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Abstract: The sense of evolution in a genetic algorithm is explained by the schema theorem. This 
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acquired on the dominant individual problem, by integrating the state equation. 

Keywords: genetic algorithm, schema, fitness function, selection pressure, pattern of the schema, 
kernel of the schema, the state equation of a genetic algorithm. 

1. INTRODUCTION 

A genetic algorithm (GA) is an optimisation 
method with two empirical sources: the Darwin-
ian evolutionism and the random search optimi-
sation methods. Goldberg [3] states: “there is a 
pre-history of genetic algorithms, but the true 
history begins with the schema theorem given 
by Holland in 1985”.  

The schema theorem, also known as the funda-
mental theorem of genetic algorithms is the mo-
ment to go beyond the empirical state of art and 
make the first steps in structuring the genetic 
algorithm field. Today, in genetic algorithms, on 
one hand, there is still empirismus, and, on the 
other hand, there is an axiomatic base still 
incomplete. 

The schema theorem has not the rigorous style 
of a geometrical theorem, because it only ex-
plains the sense of evolution in a genetic 
algorithm. E.g. in [5] the schema theorem is 
presented in 3rd chapter entitle “GAs Why Do 
They Work?” 

A mention should be done. The schema theorem 
has one enounce and three proofs: Holland 1985 
admits three simplifying hypothesis (see section  

 

2.3); Schaffer 1987 reduces one of the simpli-
fying hypothesis; Stephens and Waelbroek 1997  
reduce the entire simplifying hypothesis. This 
proof is named the exact schema theorem. 

The paper is structured as in follows: Chapter 2 
is a short introduction of the most important ele-
ments of GA theory and the schema theorem is 
presented. Also the dynamic system sense of 
final equation given by the schema theorem is 
highlighted. Chapter 3 presents the state equa-
tion construction method, and the algorithms for 
the calculus of the equation coefficients. Chapter 
4 presents an application of schema theorem: the 
dominant individual problem, a simple theoreti-
cal problem that permits the study of the 
population dynamics. Chapter 5 contains the 
conclusions. 

2. BACKGROUND IN GA THEORY 

The genetic algorithm theory is made up two 
fundamental principles: the schema theorem and 
the building block hypothesis. This chapter is a 
short presentation of the theorem and its conse-
quences while the building block hypothesis is 
presented in section 3.3.  
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3.1. Introduction in artificial genetics 

A genetic algorithm operates with three entities: 
the artificial environment, the individual and the 
population.  

The relation between an individual and the 
environment is measured by the value of its 
fitness function value f , where  is the 
fitness function parameter vector acquired by 
decoding the individual genetic information. 
The fitness function and all the rules that 
generate the competitive relations between 
individuals are the artificial environment. 

)x( i ix

The individuals are rudimentary beings with one 
chromosome. The individual behaviour is 
strictly genetic determined and is unchanged in 
its life. In other words, the individuals are un-
teachable. Each individual is a possible solution 
of the given optimisation problem.  

A set whose elements can repeat is a metaset. 
For example the population is a metaset of indi-
viduals because it is possible that two individu-
als have identical chromosomes. The elements 
of a metaset are called instances. We note 
the population, because its composition changes 
in time. The time is measured in generations.  

)t(P  

Let  be the population size. The population 
has an average fitness function. 

N
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Also, the average value of fitness function 
 is time dependent. ))t(P(f

The probability that an individual will be 
selected for reproduction proportionally with its 
fitness function value is: 

))t(P(fN
)x(fp i

i ⋅
=  (2) 

3.2. The schema concept 

The chromosome is a string of bits, characters of 
the alphabet , as an example 
is a five-bit string. The string set is { , and 
there are  distinct strings of  length. We 
must specify, the terms: individual, chromosome 
and string have the same meaning. 

}1,0{V = '11010'  
L}1,0

L2 L

The classical genetic algorithm theory operates 
with the schema concept. A schema is a string of 
characters of the alphabet , where 
the character '  is a meta-symbol that indicates 
any  or '  symbols. The schema set is 

}1,0,{V ∗=+

'∗
'1'0'

L}1,0,{∗ , and there are 3  distinct schemas of L

{ }∗,1,0  length. Also a schema is a set of strings. 
E.g. the schema ' '110 ∗∗  is the set 

' ,'11010' ,''11000{'

)H( =δ 3)H( =

H
|t(P ⋅

t

t

}'1101111001' ,  (3) 

In the schema theorem another two dimensions 
are used: the size of the schema , that is the 
distance between the first and the last fixed 
characters and the order of the schema  
that is the number of fixed characters. For 
example, the schema 

)H(δ

01

)H(o ,

'1'H ∗∗∗∗∗=  has 
4  and o . 

The intersection operator in H  is used to 
filter the instances of  schema in the popula-
tion . The |

)t(P∩

)  operator calculates the cardi-
nal of a set or metaset. For example | |)t(PH ∩  
is the number of instances of the  schema in 
the population at the 

H
 generation. 

3.3. The schema theorem 

The whole theory of genetic algorithms is devel-
oped on the SGA (Simple Genetic Algorithm). 
This algorithm uses the binary coded genes; one 
point crossover and bit defined mutation proba-
bility. At each generation the entire the popula-
tion is replaced. 

In [5] pp. 51 the next statement of the schema 
theorem can be found: 
“Short, low order, above-average schemata re-
ceive exponentially increasing trials in subse-
quent generations of a genetic algorithm.” 

Let us consider H, a schema existent in the 
population at the  generation. In the first proof 
of the theorem, Holland allows three simplifying 
hypothesis: 

(a) it is a small probability to mate two indivi-
duals of H schema; 

(b) it is a small surviving probability of the H 
schema if the crossover point occurs inner 
the schema; 

(c) it is a small probability to generate the H 
schema by mate two different individuals. 

The Holland's proof is presented in [3], [5] or in 
the appendix of [2]. Schaffer in 1987 gives a 
new proof in which the hypothesis (a) was elim-
inated. The Schaffer proof is presented in [7] or 
in the appendix of [2]. All the demonstrations of 
the schema theorem states the equation:  
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|)t(PH|)H()H()t(
|)1t(PH|

H ∩βαϕ≥

≥+∩
 (4) 

where ⋅  is the expected value operator hence 
|)1t(PH| +∩

t(Hϕ
)H(α

)H(β

H

 is the expected value of the 
schema instances number at the  genera-
tion. In (1)  is the selection pressure of the 
schema,  is the probability with that the 
crossover operator will not disrupt the  sche-
ma,  is the probability with that the 
mutation operator will not modify a fixed bit of 

 schema and |  is the number of 
instances of the schema at the 

1t +
)

H

|)t(PH ∩
t  generation.  

In all the previous deductions was established 
the equation of the  schema selection pressure H

))t(P(f
))t(PH(f)t(H

∩
=ϕ   , (5) 

where:  is the average fitness func-
tion value of the H schema in the population 

 and  is the population average 
fitness value. The selection pressure of  
schema must be evaluated at each generation.  

))t(PH(f ∩

))t(P(f)t(P
H

In the Holland’s demonstration  is a static 
coefficient: 

)H(α

1L
)H(p1)H( c −

δ
−=α  (6) 

where,  is the crossover probability, δ  is 
the length of the schema and  is the length of 
the chromosome. In the Schaffer demonstration 

 is a time depending coefficient: 

cp )H(
L
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1L
)H(p1)t,H( Hc  (7) 

and all the new coefficients were before ex-
plained. We note that in first generations  

0
N

|)t(PH|
→

∩  (8) 

the low probability to mate two genetic identical 
individuals (8) allows the deduction of equation 
(6) from (7). 

In all the deductions the probability that the 
mutation operator will not modify a fixed bit of 

 schema is: H

( ) )H(o

mp1)H( −=β  (9) 

where  is the mutation probability and 
is the order of the schema.  

mp )H(o  

3.4. The schema theorem results 

A GA is also a dynamic process. E.g. Liepins 
and Vose, in [4] notice that the equation (4) has 
the aspect of a discrete differential equation in 
the expected values of the schema instances.  

In a GA with complete substitution of popula-
tion at each generation, the time is a discrete 
quantity. If in (4) we consider: 

,|)t(PH|)t(y
,|)1t(PH|)1t(y

H

H

∩=

+∩=+
 (10) 

and after the substitution of the operator "  
with the operator "

"≥
"=  we get the discrete diffe-

rential equation: 

)t(y)H()H()t()1t(y HHH βαϕ=+  (11) 

if in Holland model (11) we note:  

)H()H()t(r H βαϕ=  (12) 

we get the schema evolution exponential model:  

)t(yr)1t(y H
t

H =+  . (13) 

That explains why in a few generations the feat 
schemas have an exponential increasing 
evolution and the weak schemas are fastly 
disappearing from the population. 

3. THE STATE EQUATION 

Specific for the all variants of the schema theo-
rem is the constructive style of the proof. In this 
chapter a new construction that incorporates all 
the Holland and Schaffer results is presented. It 
does not need the simplifying hypothesis and it 
is equivalent with the Stephens and Waelbroek 
construction, [6], but is more general. 

3.1. The state equation construction 

Let us consider a genetic algorithm with 
complete substitution of population at each 
generation. If the length of chromosome is L, 
there are 3  distinct schemas. After choosing an 
indexing rule the state variable vector is  

L

|)t(PH|)t(y ∩=  (14) 

The selection process is the application 
)t(P)t(P ′6  that selects the mating pool )t(P′  
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from the population . The discrete model of 
the selection process is 

)t(P

)t( ×

   

   
)

(P′

H| ∩

|)

α

)t(y|)t(PH| ϕ=′∩  (15) 

where: |PH| ′∩

)t(P′

)t(P

 is the expected values vec-
tor of instance number of schemas selected for 
reproduction is the matting pool. We can 
notice that a schema that is not present in the 
population  cannot be selected for repro-
duction. As a consequence, )t(ϕ , the selection 
matrix is a diagonal matrix:  







≠
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∩
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kj   for0
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)P(f
PH(f

)t(
t
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k,j  (16) 

The  coefficient must be calculated at 
each generation because the population compo-
sition is time changing.  

)t(k,jϕ

The reproduction process is the application 
, where  is the matting pool 

and is the new generation. The actions of 
the crossover and mutation operators can be 
described as: 

)t(P)t(P ′′6
)t(P ′′

)t

|)t(P

|)t(PH|

′×α×β=

=′′∩
 (17) 

where: t(PH| ′′∩  is the expected values 
vector of instance number of the H schema in 
the new generation,  is the crossover matrix 
and β  is the mutation matrix.  

After , the replacement of the 
whole population with the new generation, we 
can note: 

)t(P)1t(P ′′=+

)1t(y|)1t(PH| +=+∩   , (18) 

the expected values vector of instance number of 
the  schema in the new generation. H

Substituting equation (14) and (18) in (17) we 
obtain the GA state equation: 

)t(y)t()1t(y ×ϕ×α×β=+  . (19) 

This is the generalisation of equation (11) and if 
the coefficients of the crossover and mutation 
matrices are calculated with equations (6) and 
(9), the equation (19) incorporates all the previ-

ous results. The calculus method of the k,jα , and 

k,jβ  coefficients will be detailed later. 

3.2. The pattern of the schema 

The following development of GA theory was 
generated by the question “what is happening 
when the crossover operator disrupts a schema 
or the mutation operator modifies a fixed bit of 
the schema?” 

Definition 1: Let  and  be two  length 
schema. The two schemas have the same pattern 
if they have the same number of fixed characters 
and the fixed characters are in the same posi-
tions. 

1H 2H L

The pattern of the schema is a string made of 
alphabet characters { }#,∗ . The character ' '∗  has 
the same signification as in the schema defini-
tion: unfixed character. The character  has 
the signification: fixed character but which is 
not specified yet. Obviously if a schema is a set 
of strings, a pattern is a set of schemas. The set 

'#'

L}#,{∗  is the set of all  length patterns and 
there are  distinct patterns. The patterns are 
noted with Greek lowercase letters.  

L
L2

Theorem 1: Let π  a pattern and π∈H  a sche-
ma. If a genetic operator, crossover or mutation 
modifies one or more fixed bits of the schema, 
consequently the  schema modifies in the H

π∈′H  schema. 

Proof: If the genetic operator modifies one or 
more fixed bits of the schema the fixed bit posi-
tions are the same and the pattern preserves. □ 

The definition 1 also induces a new theorem: 

Theorem 2: Let a  length kind of strings and 
a population  be. All the  length patterns 
are present in the  population. 

L

)t(
)t(P L
P

Proof: In [2] there is a well-structured proofing 
using the schema operations properties. It can be 
stated as follows: if we get an arbitrary 
individual from the population  and we get 
an arbitrary pattern from pattern set {

)t(P
L}#,∗  and 

we compare them, we find a unique schema that 
has all the fixed characters from the string and 
all the unfixed characters from the pattern. □ 

The theorem proofs the principle known as the 
implicit parallelism of genetic algorithms. The 
principle states: 
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“At any time the genetic algorithm works on 
more schemas than individuals”. 

The proof is immediate: at any time, all the 
patterns are present in the population. At least 
one of the schemas of an arbitrary chosen 
pattern is populated. In other words  (number 
of patterns), is greater than , size of 
population. 

L2
N

The previous enounce is true, even if the popu-
lation is degenerated (a quasi-uniform popula-
tion with small differences between individuals).  

The pattern set  and the schema set 
of a given pattern are indexed sets. There are 
two simple rules for indexing the patterns and 
the respectively schemas of a given pattern. 

L
i },{# ∗∈π

Rule 1: Making the substitutions '  and 
, we get an index i  that 

uniquely identifies each pattern.  

'1''# →
12L −…'0''' →∗ 0=

Rule 2: The unsigned integer number, built with 
all the fixed characters of a schema, taken in the 
same order, uniquely identifies the schemas of a 
given pattern.  

Let us consider  a pattern taken arbitrary. All 
the schemas of the  pattern have the same 
dimension and the same order, so that we can 
write  and . That means that the span 
of the indexing rule 2 is . 

π

(o

π

)(πδ )π
120 )(o −π…

If the state equations are first ordered with 
rule 1 and applying the rule 2 within a pattern 
we get the ordered form of state equation. In this 
way the crossover operator is: 

L3

12

1

0

L
0

0

−
α

α

α

=α
%

 , (20) 

where the square blocks 
i

α

0i = …

 are corre-

sponding to the patterns , . The 
mutation matrix has the same form.  

iπ 12L −

3.3. The state equation size reducing method  

As specified above, the second principle of clas-
sical GA theory is “the building block hypothe-
sis”. In [5] pp. 51 there are the next statement of 
the hypothesis: 

“A genetic algorithm seeks near-optimal per-
formance through the juxtaposition of short, 

low-order, high performance schemata, called 
building blocks” 

Also, paper [1] is a survey on the role of the 
building block hypothesis in a GA. Briefly, 
when an experimenter solves a problem with a 
GA, he assumes that the GA can find the 
optimal solution. There are problems especially 
build to encumber a genetic algorithm. These 
artificial constructions are known as “fully 
deceptive problems”.  

If the GA solves a problem in a way that the 
building block hypothesis is true, the next 
theorem suggests the way to reduce the state 
equation size. 

Theorem 3: Let a GA be in which the building 
block hypothesis is true, thus the study of GA 
dynamics is sufficient to study the dynamics of 
the schemas from a single pattern arbitrary 
taken. 

Proof: Theorem 1 states: “the pattern preserves 
indifferent of the way in which the genetic 
operators modifies the fixed bits of the schema 
of the same pattern”. Theorem 2 states: at any 
time all the patterns are present in population.  

If the building block hypothesis is true, the 
solution of the genetic algorithm is the “pop-
ulation wining individual” also, in each pattern 
competition result is the “winning schema”. The 
keyword of the previous sentence is “each”. In 
the deceptive problems (exceptions of this theo-
ry), the second affirmation is not true. 

The competition in a genetic algorithm is gener-
ating by individual-medium interaction specified 
by the individual fitness value. The selection 
process reflects this competition. 

The competition process is not determinate by 
schemas. On the contrarily, the competition be-
tween schemas reflects the competition between 
individuals. All the schemas of a pattern are 
competitive, and the competition is taken simul-
taneously in all the patterns. This competition 
reflects the changes in the population and does 
not depend on the pattern parameters.  

Let π  be a pattern taken arbitrary. Due to the 
theorem 3 the size of the state equation reduces 
from  to 2 . In this case we can write L3 )(o π

)t(y)t()t(

)1t(y

ππππ

π

×ϕ×α×β=

=+
 , (21) 
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The coefficients of 
π

ϕ )t(  square block are 

directly calculated with equation (5), but the 
calculus of 

i
)t(α  and 

i
β  coefficients are 

more difficult if we want to eliminate the entire 
simplifying hypothesis. 

3.4. The  and  coeficients k,jα k,jβ

Let us consider , the pattern used in equation 
(21). For the calculus of the crossover matrix we 
can separate the matrix in two terms as it 
follows: 

π

( ) .)t,(I

)t,()t(

πππ

ππ

α ′′×πα′−+

+πα′=α
    (22) 

In (22) the first term is a diagonal matrix with 
the probabilities that the crossover point does 
not occur inside the schemas. The )t,(πα′  coef-
ficients are 





≠
=α

=πα′
kjif0
kjif)t,H(

)t,( j  (23) 

where  are calculated with equation (7). )t,H( jα

In (22) the second term is a square matrix where 
 are the probabilities to generate the  

schema from the H  schema. This matrix is 
weighted with the probabilities that the crosso-
ver point occur inner the schemas (the round 
parenthesis). 

k,jα ′′
jH

k

For the calculus of the  coefficients it is 
necessary to introduce two new entities: the 
kernel of the schema and the kernel of the 
pattern.  

k,jα ′′

Definition 2: Let π∈H  be a  length schema. 
The kernel is a function that returns a sub-string 
of the schema or a pattern that begins with the 
first fixed character and ends with the last fixed 
character.  

L

As an example, let the schema '010'H ∗∗∗∗∗=  
and its pattern  be. Their kernels 
are: 

'###' ∗∗∗∗∗=π

'###')'###('ker)ker(
'010')'010('ker)Hker(

∗∗=∗∗∗∗∗=π
∗∗=∗∗∗∗∗=

   . (24) 

In (24) we notice that is possible to exist many 
schemas that have the same kernel, this notice 
remaining true for the patterns. 

For a given pattern kernel the probabilities k,jα ′′  
can be generated with a program that does a 
systematic exploration of the all the schemas 
kernel. In table 1 there are presented the square 
block coefficients 

)ker(k,j π
α , where )ker(π  is 

the string ' '### ∗∗ .  

Table 1. The crossover matrix for the kernel 
'###' ∗∗  

 
'00**0'   ¦ 0.394  0.194  0.116  0.039  0.142  0.013  0.090  0.013 ¦ 
'00**1'   ¦ 0.194  0.394  0.039  0.116  0.013  0.142  0.013  0.090 ¦ 
'01**0'   ¦ 0.116  0.039  0.394  0.194  0.090  0.013  0.142  0.013 ¦ 
'01**1'   ¦ 0.039  0.116  0.194  0.394  0.013  0.090  0.013  0.142 ¦ 
'10**0'   ¦ 0.142  0.013  0.090  0.013  0.394  0.194  0.116  0.039 ¦ 
'10**1'   ¦ 0.013  0.142  0.013  0.090  0.194  0.394  0.039  0.116 ¦ 
'11**0'   ¦ 0.090  0.013  0.142  0.013  0.116  0.039  0.394  0.194 ¦ 
'11**1'   ¦ 0.013  0.090  0.013  0.142  0.039  0.116  0.194  0.394 ¦ 

 
In Table 1 there are 8 rows and 8 columns, cor-
responding to schemas kernel indexed with rule 
no. 2. We notice that  and the sum of 
probabilities of each row or column is 1. 

j,kk,j α ′′=α ′′

The k,jβ  coefficients are simpler to calculate be-
cause the probability to generate the  schema 
from the  schema depends on the Hamming 
distance between  and  indexes build with 
the indexing rule 2. The Hamming distance 
between two unsigned integer number in binary 
representation is: 

jH

kH
j k

)kj(bcn ⊕=  (25) 

where )(bc ⋅  is the function “bit count” which 
returns the number of '  bits of the argument 
and the operator 

'1
⊕  is the bit-wise exclusive-or 

operator. The k,jβ  coefficients are calculated 
with equation: 

( ) n)(o

m
n
mk,j

ip1p −π−=β  (26) 

where  is the bit mutation probability, n  is 
calculated with the equation (24) and 

mp
)(o π  is 

the order of the pattern.  

4. EXPERIMENTAL RESULTS 

Goldberg, in [3] p. 55-63, presents one of the 
first studies on the GA-dynamics on the problem 
known as “the prisoner’s dilemma”. In fact there 
are two prisoners who, at each iteration, inde-
pendently takes the decision to cooperate or to 
defect. In this situation the GA individual 
chromosome has two bits and the landscape of 
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the fitness function is given by the values of the 
four points  f , )  and  )00(f , ) 10(f01( )11(f .

In this problem there are four discrete differen-
tial equations that can be integrated with an 
initial condition on diverse landscapes. 

This chapter introduces the problem named “the 
dominant individual problem” that permits the 
algebraic evaluation of the selection pressure of 
a given schema. The following experimental 
results where acquired on this problem. 

4.1. The dominant individual problem 

Let a SGA algorithm be. In the initial population 
all the individuals have the same the fitness 
function value, with the exception of a single 
individual who has greater fitness function value 
in comparison with the rest of population. It is 
required to study the dynamic evolution of the 
population. In Fig. 1 the landscape of the 
dominant individual problem is presented. 

It is obviously that the individual who has the 
best fitness value dominates the selection 
process. The dominant individual problem looks 
to be very simple, but this problem is a good 
model for the situation in which an individual 
arrives in an ecological niche in which there are 
better conditions. The arrival moment starts the 
dynamical process for moving the entire 
population from the present positions to the new 
ecological niche. 

 
Fig. 1. The landscape in the dominant 

individual problem 

It is obviously that the individual who has the 
best fitness value dominates the selection 
process. The dominant individual problem looks 
to be very simple, but this problem is a good 
model for the situation in which an individual 
arrives in an ecological niche in which there are 
better conditions. The arrival moment starts the 
dynamical process for moving the entire 
population from the present positions to the new 
ecological niche.  

4.2. The solution of the dominant individual 
problem with the Holland model 

Let us consider  an arbitrary given schema of 
the dominant individual. In the population there 
are two disjunctive groups: 

H

•  the group of individuals that exists in 
the new ecological niche; 

}H{

• }H{  the groups of individuals that exists in 
the rest of landscape. 

If  is the size of population then N

N|)t(PH||)t(PH| =∩+∩  (27) 

If )t(y|)t(PH| H=∩ , the  schema instance 
number in population  is known (see equa-
tion (10)); 

H
)t(P

)t(Hϕ , the selection pressure of  
schema is calculated with (5) equation then 

H

( ) )H(f)t(yN)H(f)t(y
)H(f)t(y)t(
HH

H
H −+

=ϕ  (28) 

where  is the fitness function value in the 
new ecological niche and  is the fitness 
function value the rest of landscape. Substituting 
(28) in (11) we get: 

)H(f
)H(f

)t(y

)H(f
)H(f

)t(y
)t(yN1

)H()H()1t(y H

H

H
H

⋅
−

+

βα
=+   . (29) 

The )H(f/)H(f  factor is a modelling parameter 
that quantifies the dominance degree of the 
dominant individual. 

Equation (29) is integrated with the SGA 
algorithm in the next conditions: 

• the length of the chromosome ; 16L =
• the population size 100N = ; 
• the length of the H schema ; 5)H( =δ
• the order of the H schema ,  3)H(o =
• the bit mutation probability ; 05.0pm =
• the crossover probability p ; 1c =
• )H(α , the probability that the crossover 

operator will not disrupt the H schema is 
calculated with equation (6); 

• )H(β , the probability that the mutation 
operator will not modify a fixed bit of the H 
schema is calculated with equation (9). 
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For the modelling parameter )H(f/)H(f  and 
the initial population  the simulation is 
made for two condition sets: 

)0(P







=∩

=

1)0(PH
2)H(f/)H(f      , (30) 







=∩

=

99)0(PH
5.0)H(f/)H(f   . (31) 

f(H)/f(H)=2

f(H)/f(H)=0.5

t

y  (t)H

 
Fig. 2. Influence of )H(f/)H(f  modelling parameter 

In Fig. 2, on the abscissa is represented the time 
expressed in generations, and in the ordinate is 
represented  expressed in instances. The 
time evolution of the  schema instance 
number in population is plotted with thick line 
for the first condition set, and is plotted with 
thin line for the second condition set. We can 
notice:  

)t(yH

H

• When 1)H(f/)H(f = , the feat H schema 
has an initially exponential evolution. After 
a few generations, composition of the pop-
ulation changes and the process evolves to a 
final stable state;  

• When 1)H(f/)H(f < , the  schema is 
weak and disappears fastly from the popula-
tion. 

H

More tests were made to study the influence of 
mutation probability  and  schema param-
eter  on the evolution speed and the final 
stable state. Further on the tests are made in 
condition set (30). 

mp H
)H(δ

Fig. 3. presents the effect of the mutation 
probability on the speed of the evolution and the 
stable final value. We notice that the evolution 
speed and the final stable value depend on the 
decreasing of a great mutation probability. In 
GA practice the fact is very well known that a 
mutation probability of 0  is very great.  1.

t

p   = 0.05m

p   = 0.01m

p   = 0.10m

y  (t)H

 
Fig. 3. Influence of the mutation probability 

in the population dynamics 

Fig. 4 presents the effect of the length of the 
chromosome on the speed of the evolution. 

(H) = 4

(H) = 6

(H) = 2δ

δ

δ

y  (t)H

t  
Fig. 4. Influence of the length of the schema 

in the population dynamics 

The result from Fig. 4 proofs that the short sche-
mas evolve more rapidly than the long ones. 
Also similar tests to study the influence  
schema parameter  on the evolution speed 
were made, but the results are similar with those 
presented in Fig. 4. 

H
)H(o

4.3. The solution of the dominant individual 
problem with the state equation 

The goal of this section is to compare the results 
of the state equation with those given by the 
Holland model or Schaffer model on the 
dominant individual problem. 

Further on is used the  pattern, which contain 
the kernel ''

π
### ∗∗ . Because 5)( =πδ  and 

3)(o =π , the parameters of the  pattern are 
the same the pre considered H schema. The 
pervious experimental conditions are preserved. 

π

For all the tree models the fitness function is: 





≠
=

=
HHif6.0
HHif0.1

)H(f
j

j

j  (32) 

The population size is 100. The population  
was initialled as follows: 

)0(P
1)t(yH =  and 

99)t(y
H

=  for the Holland’s and Schaffer’s mo-
dels. For the state equation  and the  
remained instances are uniform distributed to 
the 

1=)t(yH 99

π  pattern schemas. 
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y  (t)H

 
Fig. 5. Comparison between the state equation, the 

Schaffer’s model and the Holland’s model 

In Fig. 5, on the abscissa is the time expressed in 
generations and in the ordinate is in in-
stances. In figure there are three time evolution 
plots calculated with the models: 

)t(yH

• the state equation (19) where the coeffi-
cients  and  are calculated with the 
chapter 8 method (thick line); 

k,jα k,jb

• the Schaffer’s model (29) where  is 
calculated with equation (7) (upper thin 
line); 

)H(α

• the Holland’s model (29) where α  is 
calculated with equation (6) (lower thin 
line). 

)H(

In Fig. 5, for each model, in the right of the plots 
is written the stable final value, , towards 
evolve the H  schema instance number in 
population.  

)(yH ∞

Analysing these values we find that the mutation 
probability  scatters too much the 
population. More similar tests than those 
presented in Fig. 5 established that optimum 
mutation probability is 

08.0pm =

05.0005.0pm …= . 

We note that the Holland’s model is the minimal 
estimation of the  value. The Schaffer’s 
model eliminates the simplifying hypothesis (  
and from the 15

)(yH ∞
)a

th generation it gives a bigger 
estimation.  

The state equation eliminates the entire simpli-
fying hypothesis and gives the higher estima-
tion. Also we note that the initial evolution 
speed given by the state equation is faster than 
the others models are. 

4.4. Test for scattering effect of crossover 

In a genetic algorithm the crossover operator 
performs the exploration action while the muta-
tion operator is used to scatter the population to 
postpone the convergence moment. Also, the 

crossover operator has a secondary role in 
scattering the population.  

To study the scattering effect of the crossover 
we consider 0pm = . All the test conditions are 
similar to those presented in Fig. 5. The results 
are presented in Fig. 6. 

y  (t)H

 
Fig. 6. Comparison between the three models 

for 0pm =  

The state equation result is plotted with thick 
line, and the Schaffer model result is plotted 
with the upper thin line.  

We note that the Schaffer model makes an exag-
gerate evaluation of crowding of the population 
in the new ecological niche. Only the state 
equation makes an accurate evaluation of the 
additional role of crossover in scattering action 
of the population.  

4.5. Test for scattering effect of mutation 

The state equation can be used to analyse the 
scattering action of mutation. If we consider: 

πππ
=ϕ=α I)t()t( k,jk,j     , (33) 

then the state equation (19) reduces at: 

)t(y)1t(y k,j ×β=+
π

  . (34) 

Equation (34) is a dynamic model for a genetic 
algorithm whose population evolves only due to 
mutations.  

For a separate study of influence of the mutation 
probability on the population dynamics we 
propose to integrate the equation (34) in 
following conditions: 
• Let us consider π∈H , an arbitrary chosen 

schema taken from the pattern ; π
• The coefficients k,jβ  are calculated with 

equation (26);  
• The population P  is initialised only with 

strings of H schema. 
)0(

The theorem 1, section 3.1, states that the 
pattern of the schema is preserved. So, we try to 
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assume that in the population P )(∞  the in-
stances of the schemas ,  are 
uniform scattered. 

π∈iH )(o2,i π,1= …

 
Fig. 8. Influence of the mutation probability on the 

spread speed of population 

Fig. 8 presents the time evolution of a schema 
that contains the kernel . The 
simulation was performing in following 
mutation probabilities: 0.01, 0.02, 0.05 and 0.1. 
We can notice that a great mutation probability 
increases the scattering speed performed by 
mutation operator.  

'###' ∗∗

5. CONCLUSIONS 

All the arguments used in the schema theorem 
proof and all results have a “statistic sense” so 
the exceptions are allowed. The schema theorem 
interpretation is not a finished action because 
there are always new points of view supported 
or rejected by the theorem. 

A genetic algorithm is a discrete dynamic 
system, that has no entries and the initial state is 
randomly generated. In the early generations the 
state equation has constant coefficients and 
above-average schema has exponentially 
increasing trials.  

After few generations the coefficients of state 
equation  become time dependent, 
because the population composition is changing 
in time and the weak schema are loosing from 
population. 

)t(k,jϕ

If we consider all the schemas in a usual genetic 
algorithm, the state equation has a huge 
dimension (  differential equations). Only in 
simplest examples, this equation can be 
integrated. 

L3

The classical GA theory is based on two princi-
ples: the schema theorem and the building block 
hypothesis.  In the proof of the theorem are used 
the concepts of string, schema and fitness 
function. The state equation is an extension of 
the schema theorem and incorporates all the 

previous results of the proofs of Holland and 
Schaffer. In addition, the state equation uses two 
new concepts: the pattern of the schema and the 
kernel of the schema. The concept pattern of the 
schema is important and explains two other 
empirical observations: the implicit parallelism 
of the genetic algorithms and the competitive 
schemas. 
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