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Abstract: This paper demonstrates control accuracy and computational efficiency of nonlinear model 
predictive control (NMPC) strategy which utilizes a deterministic sparse kernel learning technique called 
Support vector regression (SVR) and particle swarm optimization with controllable random exploration 
velocity (PSO-CREV). An accurate reliable nonlinear model is first identified by SVR with a radial basis 
function (RBF) kernel and then the optimization of control sequence is speeded up by PSO-CREV. An 
improved system performance is guaranteed by an accurate sparse predictive model and an efficient and 
fast optimization algorithm. To compare the performance, model predictive control (MPC) using neural 
network (NN) model is done on a highly nonlinear distillation column with severe interacting process 
variables. SVR based MPC shows improved tracking performance with very less computational effort 
which is much essential for real time control. 
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

1. INTRODUCTION 

Model predictive control (MPC) is recognized as one of the 
advanced control technique which has been very successful 
in practical applications (Qin and Badgwell, 2003). This 
acknowledgment is due to its ability to handle constraints 
imposed on process inputs and outputs, interactions between 
process variables, process nonlinearities, dead times, and 
model uncertainties. MPC algorithm has the capability of 
controlling multi input, multi output (MIMO) nonlinear 
processes with significant time-delays and process 
interactions more efficiently.   

In earlier times linear model predictive controllers were 
repeatedly used in practice. But linear model predictive 
controllers fail to experiment the inevitable nonlinear 
behaviour of chemical processes. Linear model predictive 
controller is inadequate for highly nonlinear processes and 
moderately nonlinear processes which have large operating 
regimes. This shortcoming coupled with increasingly 
stringent demands on throughput and product quality has 
spurred the development of nonlinear model predictive 
control (Henson, 1998). Two challenging tasks in nonlinear 
model predictive controller are acquiring an accurate 
nonlinear model and solving nonlinear optimization problem 
online.  

The performance of nonlinear model predictive controller 
depends on model accuracy. For a highly tuned controller a 
very accurate model is necessary (Rossiter, 2003). Thus 
precise nonlinear model is expected for better controlled 
performance. Neural networks were widely believed for 
estimation of nonlinear system dynamics due to its simplicity 
besides its poor extrapolation, poor generalization. Moreover, 

training a neural network is too lengthy and the number of 
training data required is more (Liu et al., 2010). Several 
scholars (Bhat and Mcavoy, 1990; Psichogios and Ungar 
1991; Hunt et al., 1992) have approximated nonlinear models 
by neural networks which paid acceptable performance. 
Despite the existence of many nonlinear control strategies in 
theory, designing a suitable controller for complex process is 
still a challenge in practice (Liu et al., 2010). 

The sparse kernel learning is a nonlinear modeling method 
originally proposed in the machine learning area (Taylor and 
Cristianini, 2004; Bishop, 2006). A deterministic nonlinear 
modeling method, support vector machines (SVM) which 
overwhelms the over fitting and poor generalization ability of 
neural network with less number of training data and less 
training time providing better tracking performance is 
introduced in (Vapnik, 1998). The guaranteed model 
accuracy, better extrapolation and generalization capability of 
SVR model are explicitly acknowledged by many researchers 
(Zhang and Wang, 2006; Kulkarni et al., 2003; Zhong et al., 
(2005a, b); Yue-hua et al., 2007; Xue-Cheng et al., 2007 
which highlights its significance. The complexity of 
developing an accurate model for the distillation column and 
the nonlinearities of its dynamics, make very attractive the 
use of support vector machine. 

Despite of accurate approximation of nonlinear dynamics it 
suffers from computational burden as model predictive 
controller does prediction and optimization at each sampling 
instant. Zhong et al., (2005a, b) has solved the cost function 
of SVM based MPC by Nelder-Mead simplex direct search 
method. (Yue-hua et al., 2007) has optimized the 
performance index by genetic algorithm which has more 
computational effort when compared with particle swarm 
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optimization. (Xue-Cheng et al., 2007) obtained the control 
sequence by dynamic programming in which selection of sub 
problems and ordering are tough tasks. 

The particle swarm optimization is an attractive tool owing to 
its simplicity and high performance, it has been proven to be 
a powerful competitor to other evolutionary algorithms 
(Eberhart and Kennedy, 1995; Kennedy and Eberhart, 1995) 
and been widely used in many optimization processes 
(Yoshida et al., 1999; Messerschmidt and Engelbrecht, 
2004). It is a computationally efficient method since it is a 
derivative free method.  

Chen and Li, (2007a, b) developed a novel method of 
optimization, particle swarm optimization with controllable 
random exploration velocity (PSO-CREV) for its 
computational efficiency and improved performance than 
conventional particle swarm optimization. 

In this paper, a nonlinear model predictive controller 
combining support vector regression model and particle 
swarm optimization with controllable random exploration 
velocity (PSO-CREV) is presented; which merges the 
advantage of accurate prediction and less computational 
effort. Simulation results of a highly nonlinear multi input 
multi output (MIMO) distillation column process with severe 
interacting process variables illustrates the better tracking 
performance of SVM based MPC when compared to neural 
network based MPC. 

This paper encompasses five sections commencing with the 
introduction as the first section followed by the second 
section which describes least squares support vector 
machines. The third section explains MPC based on LS-SVM 
and particle swarm optimization. The fourth section shows a 
comparative study of a highly nonlinear distillation column 
process with suitable simulation results of LS-SVM based 
MPC and NN based MPC and the fifth section concludes the 
paper. 

2. LEAST SQUARES SUPPORT VECTOR MACHINES 

Support Vector learning is based on simple ideas which 
originated in statistical learning theory (Bishop,  2006). 
SVM’s are fast replacing neural network as the tool of choice 
for classification and regression tasks, primarily due to their 
ability to generalize well on unseen data. SVM’s are 
characterized by usage of kernels, absence of local minima, 
sparseness of the solution and capacity control obtained by 
acting on the number of support vectors. Although SVM’s 
are being used mainly for classification tasks, recently 
SVM’s have been successfully extended to solve regression 
problems (Karatzoglou and Meyer, 2006).  

Consider a given training set of M regression data points 
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plant and Ryi   is the output data of the actual plant.. In 
high dimensional feature space Z, LS-SVM model is,    
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In the above nonlinear function estimation model, the weight 
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This is subjected to the following constraints 
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 - regularization parameter. 
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The Lagrange function for equation (2) is 
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where  iα -Lagrange multiplier. 

According to Karush–Kuhn–Tucker conditions, 
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All the above equations in Equation (5) are first transformed 

into a matrix form and then substituting the values of  E  and 
w

  results in the following matrix equation, 
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IM is an MXM identity matrix and   
),,()()( jij

T
i xxKxx       i, j=1, 2... M are any 

kernel function satisfying the Mercer condition (Smola and 
Scholkopf,  2004). 
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The parameters  and b can be obtained as a solution of 
Equation (5) and hence LS-SVM predicted model of the 
given dataset is as follows, 

bxxKxy i

M

i
i  



),()(ˆ
1

                         (7) 

In the present work Radial basis function (RBF) in Equation 
(8) is selected as kernel function because of its ability to 
reduce computational complexity of the training process and 
to improve generalization ability of LS-SVM. 

}/exp{)( 22
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where   is the kernel width.  

Thus in LS-SVM in order to obtain the predicted model there 
are two free parameters to be tuned i.e., regularization 
parameter  and kernel width parameter  . In LS-SVM 

these are the two parameters which decide the generalization 
ability of predicted model. Hence optimization of these 
parameters plays a momentous role. These parameters are 
tuned using the algorithm of Coupled Simulated Annealing 
(CSA) and simplex method (De Brabanter et al., 2011). 
Initially the global optimization technique Coupled Simulated 
Annealing determines suitable values for those parameters 
and then further optimization is done by simplex method to 
get finely tuned values of those parameters to achieve 
accurate prediction. 

3. MPC BASED ON RVM AND PARTICLE    SWARM 
OPTIMIZATION 

3.1  LS-SVM Based MPC Principle  

The basic structure of LS-SVM based nonlinear model 
predictive controller is shown in Fig. 1. It includes three 
important blocks, the actual plant to be controlled with output 
y(k). The LS-SVM model of the actual plant to be controlled 
with predicted output ŷ(k) = [ŷ(k+1) / k ,… ŷ (k+Np) / k] 
here, Np is the prediction horizon of MPC which dictates how 
far we wish the future to be predicted for. Next is the 
optimization block which provides the optimized control 
signal u(k)=[u(k/k),…u(k+ Nu -1 /k)] where Nu is the control 
horizon of MPC which dictates the number of control moves 
used to attain the future control trajectory, subjected to the 
specified constraints which is required for the plant to 
achieve the desired trajectory ref(k)=[ref(k+1) ….ref (k+ 
Np)]. Here k stands for the current sampling instant.  

Thus at each sampling instant a sequence of manipulated 
variable u(k)  is calculated in order to minimize the 
formulated performance index in (11) i.e. the difference 
between the predicted output of the model and the desired 
reference trajectory over the specified prediction horizon Np.  

The number of manipulated variable in the sequence is 
decided by the control horizon value Nu and only the first 
manipulated variable is applied to the actual plant. This 
course is repeated at each sampling instant.  

The basic structure of neural network based nonlinear model 
predictive control is obtained by replacing LS-SVM model 
by neural network model in Fig. 1.  

 

Fig. 1.  Basic structure of LS- SVM based nonlinear model 
predictive control. 

3.2  Performance index formulation 

For a MIMO mn nonlinear process the predicted outputs 
of LS-SVM model from Equation (7) is a function of past 
process outputs, Y(k)=[y1(k)…..y1(k-ny+1), y2(k)…..y2(k-
ny+1),….,ym(k)…..ym(k-ny+1)] and past process inputs, U(k-
1)=[u1(k-1)…u1(k-nu+1),u2(k-1)…u2(k-nu+1),....,un(k-
1)…un(k-nu+1)]. Which could be compactly rewritten as 
Y(k)=[Y1(k),Y2(k)…,Ym(k)] and U(k-1)=[U1(k-1),U2(k-
1)….,Un(k-1)] . Here, Y(k) and U(k-1) are the vectors holding 
the past controlled outputs and past manipulated inputs 
respectively. The number of past controlled outputs and past 
manipulated inputs depends on the corresponding process 
orders nu and ny respectively. 

Thus the prediction of m outputs for a MIMO mn  
nonlinear process can be illustrated by the following discrete 
time model, 

)],1(),(),([)1(ˆ 11  kUkukYfky       
)],1(),(),([)1(ˆ 22  kUkukYfky              

    ……..                         (9) 

)].1(),(),([)1(ˆ  kUkukYfky mm  

where k is the discrete time index 

The simple idea behind regression problem using sparse 
kernel learning structure is to project the input vectors by a 
nonlinear mapping into the high dimensional kernel Hilbert 
space and then to perform a linear regression in this feature 
space. Thus after system identification with the regression 
data set, prediction of each output could be formulated as  

bxxKky i
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where j=1…m and M is the number of subsets of training 
samples. 

Accordingly, the performance index to be minimized to 
achieve the optimal control sequence can be obtained as 
shown below, 
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where 
        N1  - minimum prediction horizon 
 N2  -  maximum prediction horizon 
 Nu  -  control horizon 
 m  -  number of outputs 
 n  - number of inputs 
 ref(.)              -  reference trajectory 

 

(.)ˆ jy

 
 - jth predicted output of LS-SVM         

                                           model 

     

(.)ju  -  change of jth  control input defined 
                                           as uj(k+i)- uj(k+i-1) 
    
  k      - current sampling instant 

 

jjq ,  - time independent weighting   
                                            coefficients. 

In the performance index formulated in Equation (11), ŷ  

depends on the  kernel function which in turn is a function of 
manipulated  variable u,  which is  optimized and applied to 
the actual plant in order to minimize the deviation between the 
reference value and controlled variable.  

3.3  Conventional Particle swarm optimization 

Although nonlinear predictive controller is good at 
controlling unknown nonlinear systems, it does not mean that 
practical implementation is without difficulties. The primary 
shortage results from its computational cost (Chen and Li, 
2007a, b). Usage of evolutionary algorithm for MPC 
optimization overcomes this difficulty. Inspired by the 
foraging behaviour of birds, American psychologist Kennedy 
and electrical engineer Eberhart developed the particle swarm 
optimization algorithm (Kennedy and Eberhart, 1995). This 
evolutionary algorithm has the capability of universality and 
global optimization. 

If in an n dimensional search space, the swarm 
X=[X1,...,X2,…,Xm] is composed of m particles. Let the 
position and velocity of ith individual particles be 
Xi=[xi1,xi2,…xin]

T and Vi=[vi1,vi2,…vin]
T respectively and the 

best position be Pi=[Pi1,Pi2,…,Pin]
T. Let the global best 

position, gbest be Pg=[pg1,pg2,…pgn]
T . Then the updated 

velocity and position of particle Xi will be as in Equation (12) 
and Equation (13). 

)()( )()(
22

)()(
11

)()1( t
id

t
gd

t
id

t
id

t
id

t
id XPrcXPrCvv     (12) 

)1()()1(   t
id

t
id

t
id vxx          (13) 

where d=1,2,…,n,  i=1,2,…m, 

m  -  swarm size, 
 t  -  iteration counter, 
w   -  inertia weights 
r1, r2  -  random numbers in the range [0,1], 
c1, c2   - learning factors. 
 

Usually the learning factors c1 and c2 ranges between [0, 4]. 

3.4 Disadvantages of Conventional PSO 

From Equation (18) and Equation (19) it is understood that the 
strength of exploration performance is merely determined by 

the degrading rate of )( )()( t
id

t
id XP   and 
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id

t
gd XP   as r1 and r2 are supplemented as 

relational coefficients to )( )()( t
id

t
id XP  and 

)( )()( t
id

t
gd XP   respectively. Hence if a swarm 

converges to a local minimal solution, the algorithm may not 
have the capability to neglect it and hence the strength of 
exploration behaviour of the conventional PSO algorithm 
needs improvement. This task of improving the exploration 
strength is achieved in a modified novel algorithm PSO-
CREV. 

3.5  PSO-CREV Algorithm 

The intensity of exploration capability of conventional PSO 
was improved significantly by Chen and Li, (2007a, b), after 
incorporating some modifications in the position and velocity 
equations as shown in Equation (14) and Equation (15) 
respectively. 
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 distribution, 
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 α       -  ranges between 0 and 1. 

In order to achieve the global optimal solution the random 

velocity 
)(t

id  is introduced to enhance the particles to reach 
the strange solution space which might be very close to the 
global optimal solution. On the other hand, a time-varying 
bond of random search velocity ‘ξ’ can meet strong 
exploration ability and fast convergence. 

Hence,  
ξ (n )=w (n ) ̄ξ ( n)     

Here the time varying positive coefficient w(n) is the one to 

be adjusted according to the requirements of optimization 
problem. 

 
 
 
 
 
Nb                -  Total number of iterations. 
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The values chosen for Nb ,λ1, λ2 are 60, 0.99 and 0.98 
respectively. Hence during iterations 1 to 15, the intension of 
ξ (n) is strong, so that particles have more opportunities to 
reach unknown solution space. And after that, the bound of 
ξ(n) decreases iteration by iteration on different rates within 
different periods, especially in the last quarter of iterations, ξ 
(n) has trivial effect on the convergence of PSO-CREV. Such 
a time-varying bound of random search velocity makes PSO-
CREV meet both the requirements of strong exploration 
ability and fast convergence. 

A dynamic strategy is selected for ε(n)  as 

b)+(n

a
=ε(n)

1
where a and b are scalars. To balance     the 

exploration capability and convergence speed the value of a 
and b must be properly selected (Chen and Li, 2007b).  The 
larger the value of a is, the stronger the divergence behaviour 
of PSO-CREV. That means a large a makes particle disperse 
widely. At the same time, b plays a very important role for 
determining the convergence speed. A small b makes PSO-
CREV converge slowly, because ε(n) decreases slowly. 
Hence, there exists a dilemma in choosing b. Choosing a 
small b makes PSO-CREV with strong exploration ability but 
weak convergent speed, while large value of b makes PSO-
CREV with the reverse character. To balance exploration and 
convergence speed, the values of a and b are chosen as 3.5 
and 0.4 respectively. 

The learning factors c1 and c2 are chosen as 2. The variables 
r1 and r2 are random numbers which ranges between 0 and 1. 
Due to the better extrapolation capability of PSO-CREV even 
30 swarm size is able to reach good convergence.  The inertia 
weight w, controls the convergence behaviour of PSO whose 
value is gradually reduced from 1 for refined solutions.  

The nonlinear model predictive control algorithm 
incorporated here utilizes this PSO-CREV optimization 
technique. The experiment is performed for 15 trials (the 
performances were not much varying) and the average of the 
15 results were taken.  

4. APPLICATION ON BINARY DISTILLATION 
COLUMN PROCESS 

This section describes the better accuracy and less 
computational demand of LS-SVM based nonlinear model 
predictive control (NMPC) than NN based NMPC by 
simulating a binary distillation column.  

The arrangement of distillation column process for the 
separation of a binary mixture of methanol and n-propanol is 
shown in Fig. 2. Two conventional controllers denoted by LC 
are used to maintain the levels in the reflux tank and bottom 
product tank. The MPC algorithm is responsible for 

controlling the composition of top product Dx  and bottom 

product Bx  by manipulating the reflux stream flow rate, L 
and vapour stream flow rate, V. Two critical controller 
performance attributes of set point tracking and disturbance 
rejection are presented through simulations.  

The binary distillation column considered is under LV –
configuration (Skogestad and Morari, 1988). It exhibits 

severe nonlinearity and strong cross coupling both under 
steady state and dynamic operating conditions. Simulation 
results convey the suitability of NMPC to tackle this 
nonlinearity and cross coupling. 

 
Fig. 2. Schematic of the binary distillation column process. 

The fundamental model containing the following nonlinear 
differential equations is used as the real process during 
simulation. The molar flows, relative volatility, liquid holdup 
on all trays are assumed to be constant. Mixing on all stages 
is perfect and vapour holdup is assumed to be nil. 

The important notations of the distillation column are listed 
below, 
F   -  Feed rate [kmol/min] 
qF   -  Fraction of liquid in feed 
D and B  -  distillate and bottom product flow  
                                         rate [kmol/min] 
xD and xB -  distillate and bottom product  
    composition 
L   -  reflux flow [kmol/min] 
V   -  boilup flow [kmol/min] 
MB   -   Liquid holdup on reboiler [kmol] 
MD   -  condenser holdup [kmol] 
Mi   -  Liquid holdup on theoretical tray i  
    [kmol] 
N   -  total number of theoretical trays 
NF   -  Feed tray location from bottom 
QF   -  fraction liquid in feed 
LB   -   Liquid flow rate into reboiler 
VT  -  vapour flow rate on top tray 
XB  -  ln xB, logarithmic bottom  
    composition 
YD  -  ln(1-yD), logarithmic top  
    composition 
xi  -    liquid mole fraction of light  
    component on stage i 
yi  -  vapour mole fraction of light  
    component on stage i 
 
yT  - vapour mole fraction of light  
   component on top tray 
ZF  -  mole fraction of light component  
   in feed 

ref
Dx

  
-  desired value of distillate product  

   composition 
ref
Bx

  
- desired value of bottom product  

   composition 



CONTROL ENGINEERING AND APPLIED INFORMATICS      19 

     

   
 

Material balance equations for change in holdup of light 
component on each tray; 

)1(,2 ,  FF NiNiNi

iiiiiiiiii yVxLyVxLxM   1111         (16) 

above feed location 1 FNi  

Fviiiiiiiiii yFyVxLyVxLxM   1111   (17) (23)
  

below feed location, FNi   

FLiiiiiiiiii xFyVxLyVxLxM   1111   (18) 

reboiler, 1i
  

111 , xxBxyVxLxM BiiiiiiB           (19) 

total condenser, 1 Ni  

111 ,   NDiiiiiiD xyDxxLxVxM         (20) 

VLE on each tray, ),1( Ni   , constant relative volatility 

))1(1( iii xxy            (21) 
Flow rates above and below feed trays assuming constant 
molar flows are, 

FNi   above feed, ,LLi   Vi FVV         (22) 

FNi   below feed, ,Li FLL  VVi          (23) 

FqF FL    , LV FFF           (24) 
condenser holdup is kept constant, 

LFVLVD VN                         (25) 
reboiler holdup is kept constant, 

VFLVLB L  12                        (26) 
Vapour phase and liquid phase composition of the feed  

FF yx , respectively  are obtained by solving the equations 
below. 

FVFLF yFxFFZ            (27) 
))1(1( FFF xxy            (28) 

The nonlinear differential equations described form equation 
(16 – 28) are based on first principle model. The binary 
distillation column model considered under LV- configuration 
contains a total of 41 stages including the reboiler and total 
condenser. Thus 41 nonlinear differential equations are used 
to describe the system dynamics. Development of such a 
model is usually costly, time consuming and effort 
demanding. 

The model derived in such a way is of very high order 
because of thorough modeling and hence if such a model is 
used for prediction in NMPC, optimization problem in 
NMPC becomes a complex task. 

An upright support vector regression (SVR) model developed 
for this process has a specific advantage of sparseness of the 
solution. Which means SVM’s solution depends on the 
support vectors and not on the whole data set. As a result the 
overall computation in least square support vector machine 
(LS-SVM) based NMPC is made simple with very less time 
consumption. 

 

4.1  Training and testing the model 

The dynamic model of the binary distillation column is 
simulated open loop to collect the training and testing data. 
The simulation is carried out at random constrained reflux 
flow and boilup flow and its corresponding distillate and 
bottom product compositions are recorded. The constraint to 
the input signals, reflux flow and boilup flow are 2.5≤ u1(t) ≤ 
2.9 and 3≤ u2(t) ≤ 3.5 respectively. In order to capture the 
dynamics of binary distillation column model using SVR 
model, two past outputs and past inputs are sufficient hence 
the following second order model is chosen.  

))2(),1(),2(),1(),2(),1(()( 2211111  kukukukukykyfky   
                                                                               (29) 

))2(),1(),2(),1(),2(),1(()( 2211222  kukukukukykyfky  
                                                                               (30) 

A sequence of 100 samples with two delay regression vector 
format is used to train the SVR model offline using the leave 
one out method. Leave one out method is one in which the 
function approximator is trained on all the data except for one 
point and the prediction is made for that point. This 
procedure is repeated for each data point. The average error is 
computed by combining the different estimate of the 
performance and used to evaluate the model. The assumption 
is made that the input data is distributed independent and 
identically over the input space ((De Brabanter et al., 2011).  

In the case of Neural network based nonlinear MPC, for 
offline training the multilayer feed forward neural network a 
sequence of 1000 samples with two delay regression vector 
format are used and is done through  Levenberg-Marquardt 
learning algorithm. The identification performance of SVR 
model and NN model are assessed by the root mean square 
error (RMSE) performance function. 
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where )(ˆ ky represents the predicted output of the model for 

the sampling instant k,  where )(ky represents the output of 

the plant for the sampling instant k and N represents total 
number of samples. 

Here the process inputs u1, u2, process outputs y1, y2, predicted 
output ŷ  and sampling instant k are dynamic variables which 

depend on time. N represents the total number of samples 
used for simulation which is time independent 

The identification performance of SVR model and NN model 
are assessed by the root mean square error (RMSE) 
performance function. The input variables, u1, u2, output 

variables y1, y2 predicted output ŷ  and the sampling instant K 

are time dependent dynamic variables. N represents the total 
number of samples used for simulation which is time 
independent. 
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Table 1. Accuracy of SVR and NN model of binary 
distillation column process. 

Model 
RMSEtraining RMSEtesting

Dx  Bx Dx  Bx
SVR 0.0027 0.0028 0.0028 0.0030 

NN 0.0026 0.0028 0.0153 0.0134 

Fig. 3 and Fig. 4 correspond to the modeling results of SVR 
and NN methods. While modeling the training set, NN model 
and SVR model attains almost same identification 
performance. But, for the test data which are beyond the 
training data, the SVR model can achieve much better 
performance than NN. The comparative graph of prediction 
errors of SVR model and NN model for test data are shown 
in Fig. 4, which explores the better extrapolation capability of 
SVR model than NN model. Accuracy of the model in terms 
of RMSE (31) is tabulated in Table 1. Thus one can conclude 
that the SVR based empirical modeling can prevail over the 
poor extrapolation capability and over fitting problem of NN 
modeling.  

The offline trained and validated SVR model or NN model is 
then used as the nonlinear model for nonlinear MPC. Fig. 5 
illustrates the random set point tracking performances of 
SVR based MPC and NN based MPC. 

Certainly the tracking performance of SVR based MPC is 
much better with less oscillations and faster settling time 
when compared with NN based MPC even in the presence of 
severe interacting process variables. Also as the PSO-CREV 
algorithm converges to the best solution at each sampling 
instant the manipulated variables reflux flow rate, L and 
boilup flow rate, V corresponding to SVR-PSO-CREV and 
NN-PSO-CREV are with very less fluctuations as shown in 
Fig.6 presenting the index of control performance. 

The unmeasured disturbance rejection capability of SVM-
PSO-CREV based MPC and NN-PSO-CREV based MPC are 
compared by subjecting the distillation column process with 
dissimilar magnitudes of disturbance at different sampling 
instants. The control variables, Reflux flow rate, L and boilup 
flow rate, V with disturbances at different sampling instance 
are shown in Fig. 7. 

 

Fig. 3.  Training performance comparison of SVR and NN 
models. 

 

Fig. 4. Testing performance comparison of SVR and NN 
models.    

 

Fig. 5.  Set point tracking performance of distillation column 
process by LS-SVM-MPC and NN-MPC.        

 

Fig. 6. Changes in the process variables for tracking xD and 
xB of distillation column process. 
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Fig. 7. Changes in the process variable to show unmeasured 
disturbance. 

 
Fig. 8.  Performance comparison of unmeasured disturbance  
rejection. 

Certainly the unmeasured disturbance rejection performance 
of SVR-PSO-CREV based MPC is better when compared to 
NN-PSO-CREV based MPC as shown in Fig. 8. Thus the 
better capability of LS-SVM based MPC; in overcoming the 
interaction among process variables are vibrant from the 
simulation results. Accordingly SVR-PSO-CREV based 
MPC behaves suitably for process control industrial 
applications. 

4.2  Tabulation of performance indices for different 
controlling techniques 

This section enunciates the performance indices and 
computational cost of the controllers discussed in previous 
section. Integral absolute error (IAE) is the performance 
criteria which quantifies the accuracy of all controllers. 
Table.2 shows the IAE value and computational time related 
to each controller for the simulation results carried out for 75 
samples.  

The distillation column model under simulation has very 
slow time constants on the order of minutes. The sparseness 
property of SVR model sharply reduces the computational 
time of SVR-MPC to 31.06 seconds for 75 samples (ie., 
nearly 0.414 Seconds for each sample), which is much 
shorter than the sampling time of the distillation column 
process. Instead in NN based NMPC the computation times 
for 75 samples is 65.51 seconds with the sampling period of 
0.874 seconds. Hence, it is clear that NN based MPC is the 
one which consumes more time with more IAE and SVR-
PSO-CREV model predictive controller is the better 
controller with less computational load and less IAE. 

Thus SVM based MPC performs better based on various 
attributes like usage of  less number of training data, less 
training time, better prediction accuracy, better generalization 
and extrapolation capability, excellent set point tracking 
performance, better unmeasured disturbance rejection 
capability. Hence it is well suitable for industrial process 
control applications. 
 

 
Table 2. Performance Indices of various control strategies. 

 
Conditions Control tactics Number of 

Training Samples 

IAE computational 

time 

(Seconds) 

Sampling period 

 

(Seconds) 

 

Top product 

 

Bottom product 

 

No 

Disturbance 

 

SVR-PSO-CREV 

 

NN-PSO-CREV 

 

100 

 

1000 

 

0.0825 

 

0.1337 

 

0.0177 

 

0.1517 

 

31.06 

 

65.51 

 

0.4141 

 

0.874 

 

Disturbance 

 

SVM-PSO-CREV 

 

NN-PSO-CREV 

 

100 

 

1000 

 

0.1011 

 

0.2341 

 

0.0199 

 

0.1194 

 

32.07 

 

67.20 

 

0.4276 

 

0.896 
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5.  CONCLUSIONS 

A viable solution to the problem of nonlinear model 
predictive control is proposed in this paper. A deterministic 
sparse kernel learning technique, SVM is used to create an 
accurate for prediction model and a derivative free 
optimization method, PSO-CREV is used to achieve faster 
convergence. Based on the simulation results of highly 
nonlinear distillation column process, the tracking 
performance of SVM- PSO-CREV based MPC is better than 
NN-PSO-CREV based MPC with very less computational 
cost and better unmeasured disturbance rejection capability 
which confirms its feasibility. Simulation results convey that 
such better performance is due to better prediction accuracy, 
better generalization capability and sparse nature of SVM 
model and fast accurate convergence of PSO-CREV 
algorithm. 
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