Publications, 5th Student Conference
on Research and Development (SCOReD), pp. 1 – 5.

Nguyen Gia Minh Thao, Duong HoaiNghi, Nguyen HuuPhuc
(2010),‘A PID Back-stepping controller for two-wheeled
self-balancing robot,’IEEE Conference Publications,
International Forum on Strategic Technology (IFOST),
pp. 76 – 81.

Qian Hao, Liping Chen, WeiweiQiao, Peng Li, Songling
Yang, Qifang Liu (2011),‘Controlling Simulation Study
On Two-Wheeled Self-Balancing Electrical Motorcycle
Based on ADAMS And MATLAB,’IEEE Conference
Publications, Cross Strait Quad-Regional Radio
Science and Wireless Technology Conference
(CSQRWC), pp. 1704 – 1707.

Seul Jung, H. T. Cho, T. C. Hsia (2007), ‘Neural network
control for position tracking of a two-axis inverted
pendulum system: Experimental studies,’IEEE
Transaction on Neural Networks, vol. 18, no.4, pp. 1042-
1048.

Solis, J., Takanishi, A. (2010),‘Development of a Wheeled
Inverted Pendulum Robot and a Pilot Experiment with
Master Students,’IEEE Conference Publications, 7th
International Symposium on Mechatronics and its
Applications (ISMA), pp. 1 – 6.

STMicroElectronics, ‘LPR550AL,’ [Online]. Available:
http://www.starlino.com/wp-
content/uploads/data/acc_gyro/LPR550AL.pdf.
[Accessed June 2014]

Thomas Bräunl, Embedded Robotics: Mobile Robot Design
and Applications with Embedded Systems, Springer, 3rd
ed., 2008

Wu Junfeng, Zhang Wanying (2011),‘Research on Control
Method of Two-wheeled Self-
balancing Robot,’IEEEConference Publications,
Intelligent Computation Technology And Automation
(ICICTA), pp. 476 – 479.

