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Abstract: In this paper some nonlinear adaptive control strategies are developed for a depollution 
biotechnological process. This bioprocess is in fact a biomethanation process - wastewater 
biodegradation with production of methane gas that takes place inside a Continuously Stirred 
Tank Bioreactor. Dynamical feedback controllers, nominally achieving output stabilization via 
exact linearization, are obtained by means of adaptive control ideas. The adaptive controllers are 
obtainable via standard, direct, overparametrized adaptive control techniques. A high gain 
estimation strategy is also used for identification of unknown kinetics of the bioprocess. Computer 
simulations are included in order to evaluate the performances of the adaptive controlled 
bioprocess. 
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1. INTRODUCTION 

In the modern industry, the development of 
advanced control strategies for biotechnological 
processes is hampered by major difficulties [1], 
[2]. These processes are strongly nonlinear and 
nonstationary and furthermore the process 
parameters are highly uncertain. Another 
difficulty lies in the absence, in most cases, of 
cheap and reliable instrumentation. In order to 
overcome these difficulties several strategies 
were developed, such as adaptive approach [1], 
vibrational control, predictive control, sliding 
mode control, fuzzy and neural strategies and so 
on. Today, the use of modern control for 
wastewater treatment plants is low. A main 
reason is the lack of quality of the data, and the 
fact that more sophisticated control strategies 
must be based on a model of the dynamics of the 
process [8]. When biotechnology strategies are 
used in wastewater treatment, the above-
mentioned properties of the bioprocesses require 
an enhanced modelling effort, modern 
estimation  

 

strategies for the bioprocess kinetics and 
advanced control strategies. The non-linearity of 
the bioprocesses and the uncertainty of kinetics 
impose the adaptive control strategy as a 
suitable approach. 

In industry, the bioprocesses take place in 
biological reactors, also called bioreactors. The 
bioreactors can operate in three modes: the 
continuous mode, the fed-batch mode and the 
batch mode [1], [2]. For example, a Fed-Batch 
Bioreactor (FBB) initially contains a small 
amount of substrates and microorganisms and is 
progressively filled with the influent substrates. 
When the FBB is full the content is harvested. 
By contrast, in a Continuously Stirred Tank 
Bioreactor (CSTB) the substrates are fed to the 
bioreactor continuously and an effluent stream is 
continuously withdrawn such that the culture 
volume is constant.  

The difficulties encountered in the measurement 
of the state variables of the bioprocesses 
(substrates, biomass, product concentrations and 
so on) impose the use of so-called “software 
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sensors”. A software sensor is a combination 
between a hardware sensor and a software 
estimator. These software sensors are used not 
only for the estimation of the concentrations - 
the state variables - but also for the estimation of 
the kinetic parameters. Very important is the 
estimation of kinetic rates inside a bioreactor - 
the estimates of these rates are used for 
advanced control strategies. The interest for 
development of software sensors for bioreactors 
is proved by the big number of publications and 
applications in this area [1], [3], [8]. The first 
approach from historically point of view is 
based on Kalman filter which leads to complex 
nonlinear algorithms. Well-known is the Bastin 
and Dochain approach based on the adaptive 
systems theory [1]. Another possibility is to 
design an estimator using a high gain approach 
(see [3], [4], [10], [11]). The gain expression of 
these simple observers involves a single tuning 
parameter whatever the number of components 
and reactions. 

In this paper, adaptive linearizing control laws 
are proposed for a biomethanation depollution 
process that takes place inside a CSTB. 
Overparametrization and the availability of the 
dynamical controller state variables are the key 
issues that allow application of the direct 
adaptive control techniques. Major contributions 
in this field were given by Sastry and Isidori [9], 
Narendra et al. [7]. The reaction kinetics of the 
biomethanation process (more precisely, the 
specific growth rates) are estimated using a 
high-gain observer. 

This work is organized as follows. In Section 2, 
the model of a wastewater biodegradation 
process inside a Continuous Stirred Tank 
Bioreactor (CSTB) is presented. Section 3 deals 
with the design of an exactly linearizing control 
law for the biodegradation process, using a 
reduced order input-output model of the 
bioprocess. Next, an adaptation law obtained by 
means of a Lyapunov technique is applied for an 
unknown parameter of the process; subsequently 
an adaptive controller is obtained combining the 
exactly linearizing control law and the 
adaptation law. In Section 4, the exactly 
linearizing controller, the adaptation law and 
finally the adaptive controller are achieved using 
the complete model of the bioprocess. 
Furthermore, the unknown reaction kinetics of 
the bioprocess are on-line estimated using a high 
gain observer. In order to analyse the 
performances of the controllers, computer 

simulations are provided. Section 5 collects 
concluding remarks. 

2. THE BIODEGRADATION PROCESS 
MODEL 

A highly important biotechnological process is 
the wastewater biodegradation with production 
of methane gas [1], [11]. This anaerobic 
degradation process is a commonly method of 
wastewater treatment, which consists in four 
metabolic phases: two phases for acid 
production and two phases for methanation. In 
the first phase, the glucose from the wastewater 
is decomposed in fat volatile acids (acetates, 
propionic acid), hydrogen and inorganic carbon 
under action of the acidogenic bacteria. In the 
second phase, the ionised hydrogen decomposes 
the propionic acid CH3CH2COOH in acetates, 
H2 and carbon dioxide CO2. In the first 
methanogenic phase, the acetate is transformed 
into methane and CO2, and finally in the second 
methanogenic phase, the methane gas CH4 is 
obtained from H2 and CO2. 

The reaction scheme of this complex bioprocess 
involves 4 reactions and 10 components [1]. 
From the reaction scheme we can obtain the 
dynamical model of this bioprocess that takes 
place inside a CSTB, considering the mass 
balance of the components (see [1], [11]). The 
obtained dynamic model is very complex and 
the design of useful control strategies is 
hampered because of this large dimension (ten) 
of the model. So it is necessary to reduce the 
order of this model, taking into consideration 
some particular aspects of the process and using 
the singular perturbation theory [6]. A simplified 
reaction scheme and the corresponding model 
can be derived for this bioprocess (see [11]): 
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In the reaction scheme (1), Si, i=1,2 are 
substrates: S1 represents the glucose, S2 the 
acetate, X1 is the acidogenic bacteria, X2 the 
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acetoclastic methanogenic bacteria and P 
represents the product, i.e. the methane gas. We 
remark that X1, X2 are auto-catalysts. The 
reaction rates are 2,1, =ϕ ii . In the model (2), X1, 
S1, X2, S2, and P represent the concentrations of 
the similar components (in [g/l]). The state 
vector of (2) is [ ] ==ξ TPSXSX 2211  
[ ]T54321 ξξξξξ= . The vector of feed-rates 

and of rates of removal of components (in 
gaseous form) can be written as 

[ ]Tin QDSF −= 000 . In (2), D is the 
dilution rate, Sin  represents the concentration of 
the externally influent substrate – glucose and Q 
is the methane gas outflow rate. The dynamical 
model (2) can be compactly written as 

FDK
dt
d

+ξ⋅−ξϕ⋅=
ξ )(   (3) 

This model describes in fact the behaviour of an 
entire class of bioprocesses and is referred as the 
general dynamical state-space model of this 
class of bioprocesses [1]. In (3), K is the 
normalized matrix of the yield coefficients. The 
vector of reaction rates (the reaction kinetics) is 

[ ]T)()()( 21 ξϕξϕ=ξϕ   (4) 

The most difficult task for the construction of 
the dynamical model (3) is the modelling of the 
reaction kinetics (4). The form of kinetics is 
complex, nonlinear and in many cases unknown. 
A general assumption is that a reaction can take 
place only if all reactants are presented in the 
bioreactor. Therefore, the reaction rates are 
necessarily zero whenever the concentration of 
one of the reactants is zero. Thus, the reaction 
rates can be expressed as: 

),()()( tH ξα⋅ξ=ξϕ   (5) 

where [ ]Tttt ),(),(),( 21 ξαξα=ξα is a vector of 
time varying parameters. Each 2,1),,( =ξα iti  is 
called the specific reaction rate. )(ξH  is a 22×  
state dependent diagonal matrix, whose elements 
correspond to the reactions' reactants: 
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X1 and X2 appear because they are auto-catalysts. 
Then the model (3) becomes: 

FDtHK
dt
d

+ξ⋅−ξα⋅ξ⋅=
ξ ),()(   (7) 

Another formulation for the reaction rates 
implies the following structure: 

[ ]TXX 2211 )()()( ⋅ξµ⋅ξµ=ξϕ   (8) 

with )(1 ξµ , )(2 ξµ  the specific growth rates. 

Now we can reconsider the form of the matrix 
)(ξH  and we have: 
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The model of the bioprocess can be written as: 

FDtHK
dt
d

+ξ⋅−ξµ⋅ξ⋅=
ξ ),()(    (10) 

with [ ]Tttt ),(),(),( 21 ξµξµ=ξµ . For the 
specific growth rates ),( tξµ  it exist many 
possible models, like Monod’s law or Haldane 
kinetic model. In practice, the analytical models 
of the specific reaction rates )(tα  and/or of the 
specific growth rates )(tµ  are difficult to obtain. 

3.  ADAPTIVE CONTROL LAW DESIGN 
USING A REDUCED ORDER INPUT-

OUTPUT MODEL 

The major control problem for a CSTB consists 
in the stabilization of the operational 
equilibrium points  [2] (the nonlinear systems 
can have several equilibrium points, stable or 
unstable). The accumulation of the acetate in the 
CSTB, which is an intermediate metabolite 
responsible for bio-methanation inhibition, is a 
classical symptom of the destabilization of the 
depollution process. The control target for the 
biodegradation process (3) is to regulate the 
acetate concentration S2, which is also a measure 
of the pollution level. The goal is then to 
regulate S2 at a constant low level set point 

*
2

* Sy =  with D (the dilution rate) as control 
action. 

The control goal can be achieved using the 
adaptive control, which consists in an exactly 
linearizing control law and an adaptation law for 
the unknown parameters of the bioprocess. The 
exactly linearizing control law can be designed 
using a reduced order input-output model of the 
process or using the complete model. In this 
section, the first strategy is developed. The 
design procedure is based on the partition of the 
vector of state variables in slow and fast 
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variables, such that the singular perturbation 
theory can be applied [6] and subsequently a 
reduced order model is obtained. We suppose 
that the state vector of the system (2) or 
equivalent (3) can be partitioned as follows: 

[ ] [ ]TF
T

S PSXSX 11221 ; =ξ=ξ    (11) 

where Sξ  represents the slow state variables and 
Fξ  the fast ones. This partition induces on K 

and F the next partitions: 
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Then, using the singular perturbation theory, the 
dynamic model (3) is reduced to a submodel that 
contains differential equations and a submodel 
with algebraic equations: 

( )
( )
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The output of the system is the acetate 
concentration, which can be written as a 
combination of slow states: 
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From equations (12), (13) we can obtain the 
reduced order input-output model of system (3):  

FJcyD
dt
dy T

S ⋅⋅+⋅−=    (14) 

where [ ]1
3

−⋅−= FS KKIJ . The matrix FK  
has full rank, so after some straightforward 
calculations we obtain: 
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The control input is the dilution rate D; therefore 
the vector F can be written as: 
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Then the reduced order input-output model (14) 
becomes  

QJcDJbcyD
dt
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The exactly linearizing control law for the 
process (3) is obtained in three steps (for general 
point of view see Isidori [5], Bastin and Dochain 
[1]. First one obtains after straightforward 
calculations an input-output model for the 
process. In this section we use the reduced order 
input-output model (17). Second we consider a 
stable linear reference model for tracking error 

2
*
2

* SSyy −=− , where *
2

* Sy =  is the desired 
output trajectory (the set point). 

( ) ( ) 0,0** >λ=−λ+− yyyy
dt
d    (18) 

Finally, the exactly linearizing feedback control 
law is obtained by calculus of ( ) ( )tDtu =  such 
that the input-output model has the same 
behaviour with the reference model. The control 
law is obtained by substituting (17) into (18): 

( ) ( ) ( ) 
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The exactly linearizing control law is obtained 
with the assumption that the functional form of 
the nonlinearities as well as the process 
parameters are known. Such prior knowledge is 
not realistic, in fact the bioprocess parameters 
are imprecisely known, or, still worse, 
completely unknown. The control law (19) has 
the advantage that it not depends on the kinetics 
of the process. However, if one or more of the 
yield coefficients are unknown, it is necessary to 
design an adaptation law for these coefficients. 
For example, if the ratio 12 / kk=θ  is unknown 
or uncertain, the adaptation law, obtainable by 
means of a Lyapunov technique, is of the form: 

( ) 0,
ˆ

* >γ−γ=
θ yyDS

dt
d

in    (20) 
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where θ̂  is the on-line estimate of the unknown 
parameter θ . Then the adaptive linearizing 
control law is obtained from (19) and (20): 

( )

( ) ( ) ( )( )
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The design procedure based on the reduced 
order input-output model provides good results 
only if the partition of the state vector in slow 
and fast variables is in accordance with the 
reality of the physical process. If not, this 
partition cannot be done and the singular 
perturbations theory cannot be applied. 
Therefore, the reduced order model cannot be 
obtained and it is necessary to use the complete 
input-output model of the bioprocess in order to 
design the exactly linearizing control law. 

4. ADAPTIVE CONTROL LAW DESIGN 
USING THE COMPLETE MODEL OF 

THE BIOPROCESS 

4.1. Exactly linearizing control law design 

The control goal is the same as in Section 3. The 
design procedure for exactly linearizing control 
law comprises the classical three steps as in 
previous section, but the complete model of the 
bioprocess is used. First one obtains from (2) the 
input-output model of the process, with 2Sy =  
and Du = : 

( ) ( ) yukk
dt
dy

⋅−ξϕ−ξϕ= 312    (22) 

It can be noticed that the reaction kinetics must 
be modelled or estimated. We suppose that the 
reaction rates are of the form (8). Then the 
input-output model (22) can be written as 

( ) ( ) yuXykXSk
dt
dy

⋅−µ−µ= 2231112    (23) 

We consider that the specific growth rates are: 

1
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with iM KK /1(
2

*
2

0
2 +µ=µ .  The first specific 

growth rate (24) is the Monod law and the 
specific growth rate (25) is the Haldane kinetic 
model that takes into account the substrate 
inhibition on the growth. 

21
, MM KK  are 

Michaelis-Menten constants; *
2

*
1 ,µµ  represent 

the maxim specific growth rates and Ki is the 
inhibition constant. 

In the second step of the design procedure, we 
impose a desired trajectory for the process 
output, such that we have a first order linear 
stable closed loop (process plus controller) 
dynamical behaviour of the form (18): 

( ) ( ) 0,0** >λ=−λ+− yyyy
dt
d    (26) 

Finally, in the third step, the exactly linearizing 
feedback control law is obtained by calculus of 
( ) ( )tDtu =  such that the input-output model has 

the same behaviour with the reference model. 
The control law is obtained by substituting (23) 
into (26): 

( ) ( ) ( ) ( )[ ]yyyXykXSk
y

tu −λ−−µ−µ= **
2231112

1    (27) 

The implementation of exactly linearizing 
control law (27) (also the laws (19) or (21)) 
must to take into consideration the preservation 
of the denominator away from zero. 

The exactly linearizing control law is obtained 
with the assumption that reaction kinetics ( )ξϕ  
is known. Such prior knowledge is not realistic, 
in fact in practice the specific growth rates (24), 
(25) are imprecisely known or completely 
unknown.  Another problem is the uncertainty of 
the yield coefficients. Therefore it is necessary 
to design on-line estimation strategies for the 
specific growth rates and/or adaptation laws for 
the unknown coefficients. The exactly 
linearizing control law (27) will be combined 
with these estimators and finally we can obtain 
the adaptive linearizing control law for the bio-
methanation process. 

4.2. Adaptation law design 

First, we provide an example of adaptation law 
design for an unknown yield coefficient. We 
consider that the yield coefficient 3k  is 
unknown, but the prior information about the 
ratio 32 / kkk =  is available. The design 
procedure of the adaptation law for the unknown 
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parameter 3k=θ  can be completed using a 
Lyapunov technique. The input-output model 
(23) can be parameterized in the form: 

( ) ( )[ ] yuXyXSk
dt
dy

⋅−µ−µθ= 22111    (28) 

Considering the previous parameterization, the 
adaptation law for 3k=θ  is: 

( )y
dt
d ,

ˆ
ξη=

θ    (29) 

where θ̂  is an on-line estimate of the unknown 
(but constant) parameter 3k=θ . The adaptive 
version of the linearizing control law (27) 
consists of replacing the unknown parameter by 
the on-line estimate calculated with the 
adaptation mechanism (29): 

( ) ( ) ( )[ ] ( )( )yyyXyXSk
y

tu −λ−−µ−µθ= **
22111

ˆ1    (30) 

The design is based on the choice of the 
adaptation law ( )y,ξη  such that the closed loop 
system is stable. Let δ  be a known positive 
scalar. Consider the Lyapunov function given 
by: 

( ) ( ) ( ) 




 θ−θδ+−= − 212* ˆ

2
1 yytV    (31) 

The time derivative of Lyapunov function (31) 
along the trajectories of the system (28) is 
obtained, after use of (29), (30) and after some 
manipulations, as: 

( ) ( )
( ) ( ) ( )( )( )[ ]yyXyXSky

yy
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dV

−µ−µ+ξηδ⋅
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Choosing the adaptation law by the form: 

( ) ( ) ( )( )( )yyXyXSky −µ−µδ−=ξη *, 22111   (33) 

one obtains: ( ) ( ) 0
2* ≤−λ−= yytV  and is clear 

that the Lyapunov function decreases along the 
trajectories of the controlled system. 

Finally, the nonlinear adaptive controller 
consists of the linearizing control law (30) and 
of the direct adaptation law (29), (33): 

( ) ( )( )( )

( ) ( ) ( )[ ] ( )( )
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4.3. High gain observer for reaction kinetics 

For on-line estimation of the specific growth 
rates )(tµ  an algorithm based on high-gain 
technique can be designed [11]. The model (10) 
can be rewritten as: 

FDtHK
dt
d

+ξ⋅−ρ⋅ξ⋅=
ξ )()(    (35) 

where ( )tt µ=ρ )(  is the vector of unknown 
specific growth rates and ( )ξH  is of the form 
(9). The design of a high gain observer for the 
system (35) implies a factorization of the yield 
matrix K. This factorization is possible only if 
the matrix is of full rank, which is true for our 
particular model, and for general case is a 
generic property. Moreover, we shall suppose 
that all state variables are measured (contrarily, 
a state estimator can be used). Another 
hypothesis regards the boundedness of the 
kinetics, which is in accordance with practice. 
The design of nonlinear high gain observers is 
done in [3] with assumptions about the 
boundedness of )(ξH  diagonal elements’ away 
from zero.  

We choose the next factorization of yield matrix 
K of the biomethanation process: 
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It is clear that Ka is full rank matrix. For this 
factorization of yield matrix K is possible to 
design an observer for on-line estimation of the 
specific growth rates )()( tt µ=ρ . The high gain 
based observer equations for a general 
bioprocess described by the model (35) are [3]: 

)ˆ(2ˆˆ),ˆ(ˆ
aaaabaaa FDHK ξ−ξβ−+ξ−ρξξ=ξ (38) 

[ ] )ˆ(),ˆ(ˆ
12

aabaa HK ξ−ξ⋅ξξ⋅⋅β−=ρ
−

   (39) 

The estimator (38), (39) is in fact a copy of the 
bioprocess model, but with state aξ  replaced by 
its estimate aξ̂ , and with a corrective term. The 
tuning of this observer is very simple because a 
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single parameter is involved: β . The high gain 
estimator (38), (39) can be applied for the 
biomethanation process considering the matrix 

)(ξH  of the form (9) and the factorization (36), 
(37). The equations of the observer are [11]: 
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The final adaptive control law designed using 
the complete input-output model of the 
biodegradation process comprises the exactly 
linearizing control law (27), the adaptation law 
(29), (33) and the high gain estimator (40), (41): 
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The block scheme of the controlled bioprocess is 
presented in Fig. 1. 

 
 

 

 

 

 

 

 

 
 

Fig. 1. The scheme of the controlled bioprocess 

 

Remark: The “estimates” 1X̂ , 2X̂  used in the 
high gain algorithm are in fact outputs of a kind 
of state observer and they are compared with the 
real measurements of X1, X2 in order to estimate 

the specific growth rates. It can be seen also that 
only the measurements of y, X1 and X2 are 
needed for the control input design. 

4.4. Simulation results 

The simulated control tasks were performed for 
the following bioreactor parameters: 
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Three simulation cases were considered in order 
to test the performances of the proposed control 
laws. 

Case 1. The exactly linearizing controller (27) 
(for 1=λ ) was implemented for the bioprocess, 
in order to stabilize the output 2Sy =  to the 
reference value lgSy /5*

2
* == . All yield 

coefficients and the specific growth rates are 
supposed known (the relations (24), (25) were 
used). The performances of the controlled 
process are depicted in Fig. 2, where the output 
(the acetate concentration) and the set point (the 
constant desired output trajectory) are shown. 
Fig. 3 portrays the control input signal u(t). 

Case 2. In this simulation case, the parameter 
3k=θ  and the specific growth rates 21 ,µµ  are 

regarded as unknown. The control task was the 
stabilization of the output to the same constant 
value as in the case 1. This goal is accomplished 
using the adaptive linearizing controller (42) 
(the scheme from Fig. 1), with the controller 
parameters 3,20,1 =β=δ=λ . Evolution of 
the output is presented in Fig. 4 and the control 
action for the adaptive controller is depicted in 
Fig. 5. The on-line estimate θ̂  of unknown 
parameter is presented in Fig. 6. Fig. 7 and 8 
portray the evolution of the on-line estimated 
specific growth rates versus their true values. 
However, while the prior information is less 
than in the exactly case, it can be observed that 
the resulting responses are good. 
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Fig. 2. Evolution of output versus reference (case 1) 

 
Fig. 3. Control action - exactly linearizing case 

 

 
Fig. 4. Evolution of output - the adaptive case 

 

 
Fig. 5. Control input for the adaptive case 

 

 
Fig. 6. Evolution of the estimated parameter θ  

 

 
Fig. 7. On-line estimates of the specific growth rate 

1µ  

 

 
Fig. 8. On-line estimates of the specific growth rate 

2µ  

 

 
Fig. 9. Time profile of the output (noisy data -case 3) 
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The level of the acetate concentration is low; 
therefore the level of pollution is low. 

Case 3. The performances of the proposed 
adaptive controller are analysed also for noisy 
data of X1, X2, and the obtained results are quite 
good. 

The simulation conditions and the tuning 
parameters are the same as in the case 2.  

The measurements of X1 and X2 are vitiated by 
an additive Gaussian noise. This noise is with 
zero mean and amplitude equal to 4% of the 
free-noise values. Fig. 9 depicts the output 
evolution in this last case and Fig. 10 portrays 
the time profile of the estimated specific growth 
rate 1µ . 

 

 
Fig. 10. Estimates of 1µ (case 3: noisy data of X1,X2) 

Notice that the values of the tuning parameters 
of the adaptation law and of the high gain 
estimator are chosen such that a compromise 
between a good estimation and noise rejection is 
establish. 

5. CONCLUSIONS 

In this work nonlinear adaptive controllers were 
designed for a biodegradation process that takes 
place inside a CSTB. The adaptive design is 
based on input-output models of the bioprocess 
(reduced order or complete models). An 
adaptation law for an unknown yield parameter 
is obtained by means of Lyapunov function-
based strategy. This adaptation law for the 
parameter estimation error is of direct type. 
Furthermore, the unknown specific growth rates 
are estimated using a high gain observer. The 
adaptive controller for the bioprocess consists in 
the exactly linearizing control law, the 
adaptation mechanism for the unknown yield 
parameter and the high gain estimator. The 
simulation results show the good behaviour of 
the adaptive controller, which use minimal 
information from the process. Good 

performances are obtained also in the case of 
noisy measurements of the state variables.  
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