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Abstract: The aim of this paper is to develop a hybrid fuzzy fractional order sliding mode
controller (FFOSMC) for a class of interconnected nonlinear systems. Firstly a PIαDα sliding
surface is proposed, on which the control law is designed. Mathematical proof for the stability
condition and convergence of the system is presented, taking into account the theory of the
fractional order calculus. In order to reduce the chattering phenomenon in sliding mode control
(SMC), a Takagi-Sugeno fuzzy logic controller is used to replace the discontinuity in the signum
function, and to ensure optimal performance in the closed loop system, the PSO algorithm is
used.
Finally the effectiveness of the proposed approach of FFOSMC-based PSO algorithm compared
with the FFOSMC using PDα sliding surface and FSMC using the conventional PID sliding
surface is demonstrated by simulation results for a coupled double pendulum system.
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1. INTRODUCTION

With the technological progress of the numerical tools of
calculation, the stabilization of interconnected nonlinear
systems constitutes at the present time a research axis
and development very privileged; the nonlinearity and the
coupling in systems makes its control very delicate and
complex to implement; to resolve this problem, several
approaches were developed in the literature.

The SMC for example was largely proved its efficiency
through the reported theoretical studies (Slotine et al.
(1991); Emel’yanov (1967)). The first step of SMC design
is to select a sliding surface that models the desired closed-
loop performance in state variable space. The second step
is to design the equivalent and a hitting control law such
as the system state trajectories forced toward the sliding
surface and slides along it to the desired attitude.

In the literature, several methods for selecting sliding sur-
face have been reported. The approach in (Shi-Yuan et al.
(2002); Diantong et al. (2005); Chih-Min et al. (2006);
Lon-Chen et al. (2007)) uses a proportional-derivative
type sliding surface, where the order of derivation is an
integer. In (Ahcene et al. (2009); Djamel et al. (2003)) the
sliding surface based on nonlinear continuous function is
adopted in order to obtain static feedback. Due to the fact
that the fractional order calculus plays an important role
in various domains (Chunna et al. (2005); Saptarshi et al.
(2012); Elham Amini et al. (2012); Khoichi et al. (1993));
a PDα sliding surface is proposed in (Delavari et al.
(2010); BiTao et al. (2012)), and a novel sliding surface

in (Chian-Song (2012)) is developed by introducing sign
and fractional integral terminal sliding modes. also authors
in (Mohammad Pourmahmood (2012)) have proposed a
novel fractional-order integral type sliding surface.

Motivated by the above discussion this paper designs a
sliding surface based on the fractional order proportional-
integral-derivative (PIαDα), the best choice of the pro-
posed sliding surface gains can accelerates the movement
of the process towards setpoint and eliminates the residual
steady-state error that occurs with a pure proportional-
derivative action and improves settling time and stability
of the system.

Then, to make the developed surface globally attractive
and invariant, the control law is designed.

An advantage of these methods of control (SMC) is their
robustness to parameter variations and bounded external
disturbances. The robustness is attributed to the discon-
tinuous term in the control input. However, this discon-
tinuous term also causes an undesirable effect called chat-
tering, especially, when take the sliding surface without
integrator. Sometimes this discontinuous control action
can even cause the system performance to be unstable. To
reach a better compromise between small chattering and
good tracking precision, various compensation strategies
have been proposed. For example, integral sliding control
(Jung-Hoon et al. (1992); Chern et al. (1993); Baik et al.
(1996)), A fuzzy sliding mode control strategy (Her-Terng
et al. (2006)). Though introducing a fuzzy logic controller
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and taking off the sgn function in the hitting control law
of SMC may reduce the chatter amplitude.

The selection of suitable parameters of fuzzy fractional
order sliding mode controller (FFOSMC) is a significant
problem, that it can be solved either by manually changing
the values or to use some optimization methods, in this
paper we are interested by the particle swarm optimization
algorithm (PSO).

Finally, a coupled double pendulum system is used to test
the performance and effectiveness of the proposed control
method using a simulation approach.

The rest of this article is organized as follows. Basic defini-
tions of fractional calculus are described in Section 2.The
Fuzzy fractional order sliding mode controller design, in
Section 3. After that the PSO approach is described in
Section 4. The optimization of FFOSMC with PSO in
Section 5. And finally the simulation results and conclusion
are given in Sections 6 and 7, respectively.

2. BASIC DEFINITIONS OF FRACTIONAL
CALCULUS

The fractional differ-integral operators denoted by aD
α
t

(fractional calculus) are a generalization of integration and
differentiation of the operators of a non integer order.
In the literature we find different definitions of fractional
differ-integral, but the commonly used are:

The Riemann-Liouville (RL) definition:

aD
α
t f(t) =

1

Γ(m− α)

(
d

dt

)m ∫ t

a

f(τ)

(t− τ)1−(m−α)
dτ (1)

The Caputo’s definition:

aD
α
t f(t) =

1

Γ(m− α)

∫ t

a

fm(τ)

(t− τ)1−(m−α)
dτ (2)

where m− 1 < α < m and Γ(.) is the well known Euler’s
gamma function, and its definition is:

Γ(x) =

∫ ∞
0

e−tt(x−1)dt, x > 0 (3)

on the other hand, Grunwald-Letnikov (GL) reformulated
the definition of the fractional order differ-integral as
follows:

aD
α
t f(t) =lim

h−→0

1

hα

(t−α)/h∑
k=0

(−1)k
(
α
k

)
f(t− kh) (4)

Because the numerical simulation of a fractional differen-
tial equation is not simple as that of an ordinary differ-
ential equation, so the Laplace transform method is often
used as being a tool for the resolution of the problems
arising in engineering (Oldham et al. (1974); Kenneth
et al. (1993)).

In the following section, we give the Laplace transforms of
the fractional order derivative given previously.

The Laplace transform of (RL) definition is as follow
(Oldham et al. (1974); Podlubny (1999)):

L {0Dα
t f(t); s} = sαF (s)−

(m−1)∑
k=0

sk
[
0D

(α−k−1)
t f(t)

]
t=0

(5)

Where the Laplace transform of Caputo’s definition is
given by (Podlubny (1999)):

L {0Dα
t f(t); s} = sαF (s)−

(m−1)∑
k=0

sα−k−1fk(0) (6)

where s = jw denotes the Laplace operator. For the
zero initial conditions, the Laplace transforms of fractional
derivative of Riemann-Liouville, Caputo and Grunwald-
Letnikov are reduced to (7) (Manuel et al. (2009); Pod-
lubny (1999)).

L(0D
α
t f(t)) = sαF (s) (7)

In this paper the fractional order element sα is approx-
imated by Oustaloup’s filter. In which, this filter (Alain
et al. (2000)) is based on the approximation of a function
of the form:

G(s) = sα, α ∈ R+ (8)

By a rational function:

Ĝ(s) = K
′

N ′∏
k=−N ′

s+ w
′

k

s+ wk
(9)

Where the parameters of this function (zeros, poles, and
gain) can be determined by the following formulas:

w
′

k = wb(wh/wb)
(k+N ′+0.5(1−α))/(2N ′+1)

wk = wb(wh/wb)
(k+N ′+0.5(1+α))/(2N ′+1)

K
′

= wαh

(10)

(2N ′+1) is the order of the filter, wb and wh are respec-
tively the low and high transient-frequencies. In this paper
we consider the 5th order Oustaloup’s rational approxi-
mation for the FO operator within the frequency range
w ∈ (10−2, 102)

3. FUZZY FRACTIONAL ORDER SLIDING MODE
CONTROLLER DESIGN

We consider a large-scale nonlinear system comprised of n
interconnected subsystems defined by:

ẋ2j−1 = x2j , j = 1, 2, ..., n

ẋ2j = fj(x) + bj(x)uj
x0 = x(t0)

(11)

Where x = [x1, x2, ..., x2n]T ∈ R2n is the state vector,
fj(x) and bj(x) are nonlinear functions, uj is the control
input of the jth subsystem designed to track a command
x(2j−1)d closely. Without losing generality, assume bj(x) >
0 for all x. For this kind of system, we find several control
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methods, such as, fuzzy control, PID control, sliding mode
control,...etc.

3.1 Fractional Order Sliding Mode Controller (FOSMC)

Because the use of centralized control generally results in
complex control laws, which can not easily implemented;
the overall system (11) will be decomposed into n sub-
systems, each of them is controlled independently. In-
terconnections are considered as perturbations for each
subsystem.

For the jth subsystem of (11), firstly we propose the
following PIαDα (0 ≺ α ≺ 1) sliding surface using
Caputo’s definition as:

Sj = kpje2j−1 + kijD
−αj

t (e2j−1) +D
αj

t (e2j−1) (12)

Remark: It is clear that selecting αj = 1, a classical PID
sliding surfaces can be recovered.

The fractional derivatives caputo right hand definition
(RHD) (Shantanu (2011)) of function f(t) gives,Dα

t (f(t)) =

D
(α−m)
t

dm

dtm (f(t)) where m is an integer greater than α.
From this we can write the sliding surface Sj as follows:

Sj = kpje2j−1 + kijD
−αj

t (e2j−1) +D
(αj−1)
t (ė2j−1) (13)

Where e2j−1 = x2j−1 − x(2j−1)d , and kpj , kij are positive
constants.

It is obvious from (12) that keeping system states on
the sliding surface Sj , ∀t > 0 will guarantee that the
tracking error vector asymptotically approach to zero. The
corresponding sliding condition is:

1

2

d

dt
(S2
j ) = SjṠj ≤ 0 (14)

The general control structure that satisfies the stability
condition of the sliding motion can be written as:

uj = ueqj +
1

bj(x)
D

(1−αj)
t (uhj)

= ueqj +
1

bj(x)
D

(1−αj)
t (−Ksjsgn(Sj)) (15)

Where ueqj is called the equivalent control law that is

derived by setting Ṡj = 0; and Ksj is a positive constant.

we refer to (Podlubny (1999)) for more details. Differen-
tiating both sides of Eq (13) to the order unity yields the
equality in (16):

Ṡj = kpj ė2j−1 + kijD
−αj

t (ė2j−1) +D
(αj−1)
t (ë2j−1)

= kpj ė2j−1 + kijD
−αj

t (ė2j−1)

+D
(αj−1)
t (ẍ2j−1 − ẍ(2j−1)d) (16)

From Eq(16) one can conclude that:

D
(1−αj)
t (Ṡj) = kpjD

(1−αj)
t (ė2j−1) + kijD

(1−2αj)
t (ė2j−1)

+ (ẍ2j−1 − ẍ(2j−1)d) (17)

as discussed above ueqj is obtained by setting Ṡj = 0;
and we have the fractional order derivative of 0 is 0; for

this by setting D
(1−αj)
t (Ṡj) = 0, the equivalent control is

obtained, and it has the flowing formula:

ueqj =
−1

bj(x)
(fj(x)− ẍ(2j−1)d + kpjD

(1−αj)
t (ė2j−1)

+ kijD
(1−2αj)
t (ė2j−1)) (18)

To verify the stability condition, substituting Eq(15) with
the given ueqj into Eq(11) yields:

ẋ2j = ẍ2j−1 = ẍ(2j−1)d − kpjD
(1−αj)
t (ė2j−1)

−kijD
(1−2αj)
t (ė2j−1)

−KsjD
(1−αj)
t (sgn(Sj))

(19)

Eq(19) becomes

ẍ2j−1 − ẍ(2j−1)d + kpjD
(1−αj)
t (ė2j−1)

+kijD
(1−2αj)
t (ė2j−1) = −KsjD

(1−αj)
t (sgn(Sj))

(20)

By using Eq (17), the Eq (20) can be rewritten as follows:

D
(1−αj)
t (Ṡj) = −KsjD

(1−αj)
t (sgn(Sj)) (21)

Differentiate (21) to the order (αj − 1). Since (αj − 1) ≺ 0
this indeed corresponds to fractional order integration,
corresponding to negative valued α in Caputo’s definition
in (2); and taking into account the property of Caputo’s

derivative aD
−α
t (aD

α
t f(t)) = f(t)−

∑m−1
i=0

fi(a)
i! (t− a)i.

Ṡj + Ṡj(0) = −Ksj(sgn(Sj)) +Ksj(sgn(Sj(0))) (22)

considering Ṡj(0) = 0, (sgn(Sj(0))) = 0 for m = 1; this

lets us have Ṡj = −Ksj .(sgn(Sj)).

Thus by using (14) we can obtain:

SjṠj = Sj(−Ksj(sgn(Sj)))

= −Ksj |Sj | ≤ 0 (23)

Lemma 1. (Denis (1996)) Consider the following au-
tonomous linear fractional-order system:

0D
α
t x(t) = Ax(t), x(0) = x0 (24)

where x ∈ Rn, A = (aij) ∈ Rn×n, 0 ≺ α ≺ 1, is
asymptotically stable if and only if (see figure 1):

|arg(eig(A))| > α
π

2
(25)

In this case, the components of the state decay towards 0
like t−α.

Proof. When the sliding mode occurs, system (12) can be
represented as follows:

kpj(e2j−1) + kijD
−αj

t (e2j−1) +D
αj

t (e2j−1) = 0 (26)

Taking the fractional derivative of order αj of Eq.(26),
with respect to Dα

t (f(t)) = Dα1
t Dα2

t ...Dαn
t (f(t)), (α =
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Fig. 1. Stable domain of fractional order system in sα plane

α1+α2+...+αn, αi ≺ 1) (Kenneth et al. (1993); Shantanu
(2011)) yields:

kij(e2j−1) + kpjD
αj

t (e2j−1) +D
2αj

t (e2j−1) = 0 (27)

The derivative operator can be the Caputo’s definition.

Therefore, the sliding mode dynamics is obtained by the
following equations:

D
αj

t (e2j−1) = e2j

D
αj

t (e2j) = −kije2j−1 − kpje2j
(28)

or in a matrix equation form as:[
Dα
t (e2j−1)
Dα
t (e2j)

]
=

[
0 1
−kij −kpj

] [
e2j−1
e2j

]
(29)

The sliding surface parameters kpj and kij are selected to
be positive such that the eigenvalues of matrix A satisfy
the stability condition of Lemma 1.

In summary the proposed PIαDα sliding surface can
guarantee the stability, in the sense of Lemma 1 and
Lyapunov theorem. However, a large control gain Ksj

often causes the chattering effect. In order to tackle this
problem, a continuous fuzzy logic control term ∆uj is used
to approximate uhj

3.2 Fuzzy Fractional Order Sliding Mode Controller

Takagi-Sugeno (Takagi and Sugeno, 1985) fuzzy models
are used by many authors to design controllers for nonlin-
ear systems (Zsofia et al. (2013); Mohamed Laid et al.
(2011)), because it has the ability to approximate any
nonlinear behavior.

in this paper the Fuzzy Fractional Order Sliding Mode
Controller (FFOSMC) is considered as a hybrid controller,
it can be regarded as a T-S fuzzy controller that controls
the fractional order sliding surface Sj approach to zero.

the structure of a fuzzy controller design consists of: 1)
the definition of input-output fuzzy variables; 2) decision-
making related to fuzzy control rules; 3) fuzzy inference
logic; and 4) defuzzification.

For the proposed FFOSMC, we used the sliding surface
(Sj) as input at the fuzzy controller, and ∆uj is the fuzzy
controller output. The structure is shown in figure 2:

Fig. 3. Membership functions of input variable (Sj) and
FLC output (∆uj) for the FFOSMC of the jth sub-
system

Where:

uj = ueqj + ufj

= ueqj +
1

bj(x)
D

(1−αj)
t (∆uj) (30)

Assuming that the input and output of the jth fuzzy
controller has five level language variables, its membership
function is shown in figure 3. φj and Kj are used to expand
or shrink the divisions of the membership functions along
the universes of discourse, rj is a coefficient to be used to
adjust the width of the input membership function of the
linguistic variable Zero (Ahcene et al. (2008)).

Such linguistic expressions can be used to form the fuzzy
control rules as below:

Rule 1: IF Sj is NB, THEN ∆uj is PB.

Rule 2: IF Sj is NM, THEN ∆uj is PM.

Rule 3: IF Sj is ZO, THEN ∆uj is ZO.

Rule 4: IF Sj is PM, THEN ∆uj is NM.

Rule 5: IF Sj is PB, THEN ∆uj is NB.

Where NB denotes ”Negative Big”, NM denotes ”Nega-
tive Mid”, ZO denotes ”Zero”, PB denotes ”Positive Big”,
and PM denotes ”Positive Mid”.

The FLC output (∆u) is determined using the weighted
average method (Ahcene et al. (2008)).

4. PARTICLE SWARM OPTIMIZATION

Particle swarm optimization (PSO) is an evolutionary
computation technique developed by Kennedy and Eber-
hart in 1995 (Russell et al. (1995)). The inspiration un-
derlying the development of this algorithm was the social
behaviour of animals, such as the flocking of birds and the
schooling of fish, and the swarm theory. It has been proven
to be efficient in solving optimization problem especially
for nonlinearity and non differentiability, multiple opti-
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Fig. 2. Structure of the proposed FFOSMC for each susbsystem

mum, high dimensionality (Wei-Der et al. (2010); Juing-
Shian et al. (2009)) and parameters identification (Tlili
et al. (2013)).

In PSO, the velocity of each particle is modified iteratively
by its individual best position (pbest), and the global best
position (gbest) found by particles in its neighborhood. As
a result, each particle searches around a region defined
by its individual best position (pbest) and the global best
position (gbest) from its neighborhood. Henceforth we use
Vi to denote the velocity of the ith particle in the swarm,
pi denote its position. At each step (or iteration) J , by
using the individual best position, (pbest), and global best
position, (gbest), the velocity and position of each particle
are updated by the following two equations:

Vi(J) = W [Vi(J − 1) + c1rand1(pbesti − pi(J − 1))
+c2rand2(gbest− pi(J − 1))]

(31)

pi(J) = pi(J − 1) + Vi(J) (32)

Where rand1 and rand2 are random numbers between 0
and 1; c1 and c2 are positive constant learning rates; W
is called the constriction factor (Maurice (1999)) and is
defined by (33):

W =
2∣∣2− c−√c2 − 4.c

∣∣ , c = c1 + c2, c � 4 (33)

In each step J the position is confined within the range
of [pmin, pmax]. If the position violates these limits, it is
forced to its proper values (Wei-Der et al. (2010)).

pi =

{
pmin if pi < pmin
pi if pmin < pi < pmax

pmax if pi > pmax
(34)

Changing position by this way enables the ith particle to
search around its individual best position pbest, and global
best position, gbest.

The following shows the design step for implementing the
PSO algorithm (Wei-Der et al. (2010)).

Step 1. Initialize particles with random position and
velocity on dimension in the problem space.

Step 2.If a prescribed number of iterations (generations)
is achieved, and then stop the algorithm.

Step 3.For each particle, evaluate the desired optimization
fitness function, and record each particle’s best previous
position (pbest), and global best position (gbest).

Step 4.Change the velocity and position according to
equations (31) and (32) respectively, for each particle

Step 5. Check each particle’s position using (34).

Step 6. Go back to Step 2.

5. OPTIMIZATION OF FFOSMC WITH PSO

The design problem is defined as finding the optimum
values of the fuzzy fractional order sliding mode controller
parameters in the closed-loop system. The parameters
vector composed by the positions of the membership
functions (when the conclusions are fixed), the gains kpj ,
kij , and the fractional orders αj .

Let pi = [φj , rj ,Kj , kpj , kij , αj ] the vector of selective pa-
rameters of FFOSMC, where the regions of these selective
parameters are mentioned as follows.

0.1 < φj < 10 , 0.1 < rj < 1 , 0.1 < Kj < 20 ,
0.01 < kpj , kij < 20 , 0.1 < αj < 0.98

To converge toward the optimal solution, the PSO al-
gorithm must be guided by the cost function. Hence, it
should be properly defined before the PSO algorithm is
executed. In the present study, the used cost function (F )
is defined by the following formula:

F =

N∑
i=1

(

n∑
j=1

(γ2j−1 |e2j−1(i)|+ γ2j |uj(i)|)) (35)

Where e2j−1(i) is the trajectory error of ith sample, uj(i)
is the control signal of ith sample and N is the number
of sample. The weighting factors γ2j−1 and γ2j are used
to give more flexibility to the designer depending on the
nature of application and relative importance of low error
and control signal. In this present study the weighting
factors γ2j−1 and γ2j ∀j = 1, 2, ..., n are set to 3 and 0.1
respectively. Figure 4 illustrates the block structure of the
FFOSMC optimizing process using PSO algorithm.
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Fig. 4. Tuning process of FFOSMC parameters with PSO

6. SIMULATION RESULTS AND DISCUSSION

In this section, we shall demonstrate that the FFOSMC
tuned with PSO is applicable to the problem of trajectory
tracking control of a coupled double pendulum system,
which is illustrated on figure 5. Tuning process by PSO is
also applied to the FFOSMC using PDα sliding surface
and FSMC using the conventional PID sliding surface.

The simulation is carried out using the ”Matlab/Simulink”
tools within 0.01 sample time. The population size of PSO
algorithm is set to 20 particles. The parameters c1, c2 and
W are set to 2.05, 2.05 and 0.7298 respectively, and the
maximum number of iteration J is set to 50 iterations.

The dynamic of the coupled double pendulum system is
described below.

ẋ1 = x2

ẋ2 = (
m1gr

J1
)sin(x1) + (

kr2

4J1
)(sin(x3)− sin(x1))

+
kr

2J1
(l − b) +

u1
J1

ẋ3 = x4

ẋ4 = (
m2gr

J2
)sin(x3) + (

kr2

4J1
)(sin(x2)− sin(x3))

− kr

2J2
(l − b) +

u2
J2

(36)

Where x1 = θ1, and x3 = θ2 are the angular displacements
of the pendulums with respect to the vertical axis, u1 and
u2 are the control input torques:

In this simulation example, the following parameters are
used;

k = 100N/M, g = 9.81m/s2,m1 = 2kg,m2 = 2.5kg, J1 =
0.5kg, J2 = 0.625kg, l = 0.5m, r = 0.5m, b = 0.4m.

by using the theoretical development given previously in
section 3.1, firstly the fractional order PID sliding surfaces
S1 and S2 are given by:

S1 = kp1e1 + ki1D
−α1
t (e1) +Dα1

t (e1)

S2 = kp2e3 + ki2D
−α2
t (e3) +Dα2

t (e3)

e1 = x1 − x1d
e3 = x3 − x3d

(37)

And the control signals by the following:

u1 = −1
b1(x)

(f1(x)− ẍ1d + kp1D
(1−α1)
t (ė1)

+ki1D
(1−2α1)
t (ė1)−D(1−α1)

t (∆u1))

u2 = −1
b2(x)

(f2(x)− ẍ3d + kp2D
(1−α2)
t (ė3)

+ki2D
(1−2α2)
t (ė3)−D(1−α2)

t (∆u2))

(38)

The reference trajectories used in the simulations are given
by:

x1d = 0.12(cos(πt) + sin( 2πt
3 )) rad

x3d = 0.12(sin(πt) + cos(πt3 )) rad
(39)

Figure 6 shows the cost function evolution during the
optimization process, after 50 iteration the PSO algorithm
converges to the optimal parameters on table 1. The angles
position (x1, x3) and control signals (u1, u2) are illustrated
on figure 7.

From table 1, we observe that the Lemma 1 is verified, then
the system is stable; and to prove this: we have for the first
subsystem; |arg(eig(λ1))| = |arg(eig(λ2))| = 1.9765 >
0.4770π2 ; where (λ1, λ2) are the eigenvalues of matrix A in
Eq(28) with the substitution of kp and ki. For the second
subsystem we have also; |arg(eig(λ1))| = |arg(eig(λ2))| =
1.7677 > 0.6317π2 ;

For the robustness evaluation of the controllers tuned
by PSO, the parameters m1,m2 and r are changed to
the values 3.5kg, 4kg and 0.7m respectively, where the
parameters of the different controllers are kept unchanged;
the simulation results are shown in figure 8.

in order to compare the performance of the proposed
controller with the FFOSMC using PDα sliding surface
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Fig. 5. coupled double pendulum system
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Fig. 6. Evolution of the cost function (F) vs iteration (J)

Table 1. Optimal parameters for FFOSMC

controller parameters 1st subsystem 2nd subsystem

φ 0.1131 0.1000
r 0.1451 0.1091
K 1.0165 0.8927
kp 0.9444 0.2877
ki 1.4313 0.5406
α 0.4770 0.6317

and FSMC using the conventional PID sliding surface,
we define two cost functions F1 and F2, such as:

F1 =

N∑
i=1

(

n∑
j=1

(e22j−1(i))) (40)

and

F2 =

N∑
i=1

(

n∑
j=1

(u2j (i))) (41)

Table 2. Comparative study for the first sub-
system, a) without any disturbance, b) with

parameters variation

PIαDα PDα PID
a) F1 0.0962 0.1422 0.2278

F2 1.7990× 103 1.5881× 103 980.7940

b) F1 0.0962 0.1422 0.2278
F2 4.3012× 103 3.9391× 103 3.0448× 103

Table 3. Comparative study for the second
subsystem, a) without any disturbance, b)

with parameters variation

PIαDα PDα PID
a) F1 0.1451 0.1767 0.2600

F2 3.2281× 103 2.8596× 103 2.4612× 103

b) F1 0.1451 0.1767 0.2600
F2 8.2032× 103 7.8582× 103 7.2046× 103

Table 4. Comparative study for the coupled
system, a) without any disturbance, b) with

parameters variation

PIαDα PDα PID
a) F1 0.2413 0.3188 0.4878

F2 5.0271× 103 4.4450× 103 3.4420× 103

b) F1 0.2413 0.3188 0.4878
F2 1.2504× 104 1.1797× 104 1.0249× 104

The simulation results for each performance index are
given in tables 2, 3 and 4.

From the simulation results, it can be seen that the pro-
posed FFOSMC using PIαDα sliding surface performs
better control specification such as fast response and
trajectory tracking task compared with FFOSMC using
PDα sliding surface and conventional sliding mode con-
troller using PID sliding surface. However when compared
with respect to small magnitude of control signal, the
conventional sliding mode controller gives better results
compared with the other using the theory of fractional
calculus.



48 Control Engineering and Applied Informatics

0 1 2 3 4 5 6
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3
s
ta

te
, 
x

1

 

 

0 1 2 3 4 5 6
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

time(sec)

s
ta

te
, 
x

3

 

 

x
1d

x1

x
3

x
3d

0 1 2 3 4 5 6
−10

−5

0

5

10

15

20

25

c
o

n
tr

o
l 
s
ig

n
a

l,
 u

1

0 1 2 3 4 5 6
−10

0

10

20

30

40

time(sec)

c
o

n
tr

o
l 
s
ig

n
a

l,
 u

2

Fig. 7. Simulation results of the coupled double pendulum system using optimized fuzzy fractional order sliding mode
controller
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Fig. 8. Simulation results of the coupled double pendulum system using optimized fuzzy fractional order sliding mode
controller under parameters variation
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also with parameters variation we can see that the different
controllers tuned with PSO give better results; and the
system remains stable.

7. CONCLUSION

In this paper a Fuzzy Fractional Order Sliding Mode Con-
troller that combines the advantages in term of robustness
of the fractional calculus, fuzzy logic for its ability to
express the amount of ambiguity in human reasoning and
sliding mod controller in term of robustness to parameters
variation and external disturbances, is investigated for the
coupled double pendulum system.

Firstly, PIαDα surface sliding mode controller is used.
The design yields an equivalent control term with an
addition of fuzzy logic control to approximate the dis-
continuous control term and to alleviate the chattering
phenomenon. Then the application of the PSO method
can perform an efficient search for the optimal parameters
of both FSMC and FFOSMC, and achieve good accuracy.

Finally, the simulation results show the effectiveness of the
proposed controller algorithm for interconnected nonlinear
systems.
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