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Abstract: In this work is addressed the topic of estimation of velocity and acceleration from
digital position data. It is presented a review of several classic methods and implemented with
real position data from a low cost digital sensor of a hydraulic linear actuator. The results are
analyzed and compared. It is shown that static methods have a limited bandwidth application,
and that the performance of some methods may be enhanced by adapting its parameters

according to the current state.
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1. INTRODUCTION

Many work has been done in the field of estimation of
velocity and acceleration from digital encoder data (Brown
et al. (1992), Merry et al. (2010), Liu (2002), Ovaska and
Valiviita (1998), Baran et al. (2010), Song et al. (2009)).
However, most of them are focussed on angular sensors
and scarce information regarding their implementation in
linear position encoder can be found.

In typical applications, angular sensors are not directly
coupled to the measured variable instead there’s a gear be-
tween the encoder and the angular variable. Consequently,
the constraints imposed by the resolution of the encoder
is somehow diminished, since the relative variation of the
angular variable is mapped into the encoder amplified by
the multiplication factor of the gear.

A linear position sensor is coupled directly to the measured
variable and it is not possible to make use of this treach-
erous enhancement. In general, the resolution of medium
cost sensors is allocated in the 0.1 — 0.5mm range. Even
though this resolution could be considered appropriate for
general applications, the implementation of these sensors
in low velocity tasks brings several complications, espe-
cially when the control loop depends on the estimation of
velocity and its time derivatives (Han et al. (2007), Choi
and Jung (2011), Emaru et al. (2009), Ohmae et al. (1982),
Tsuji et al. (2005)).

Therefore, in this work is presented a review of the classic
methods used for the estimation of velocity and accelera-
tion and they are implemented on a digital linear position
sensor. Several concepts are introduced and combined pro-
viding more than twelve alternatives for the estimation of
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velocity and acceleration. This survey could be though as
a small tutorial for those readers that are beginning to
explore the field of velocity and acceleration estimation
remarking the pros and cons of each method.

This work is organized as follows. Firstly, a brief introduc-
tion to the problem associated to digital signals and the
calculation of its time derivatives is presented. Following
this, some of the most common methods for velocity and
acceleration estimation are introduced and tested with real
data. An objective performance comparison is presented
by introducing the definition of some Key Performance
Indexes and finally, the results are discussed.

2. ENCODER SIGNAL ANALYSIS

In order to understand the problem associated with the
estimation of velocity and acceleration from a digital posi-
tion signal it is better to clarify some of its characteristics.

First of all, when dealing with the information provided
by a digital sensor, there are two main issues that must be
remarked:

(1) The resolution of the encoder is finite. Its output
can only take some defined states, therefore the true
value of the measured variable resides between two
adjacent states. The output of the encoder should not
be interpreted as the true value.

(2) The information corresponds only to a finite sample
of time. There’s no true notion of what’s happening
between samples.

These characteristics are clearly depicted in Fig.1(a). The
real data is presented in black line and the output of
the encoder as red dots. As it can be observed, the
signal obtained from the encoder clearly shows its discrete
nature caused by the finite resolution and consequently
the uncertainty of the measurement (represented in grey).
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The problem with the finite resolution of the encoder is
that for slow variations it delivers the same information
for several consecutive samples, until the variation exceeds
its resolution, presenting a laddered type signal (observe
the red dots).
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Fig. 1. Digital position signal analysis

Based on the afore mentioned, the output of the encoder
yx for every sample-time k can be expressed as (Shaowei
and Shanming (2012)):

Yp = L{J er, (1)

where |e] is the rounding to floor operator, and the error
of the measurement is given by yerr = yr — y, with
Yerr€ (—er, 0] and e, is the resolution of the encoder.

Let us consider the output of the encoder presented as
red dots in Fig.1(a), and let us apply the backward finite
difference method (FD) to obtain its time derivative.
The result is presented in Fig.1(b) in red dots, and it
can be observed that two consecutive identical position
data result in a zero flat line, while a change in the
position turns into a spike. This estimation of the first
time derivative does not resemble at all the real velocity
(see black curve).

On the other hand, since the data has an intrinsic error
given by the finite resolution of the encoder it can be easily
found, by error propagation theory, that the estimated
velocity will have an error bounded to gerr€(—e,. /T, e,./T)
(represented in grey in Fig.1(b)) , where T is the sample
time.

From the bounded error it can be observed that the error
of the estimated time derivative is related proportionally
with the resolution of the encoder, therefore to reduce it
the resolution should improve. It can also be extracted
that by reducing the sampling period T', the bounded error
increases.

3. EXPERIMENTAL SETUP

The experimental setup used in this work is a linear
hydraulic actuator with a low cost digital linear position

sensor LX-EP40 with a resolution of 2.45 counts/mm. A
dSPACE DS1103 board is implemented as the control
hardware, it captures data from the position sensor (yy),
and it also provides the control signal (x,) to the servo-
valve (see Fig. 2).

In order to objectively analyze the performance of each
method, the following Key Performance Indexes (KPI) are
defined:

(1) Average error:

n

1 ~
KPI, = — —0r).
1= D (6 —6y) (2)
k=1
(2) Absolute maximum relative error:
O — b1
KPI, = — . 3
2 krer%%] Ok ®)
(3) Average relative error:
1~ |0 — 0y
KPI3; = — . 4
3= ; o (4)

Where 6y, is the real data and ék is the estimated variable
at the kth sampled time. These KPI are evaluated for half
a period (discarding the first and last 25 samples in order
to avoid 6y ~ 0 and thus KPI, ~ o), of the reference
trajectory: y = 100 + 25sin(27f), with f = 0.1Hz,
f=05Hz and f = 1Hz (y is in mm), implementing a
proportional position controller.

DS1103 board

Test-bed

Hydraulic station

pressure lines

Fig. 2. Experimental Setup.

4. VELOCITY ESTIMATION

In this section, it is introduced some of the techniques
implemented for the estimation of velocity. Hereafter, y
is the output of the sensor and e is the estimation for e
at the kth sampled time.
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4.1 Finite Difference and Filtering

The most simple practice for the estimation of the velocity
and acceleration is to implement finite difference (FD) on
the discrete time position data and then filter the result
with a low pass filter (LPF).

The first order FD applied to the position data (in its
backward formulation), leads to the following expression:
Ye — Yk—1

= Y Yoo (5)
The analysis presented in (Belanger (1992)) suggests that
exists an optimal sampling time to estimate the velocity
and acceleration with FD, though in this work the sample
time period is settled to 1" = 1ms for all the methods.

Uk

The result of the implementation of the FD over the raw
data (yx) is presented in Fig.5(a) - Fig.5(c) in red. As
it was mentioned before, the estimation depends on the
change between two consecutive samples. Therefore, in
the low-speed range the estimation is rather poor and
it improves while increasing the real velocity (i.e. more
position changes between two consecutive samples). In
fact, if the real velocity is y > %, the estimation with
FD will be very accurate with a time-lag T'.

For the improvement of the estimation on the low-speed
range a LPF is implemented. The design of the LPF is
crucial for the performance of the estimated variable. A
common practice is to implement Butterworth filters since
they provide maximally flat magnitude for the wanted
frequencies. The cut-off frequency of the filter must be
selected depending on the frequency range of the applica-
tion.

In Fig.5(a) - Fig.5(c) are presented the estimation of
velocity implementing a 4th order Butterworh LPF with
cut-off frequencies: f. = 10Hz (blue curve), f. = 1Hz (cyan
curve) and f. = 0.1Hz (green curve).

As it can be seen, the filtering with f. = 10 Hz, does not
eliminate the noise introduced by the derivative action
of the FD in the low velocity range (see blue curve in
Fig.5(a)). On the other hand, for greater velocity the
filtering seems to work properly (i.e. it eliminates the
noise), but it introduces a time-lag in the estimated
velocity (see the blue curve and compare it with the real
velocity in Fig.5(b) and Fig.5(c)).

On the pursuit of the suppression of the noise in the low-
speed range, it is implemented a filter with f. = 0.1 Hz.
The action of this filter eliminates the noise in the low
velocity range (see green curve in Fig.5(a)), but it also
affects the amplitude and time-lag of the estimation for
higher velocities (see green curve in Fig.5(b) and Fig.5(c)).

However, if the frequency range of work of yj is restricted
to a narrowed bandwidth, an acceptable performance can
be achieved by selecting the cut-off frequency at the mid
of this bandwidth. Even though, it must be remarked that
the estimation will have some noise in the low-velocity
range and time-lag for the high-velocity range.

4.2 Finite Difference from encoder events

The problem that arises from the finite resolution of the
encoder is that for slow motions the signal provided by

the encoder delivers the same data for several consecutive
samples. In order to overcome this issue two classic meth-
ods based on two different sampling approaches (Goodwin
et al. (2013), Astrom and Bernhardsson (2002)) are com-
monly implemented (Tsuji et al. (2005)):

e M method (fixed-time method): it counts the number
of pulses from the optical encoder during a fixed
interval of time.

e T method (fixed-position method): it measures the
time that it takes to count a predefined number of
pulses.

The latter one provides better results in the low-speed
range, while the first one deteriorates it.

Based on the T-method approach and defining only one
pulse to count, it is detected the minimum change of
the encoder. This minimum change and the time of its
occurrence is defined as an encoder event (EE) (Merry
et al. (2010)) and it is given by the pair (tee,Yee), i-e.
the time when the event occurs and the current measure,
respectively. An analysis of event sampling for nonlinear
filtering is presented in (Cea and Goodwin (2012)).

It must be recalled that in this work the sampling time
is constant, therefore t,., = nT, where n is the number of
consecutive samples until an event is detected.

By definition every EE represents a change on the output
of the encoder, thus there’s no identical consecutive EE
(see the blue dots in Fig.3(a)). Hence, when the FD
method is implemented over the EE, the estimation results
in a spike-free curve as shown in Fig.3(b) in blue (compare
it with the red dots in Fig.1(b)). On the other hand, it can
also be observed that the estimation is much more like
the real velocity (black curve in Fig.3(b)), even though it
presents a laddered wave form.

Fig. 3. Definition of encoder events. 3(a): position data
(real position in black line, encoder’s signal in red,
and EE in blue dots). 3(b): Velocity estimation im-
plementing FD over EE. (real velocity in black and
velocity estimation in blue dots.

The concept of EE with FD is implemented on the position
data and the results are depicted in Fig.5(d) - Fig.5(f) in
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red. As it is observed, there still exists some spurious spikes
near the region of low accelerations (maximum velocity).
In the low-speed region it is appreciated that the signal
is distorted. This is caused by the fact that there’s a long
period of time without detecting any new event (see Fig.
3).

The spikes on the low-acceleration region can be elim-
inated by smoothing the estimation by skipping some
events in the FD, providing a filtering effect (Merry et al.
(2010)). This approach is presented in Fig.5(d) - Fig.5(f),
by skipping one (blue curve), five (green curve) and ten
(cyan curve) consecutive events.

As it can be seen, the skipping option provides filtering
to the estimation (compare them with the red curve). The
question now is how many events must be skipped in order
to provide a good estimation. In these figures, it can be
observed that skipping one event is not enough (observe
the blue curves), and the smoothness of the estimation
improves when more events are skipped. However, skip-
ping events leads to time-lags in the estimated velocity,
thus there is always a compromise between smoothness
and time delays. An alternative could be to skip events
according to the last estimated velocity as proposed in
(Liu (2002)), providing adaptability to the method.

4.3 Polynomual Fitting

The lack of information between the states of the encoder
could be surpassed by estimating the real value of the
measured variable by fitting y; to a polynomial of order n
(Merry et al. (2010), Brown et al. (1992)), as follows:

Uk = oty + 1t} "1 + -+ cithpn_1+co,  (6)
where g5 is the estimation of y, at sample k, and t; =
kT ,Vk = 1,2,--- ,n is the time sample. The coefficients
Cn,+++ , o are chosen to minimize ||yx —§x||?. Based on the
polynomial fitting, the estimated velocity can be found as:

U =ncpty + (n—Depati "2+ +er. (7
The polynomial fitting can be extended to the m most
recent data points:

§=Te (8)
i [Z e en
~ n tnfl k—n—1
k—nm—2

Yk—1 k—1 k—2 et t

; R S '
Yh—m fem G m 7 e 1 L0
The coefficient vector ¢ that minimizes ||y, —9,||? is given
by:

c=(T"T)'T"y. (9)
The challenge of the polynomial fitting is to find the ap-
propriate order of the polynomial and number of previous
points to use. The higher the order and number of points
the better is the accuracy of the fitting, however the lag-
time and the computation time will increase.

In this work is implemented a third order polynomial over
four data points and the quality of the estimation is rather
poor (see the red curves in Fig.5(g) - Fig.5(i)). This is due
to the fact that the fitting is performed over data with the
same information.

This problem leads once again to the concept of EE. In the
same charts, it is presented the estimation using polyno-
mial fitting over the EE considering three and five skipped
EE (blue and cyan curves, respectively) providing better
results. The estimation will improve with the quantity of
skipped events. However if they are compared with the
estimation obtained with FD with EE, (see Fig.5(d) -
Fig.5(f)), it can be observed that they have worse noise
to signal ratio.

The poor efficiency of the estimation based on the poly-
nomial fitting, is that it requires of the analysis of the
continuity and trend of the higher order derivatives when
consecutive data points do not add new information, lead-
ing to the use of spline or nurbs approaches which require
much computation efforts.

4.4 FEstimation with Kalman Filter

The Kalman Filter (KF) is perhaps the most used tech-
nique for the estimation of state variables of a system. This
recursive filter, which encloses the least square estimator
proposed long ago by F. Gauss (Sorenson (1970)) was first
published in 1960 (Kalman (1960)). Since then, it has been
implemented in many applications and several formula-
tions were derived from the former one (e.g. Extended KF
(Einicke and White (1999), Ligorio and Sabatini (2013),
Perala and Piché (2007), Quine (2006)) , Unscended KF
(Julier and Uhlmann (2004),LaViola (2003)), among oth-
ers), but keeping the core concept of a two step predictor-
corrector type estimator that minimizes the estimated
error covariance.

The KF tries to estimate the state & € R™ of a discrete-
time controlled process that is governed by a linear
stochastic difference equation with a measurement z €
R™, given by the following general expressions:
xp =Axi_1 + Bug + wi_1,
zr =Hx) + vy,

(10)
(11)
where uy, is the control input and k is the time sample. The
random variables wy_1 and vy represent the process and
measurement noise respectively, and it is assumed that
they are independent with normal probability distribu-
tions, (i.e. p(wg) ~ N(0, Q) and p(vx) ~ N(0, Ry), where
Q,. and Ry, are the corresponding covariance matrices).

The estimation problem is solved recursively by imple-
menting the following sequential relations at each sample
time (Welch and Bishop (2001)):

ilz =Az,_1 + Buy,

P, =AP,_, A" +Q, (13)
P_HT
Kp=——t———, (14)
HP_H +R
Zy ::i];—‘rKk(Zk—H:i;), (15)
P,=1-KiH)P,, (16)

For the particular case of velocity and acceleration es-
timation from position data, the process model can be
easily derived by considering the Taylor series expansion
of each state variable and assuming that the plant noise is
the discrete representation of the remainder of the Taylor
series (Zhou et al. (2008), Sabatini (2003), Shaowei and
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Shanming (2012), Belanger (1992)). Therefore, the process
and measurement models are given by:

Jk LT T2/2| [k T3/6
Y| =101 T uk| + |T%/2], (17)
Ui 00 1 ik T
Yrt1 =Gk + Uk, (18)
and the covariance matrices are:
T5/20 T*/8 T3 /6
Q=q| T8 T3/6 T?/2], (19)
T3/6 T?)2 T
2
R :er/43+ 27"’ (20)
where r = Fl¢;] and ¢; is the error associated to the

measurement. A comprehensive study of the stochastic
components of the model is presented in (Belanger (1992)).

The position data is filtered with the KF and is presented
in red in Fig.5(j) — Fig.5(¢).

As it can be observed, the estimation can’t keep its
performance along all the range of work. In order to
enhance the performance of the KF many authors propose
to modify the noise covariance matrices considering the
last estimation (Shaowei and Shanming (2012), Zhou et al.
(2008)), or rescaling the gain of the filter (Duan et al.
(2003)) turning it into an adaptive filter. In this work, it
is proposed the following adaptive law:

10R
1+97
This adaptation law allows to preserve the performance
of the estimation along the full range of work providing

better result as it can be observed on the blue curves in
Fig.5(j) - Fig.5(¢).

Even though this formulation gives a suitable estimation
it may not be appropriate for embedded real time system,
since the third order nature of the expressions requires
of time consuming computation. Therefore, some authors
propose to use a reduced order system (Shaowei and Shan-
ming (2012), Sabatini (2003)). More precisely, in (Shaowei
and Shanming (2012)) is implemented the following first
order model, which leads to a Single Dimensional Kalman
Filter (SDKF):

Rak = (21)

Or =0k 1 + w1, (22)
9k+1 =0y + vp. (23)
The implementation of the SDFK leads to two new ap-

proaches, one that implements the KF to estimate the
position and the other to estimate the velocity.

Kalman Filter for position estimation In this approach,
the SDKF is used to estimate the real position, thus
0x = yx. The position estimation with the SDKF provides
a smoother signal, as it can be observed in Fig. 4. From
this estimated position the velocity can be estimated by
any of the previous techniques mentioned.

In particular, the invariant sampled time result from the
SDKF makes it suitable to implement the Savitzky-Golay
(SG) method. This method provides a polynomial fitting
with constant coefficients obtained from specific tables
for digital signals with invariant sample time (Madden
(1978), Gorry (1990), Schafer (2011)). Therefore, there is
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Fig. 4. Position estimation using SDKF. The real position
is in black, the measurements from the sensor is in
red, and the position estimation implementing SDKF

is in blue.

no need to obtain the coefficients for each new incoming
data reducing the computation time. Some properties of
the SG method as digital differentiator are presented in
(Luo et al. (2005))

The SG method is implemented with a fourth order
polynomial fitting with ten points and the estimation is
presented in magenta in Fig.5(j) - Fig.5(¢).

As it can be seen, the velocity estimation has improved
comparing it with the results obtained with the FD
method with the raw data (see Fig.5(d)) and the poly-
nomial fitting with the EE (see Fig.5(g)).

Kalman Filter for velocity estimation  In this approach,
0, = Ui, where 9 is obtained from the FD method over
EE. For this particular example it is implemented the FD
method skipping two events.

The estimated velocity with the SDKF provides a smoother
estimation than the FD method with practical no time-lag,
as it can be appreciated in cyan in Fig.5(j) - Fig.5(¢).

4.5 Sliding Mode Differentiation

The main problem with differentiation is to combine ac-
curacy and robustness in face of possible measurement
errors and input noises. In (Levant (1998)) is proposed
a robust first-order differentiator based on the sliding
mode technique which features finite-time convergence and
robustness against the measurement noise. This technique
is implemented in (Damiano et al. (2004)) for the esti-
mation of velocity and acceleration for a DC-drive motor
controller.

The discrete formulation of the differentiator is given by:

hi, = — My, — x| 2sign(z, — zx) +wy,  (24)
wy =wi_1 — Tasign(zk—1 — Tk—1), (25)
2k =2p—1 + Thi—1, (26)

where xj, is the measurable signal, wyg = zp = 0, and «
and A are set according to the following inequalities:

o > de, (27)

/ a+ Xgq
A> 2 Xgg————— 28
= dda — dea ( )

and Xgq > 0 is the upperbound for the magnitude of the
second derivative.

The Sliding Mode Differentiator (SMD) is implemented
with real data and the velocity estimation is presented in
red in Fig.5(m). The parameter A and « are selected to
provide the best result possible for low-speed range (see
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Fig.5(m) - Fig.5(0)). However, the estimation deteriorates
for higher velocities (see Fig.5(n) and Fig.5(0)).

In order to enhance the performance of the estimation, it
is considered a variable acceleration upperbound:

Xak:de’%‘. (29)

This small modification provides of adaptability to the
method and the result improves along all the range of
work as it can be observed in blue in Fig.5(o), however
the estimation for the low speed range becomes more noisy
(compare it with the red curve).

5. ACCELERATION ESTIMATION

In order to estimate the acceleration there are two possible
approaches regarding the model implemented, i.e. the
acceleration can be thought as the second time-derivative
of the position or it can also be though as the first time-
derivative of the velocity. The latter one, leads to the
successive implementation of any of the first order methods
presented in the previous section.

5.1 Finite Difference and Filtering

The most common method implemented to estimate the
acceleration is also the finite difference method. Its formu-
lation for the second order is given by (henceforth FD2):

Yk — 2Yk—1 + Yk—2

= 5 .
As it was shown in the velocity estimation section, working
with FD over the raw data, doesn’t lead to suitable results.

Therefore, for the acceleration estimation it is considered
only EE.

Uk (30)

In Fig.8(a)-Fig.8(c) are presented the estimation using
only FD2 over the EE considering two (red curve) and
five (blue curve) skipped events. This formulation leads to
very poor estimation. Therefore, the implementation of a
LPF is mandatory for the acceleration estimation. As it
can be seen in the green and cyan curves (filtered signal
of the FD2 over EE with two and five skipped events,
respectively), the filter improves the estimation but still it
is not accurate enough for any application.

5.2 Kalman Filter

In this section is implemented several combinations of the
KF to estimate the acceleration.

The raw position data is filtered implementing a SDKF as
presented in Fig.4, and then it is submitted to a FD2 oper-
ation. The result is presented in red in Fig.8(d) - Fig.8(f).
As it can be seen, the estimation is poor, especially in
the low-speed range, where the estimated signal is far
from resemblance the real acceleration signal. Therefore, a
second SDKF is implemented over the estimated signal,
whose result is presented in blue in the same figures.
Even though, the result improves considerably for high
velocities, the estimation for the low-speed range still is
unacceptable for any purpose.

As it was already presented, the filtering improves by
considering only those states of the encoder that represent

a change. Therefore, the FD2 estimation is implemented
on the EE and then the signal is filtered using a SDKF.
The result shows that the estimation improves (see cyan
curve in Fig.8(d) - Fig.8(f)), though the signal still is
far to be used in a control loop. Thus, another SDKF is
implemented over this first estimated data, and the new
estimation is presented in green in the same charts. The
estimation improves drastically its performance in the low-
speed range and in the high-speed range, though time-lag
appears in the estimated data.

The SDKF as it was mentioned is a simplified formulation
that saves computation efforts, by implementing a first
order model. This simplification of the model reduces
the performance of the estimation. This can be seen by
simple comparison between the results obtained with the
SDKF and the KF with the third order model presented in
magenta in Fig.8(d) - Fig.8(f). This last result shows much
better performance for all the range of velocity, despite the
fact that for high velocity there is a considerably time-
lag. However, if the adaptation rule (21) for the noise
covariance matrix is implemented, the time-lag reduces
considerably and the overall performance of the estimation
enhances, as it can be observed in the yellow curve.

5.8 Sliding Mode Differentiation

Based on the estimator proposed in (Damiano et al.
(2004)), the acceleration is estimated as a successive
derivation using a first order SMD. The result is presented
in red in Fig.8(g)-Fig.8(i). It can be observed that the
result is not as promising as with the velocity estimation.
The best estimation for the low-speed range has an unsat-
isfactory noise to signal ratio estimation, and furthermore
for higher velocities, the acceleration estimation presents
severe deformation and time-lag. Considering the adaptive
behavior on the upper-bound parameter Xy, of the filter,
it can be seen that the estimation does not improve (see
blue curve), and it remains practically the same.

5.4 Integration within a Control Loop

In general, the second order time derivative of the position
is the most implemented relation for the estimation of the
acceleration. Even though, the implementation of differ-
entiators inherently carries with them noise amplification
in the high frequency range, therefore its performance will
be always limited.

It must be recalled that the differentiation is not the
only relation that links these two variables, there is also
the integration. Therefore, some authors have developed
approaches based on the implementation of integrators
within a closed-loop. One example can be found in (Tilli
and Montanari (2001)), where feedforward with a inte-
grator feedback is proposed as velocity and acceleration
estimator.

In this work two different approaches are analyzed.

The first approach considers the estimation problem as a
classical position control of a ordinary double integrator
type system, as presented in Fig.6. This approach has as
many alternatives as possible controllers. A comprehensive
study and comparison between several control strategies
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Fig. 5. Velocity estimation with different methods for different velocity ranges: first column f = 0.1Hz, second column

f = 0.5Hz. and third column f = 1Hz.
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Fig. 6. Acceleration estimation based on a controlled
double integrator type system.

for the classical double integrator type system is presented
in (Rao and Bernstein (2001)), where it is shown that the
classical PD controller exhibits good robustness.

In particular, in this survey is considered the algorithm
presented in (Lee and Song (2001)), which implements the
following PD controller:

A dy

S K (r—) — K

y=Kply—9) — Ka,
that tries to force to the estimated position g to follow
the actual displacement y. Based on the later relation, the
following transfer function can be obtained:

(31)
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y_ K

y 2+ Kgs+ K,
where K, defines the bandwidth of the acceleration esti-
mation.

(32)

The result found implementing this formulation presents a
suitable estimation for the low-range acceleration, however
it also posses a lag-time for higher accelerations, as it can
be observed in blue in Fig.8(j) - Fig.8(¢).

In (Shaowei and Shanming (2012)) it is presented an al-
gorithm based on the Phase Locked Loop structure (PLL)
in order to obtain the estimation of the acceleration by
integral calculation using the previously estimated veloc-
ity. The overall concept is presented in Fig.7, where 3} is
the SDKF filtered velocity and 7/ is the velocity estimated
through integral computation of the estimated acceleration
j} through the PLL method. The parameters 7, K, and
K; are chosen to satisfy the tracking performance of the
velocity loop.

<

Velocity | Y
Estimation

A A

Fig. 7. Acceleration estimation based on a PLL structure.

The estimated acceleration implementing this approach
presents noise in the low acceleration region, even though
the time-lag for high acceleration is improved in compari-
son with the double-integrator type controller (see the red
curve in red in Fig.8(j) - Fig.8(¢)).

6. KPI ANALYSIS

In Table.1 is summarized the results from the performance
analysis of all the methods presented in this work using the
KPI defined previously. The table is divided into two parts.
The first part (the first fifteen rows) shows the results
of the KPI obtained for the velocity estimation, and the
second part ( the last fourteen rows) shows the results of
the KPI obtained for the acceleration estimation.

For the velocity estimation, the KPI analysis confirms
that the methods based on the FD over EE with the
skipping option and the methods based on KF has better
performance over all the frequency range analyzed.

In particular, the KPI analysis shows that the KF im-
plementing a third order model with adaptive covariance
matrix (KF 3"%adap) has the best performance of all the
methods implemented.

For the acceleration estimation, the KPI analysis also
shows that the KF 3"%adap formulation presents better
performance for all the frequency range. However, the KPI
analysis also demonstrates that the second order integrator
with a PD controller method (2"%Int+PD), presents the
best performance of all the methods analyzed for the low-
speed range (f = 0.1Hz).

7. CONCLUSION AND DISCUSSION

In this work the problem of the velocity and acceleration
estimation from position data measured with a general
digital position sensor from a linear actuator was assessed.

The main issue regarding a digital encoder is its finite
resolution. This gap between two consecutive data from
the digital sensor derives in the impossibility of detecting
small changes of the measured variable. Therefore, the
estimation of velocity and acceleration will be mostly
affected in the low-speed range.

Several methods were introduced and their results were
compared.

It was shown that independently of the method imple-
mented for the estimation it is clearly settled that a static
method provides an appropriate solution for reduced band-
width applications, even though with small variations it
is easy to convert the method into an adaptable solution
enhancing the overall performance and increasing its band-
width.

The estimation of the acceleration can be addressed as
a first order time-derivative relation of the velocity or a
a second order time-derivative relation of the position.
The first one implies that a successive implementation
of a first order derivation or integration must be carried
on which may lead to modeling simplification, such as
the SDKF approach. This simplification in the model has
the drawback that the performance will also be limited.
If a complete model is implemented the performance is
enhanced with the counterpart that the computation effort
rises and therefore this approach could not be embedded
in simple RT hardware.

From all the methods implemented it was found that the
KF with a third order model with an adaptable covariance
matrix provides better result for all the velocity range
analyzed.
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Table .1. KPI comparison

Method f=0.1Hz f =0.5Hz f=1.0Hz Figure

KPIL KPI, KPI3| KPI, KPI, KPI3 | KPI KPI, KPI; |
FD + LPF f. = 10Hz 14.96 21.07 0.53 21.29 3.9 0.15 376.31 1.44 0.24 | blue, 5(a)-5(c)
FD +LPF f.=1Hz 0.45 8.46 0.17 205.06 4.1 0.46 3267.59 4.2 0.72 | cyan, 5(a)-5(c)
FD +LPF f. =0.1Hz 22.54 33.44 1.13 10313.82 11.07 2.01 17724.96 2.3 1.14 green, 5(a)-5(c)
FD with EE (skip=1) 1.11 10.63 0.27 55.59 2.51 0.21 480.63 2.04 0.26 | red, 5(d)-5(f)
FD with EE (skip=5) 1.26 12.7 0.32 51.65 3 0.24 448.86 2.24 0.26 | blue, 5(d)-5(f)
FD with EE (skip=10) 2.05 15.4 0.41 74.49 3.59 0.29 593.4 2.63 0.31 | cyan, 5(d)-5(f)
Pol. with raw data 2800.9 198.89 3.22 6886.17 16.62 1.57 5592.49 6.52 0.66 | red, 5(g)-5(i)
Pol. with EE (skip=3) 1.79 5.19 0.17 286.79 1.81 0.25 1077.8 1.13 0.28 | blue, 5(g)-5(i)
Pol. with EE (skip=5) 0.8 4.81 0.15 48.98 1.82 0.16 396.52 0.94 0.2 cyan, 5(g)-5(1)
SDKF(y) + SG 1 3.96 0.17 82.63 2.96 0.29 1342.29 2.37 0.45 | magenta, 5(j)-5(¢)
FD(EE) + SDKF 0.66 3.43 0.16 64.98 2.78 0.26 1113.3 2.16 0.42 | cyan, 5(j)-5(¢)
KF 3r¢ 0.1 4.46 0.07 41.53 1.22 0.17 2189.63 2.75 0.54 | red, 5(j)-5(¢)
KF 3"adap. 0.18 4.41 0.08 11.03 1.06 0.11 229.6 0.51 0.16 | blue, 5(j)-5(¢)
SMD 0.71 4.42 0.15 2346.42 8.81 1.15 14212.64 3.28 1.04 | red, 5(m)-5(0)
SMD adap. 6.3 9.41 0.33 29.3 1.99 0.15 548.75 1.81 0.25 | blue, 5(m)-5(o)
FD2(EE) 1274.75  456.11 9.44 | 3647951.5 578.71 12.13 | 45893518.83 95.46 11.25 | red, 8(a)-8(c)
FD2(EE) 129.53 114.96 3.24 | 267806.51 107.11  4.16 2088631.79  22.83  1.83 | blue, 8(a)-8(c)
FD2(EE) +LPF 137.29 39.44 242 | 116178.24  13.96 2.61 391160.92 3.9 1.11 | green, 8(a)-8(c)
FD2(EE) +LPF 35.87 43.69 1.77 18608.5 7.86 1.22 252869.78 4.11 0.91 | cyan, 8(a)-8(c)
SDKF(y)+FD2 89501.13 5804.06 73.81 | 202674.65  45.33 3.75 388375.48 8.77 0.91 | red, 8(d)-8(f)
SDKF(y)+FD2+SDKF 881.03 274 7.97 5360.59 9.47 0.68 242745.68 5.05 0.88 | blue, 8(d)-8(f)
SDKF(EE) + FD2 129.53 114.96 3.24 | 267806.51 107.11  4.16 2088631.79  22.83  1.83 | cyan, 8(d)-8(f)
SDKF(EE) + FD2 +SDKF 29.59 22.54 1.34 14992.37  16.62 1.14 122605.79 3.38 0.62 | green, 8(d)-8(f)
KF 3 3.35 14.96 0.46 6319.67 707 0.8 421449.17 6.73 1.2 magenta, 8(d)-8(f)
KF 3"adap. 14.76 16.39 1 1444.55 3.78 0.36 82299.66 3.17 0.52 | yellow, 8(d)-8(f)
SMD 21.26 36.85 0.86 44491.77 4.87 1.2 614764.04 1.42 1.09 red, 8(g)-8(i)
SMD adap. 697.97 289.69 8.56 17087.03  10.27 1.07 650052.41 8.97 1.44 | blue, 8(g)-8(i)
2nd Int 4+ PD 1.7 12.12 0.45 17953.67 13 1.31 959689.94 7.24 1.52 | blue, 8(j)-8(¢)
y+PLL 20.33 25.08 0.82 6542.59 7.31 0.78 287468.49 5.47 1 red, 8(j)-8(¢)




