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Abstract: This paper presents a new sequential real time algorithm that solves the mapping problem
in Visual SLAM. The considered problem is a particular example from the triangulation problem, that
has direct applications to robotic vision domain. In other words, the problem is handled as 3D estimate
problem. The estimation process is formulated as a minimization problem of quasiconvex objective
function. The minimization process is realized using the well-known bisection algorithm. The bisection
algorithm runs sequentially solving one convex feasibility problem in each iteration, trying to reduce
the bound on the 3D estimate. New image measurements arrive after every new iteration, new convex
visibility problem is solved, and the bounds on the 3D estimates are updated. These steps are repeated till
convergence. We conducted a set of experiments to show the applicability to the general reconstruction
(triangulation) problem as well as the application to mapping Visual SLAM.
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1. INTRODUCTION

Convex optimization is now widely recognized as a powerful
and efficient tool for providing solutions to many engineering
and technical problems Quoc et al. (2011); Tran et al. (2013);
Abdul Hafez et al. (2007); Hartley and Kahl (2007). It has been
extensively explored while searching for solutions to a family
of multiple view geometric problems in computer vision Cre-
mers and Kolev (2011); Klodt et al. (2013). A wide range of
geometric computer vision problems are reformulated as con-
vex (quasi-convex) optimization problems with a few algebraic
manipulations Wu et al. (2012); Chesi (2009); Salzmann et al.
(2007); Hartley and Kahl (2007); Kahl (2005); Ke and Kanade
(2005, 2007).

One of the important advantages of Convex optimization is
that it does not have the local minima concerns, which assures
that the global solution can be reached. The optimization is
done here by replacing the L2 norm objective function, i.e.
the sum of squared reprojection error, by the norm L∞ of
the error, Wu et al. (2012); Kahl (2005), i.e. by definition the
maximum distance of the image point-wise re-projection error,
given a set of image points. This was done because it is now
apparent to the vision community that minimizing the L2 norm
is a non-trivial problem. The L2 norm does not have convex
form due to the perspective projection effects, that appear when
we use a pin-hole camera. In addition, The L2 norm suffers
multiple local minima. In other words, using the L∞ norm as
an objective function with a quasi-convex optimization problem
results in a global and deterministic solution to many multiple
view vision problems. Of course, this global solution does not
add any limitations regarding to camera model or the number
of images Ke and Kanade (2007).

It was claimed in Hartley and Schaffalitzky (2004) that most
multiple views vision problems can reach a global solution by
minimizing the L∞ norm of the reprojection error. Later on,

Kahl in Kahl (2005), and Ke et al. in Ke and Kanade (2005)
proved that this L∞ error is a quasi-convex function. Conse-
quently, this error can be efficiently minimized as a sequence
of visibility problems, i.e. second order cone programs (SOCP),
using the famous bisection algorithm. Since the L∞ is sensitive
to noise and outliers, Ke and Kanade Ke and Kanade (2005,
2007) suggested using the mth smallest error. i.e. the Lm norm,
instead of L∞. This is justified since the later one is robust
to outliers and noise. However, the solution in Ke and Kanade
(2005, 2007) becomes a local solution by considering the Lm
norm error as an objective function. Later, another robustness
technique is proposed to minimize the L∞ norm of error while
continuing to provide a global solution Sim and Hartley (2006);
Abdul Hafez et al. (2007). Ke and Kanade have shown in Ke
and Kanade (2007) that minimizing theL∞ norm is meaningful
only when the image measurement noise is considered.

Considering the uncertainty in the image measurements helps
determine the effect of its noise properties on the minimization
process. As is shown in Ke and Kanade (2007), minimizing
the L∞ requires that the image noise is isotropic (it is uni-
formly distributed in all direction), and i.d.d.(it is distributed
independently and identically). Unfortunately, it is not the case
for most 2D features Shi and Tomasi (1994). It is shown in Shi
and Tomasi (1994) that a good feature to track is the one with
non-directional or directional but uncorrelated noise. This is
true since the image noise depends on the dissimilarity in the
intensity of the image window around the feature point. How-
ever, most image features have a large amount of directionality
which need to be considered when minimizing L∞ norm.

Several multiple view geometric problems in computer vision
are efficiently solved by minimizing the L∞ norm using convex
or quasi-convex optimization framework. These problems may
include planar homography estimation, triangulation / construc-
tion, camera re-sectioning, and estimation of camera motion
with a given rotation Ke and Kanade (2007). Triangulation
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problem is the problem of estimating the 3D points M given
their images mi and the camera pose matrices Pi. As another
example, plan to plan homography estimation appears when
the 3D points belong to the same plane. A homography can
be estimated between 3D points and its images m = HM ,
or between two images of the 3D points m1 = H12m2. It is
commonly known now Ke and Kanade (2007); Kahl (2005); Ke
and Kanade (2005); Hartley and Schaffalitzky (2004) that all
of these problems can be solved by formulating a quasiconvex
reprojection error. We particularly consider the reconstruction
/ triangulation problem. The current framework, i.e. geomet-
ric reconstruction, is suitable for problems like building a 3D
model using a sequence of images of the environment. For
example, given a video sequence (set of images) with a cali-
brated camera, the 3D/CAD model of the environment can be
efficiently reconstructed. This is, in fact, known in the computer
vision community as the batch processing techniques. However,
several computer vision geometric problems need to be handled
in a sequential manner to satisfy the real time requirements of
the system.

As an application to real time systems, Hafez et al. proposed
in Abdul Hafez et al. (2008) a sequential convex optimization
algorithm that efficiently solves the mapping problem in VS-
LAM. The most important step was the initialization of 3D fea-
tures, and the insertion of them into the map. Since the camera
pose is estimated using other previously available features, the
pose is used to formulate the feature initialization as sequential
triangulation problem. Another application of sequential con-
vex optimization algorithm is presented in Abdul Hafez and
Jawahar (2008) to estimate the depth of the visual features, as-
suming that the camera pose is estimated using a particle filter.
The work presented in this paper is the continuation of these
two works. Here, we adopt the minimization of the uncertainty-
weighted L∞ norm instead of the classical one.

The contribution of this paper is twofold. On one hand, it
presents the adaptation of the geometric reconstruction problem
to the sequential situations, where the real time constraints are
satisfied. On the other hand, it considers the uncertainty in the
image data. To adapt to the real time constraints, the solution is
formulated as a solution of quasi-convex problem. The bisec-
tion algorithm is used as an on-line recursive method to solve a
set of visibility convex optimization problems. The uncertainty
is considered by transforming the classical L∞ norm into a
covariance weighted space where is the noise in 2D features be-
comes isotropic and independently identically distributed i.i.d..
The real time solution has applications in many domains like
visual servoing, visual SLAM, virtual reality, structure from
motion,etc. However, the proposed real time solution is suitable
to a wide variety of geometric problems solved by minimizing
the L∞ norm using bisection algorithm via quasi-convex op-
timization framework. The only sequential solution, presented
in the literature, to the minimization of L∞ error was proposed
in Seo and Hartley (2007). Similar algorithms that estimate 3D
map in real time, by drawing a set of particles but not using
convex optimization, is the one presented in Strasdat et al.
(2012); Davison et al. (2007) and reviewed in Subsection 5. Its
performance is compared to ours in Subsection 6.2.

The remaining parts of this paper are organized as follows:
The next section presents a background about imaging process
and multi-view geometry problems, about convex optimization
with solutions to L∞ norm problems, and finally more focus
is given to the triangulation problem. Section 2 presents our

Fig. 1. The function f(x) is example of quasiconvex function
defined on R.

sequential real time solution to the L∞ norm problems. Sec-
tion 4 presents our proposed algorithm, while Section 5 presents
the application of the proposed algorithms to mapping Visual
SLAM. Discussion about experiments that are carried out using
the proposed algorithm is presented in Section 6.

2. BACKGROUND

We summarize the background material related to L∞ norm
and convex optimization, but more rigorous details can be seen
in Boyd and Vandenberghe (2004).

2.1 Convex and Quasi-convex Optimization

By definition, we have convex optimization problem if the
objective function f0(x) is convex, and it is minimized under
a set of constraints. These constraints are convex functions
fi(x); where i = 1, · · · , N . In more formal words, the convex
optimization problem is the one of the form

min
x
f0(x) (1)

s.t. ,

fi(x) ≤ bi, i = 0, · · · , N.
However, the problem is not convex problem any more if
the objective function f0(x) is quasi-convex function. It is
indeed quasi-convex problem, see Figure 1 for definition of
quasiconvex function. All γ-sublevel sets Sγ of the function
f(x) are convex range. In general, quasi-convex functions are
not necessarily convex. In this example function, one may note
that a segment of the dashed line, between the intersection
points, lies below the portion of the function between the
two intersection points. Usually the line segment is above the
convex functions.

Let us have the parameter γ ∈ R and optimal solution f∗0 (x) ≤
γ to problem (1). To find such unknown solution, the following
feasibility problem is feasible:

find x (2)

s.t. ,

f0(x) ≤ γ
fi(x) ≤ bi, i = 0, · · · , N.
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Fig. 2. The directionality types in image measurement uncertainty. Left: the uncertainty is isotropic and uncorrelated. Middle: the
uncertainty is not isotropic, directional but uncorrelated. Right: the uncertainty is highly directional and uncorrelated.

If this problem is not feasible, then the solution f∗0 of prob-
lem (1) satisfies that f∗0 (x) > γ.

The bisection algorithm repeats the same steps above to find the
optimal solution to the quasi-convex problem. As it is shown
in Algorithm 1, the algorithm starts from initial given lower
bound and upper bound

[
γl, γh

]
of the optimal value f∗0 of

the objective function. It initially solves the feasibility problem
given in (2) for the lower half of the range

[
γl, γh

]
, that is

after updating the higher bound feasibility range as γh = (γl +
γh)/2. If the mentioned problem is not feasible, this means that
the optimal value of the objective function holds as f∗0 (x) > γ.
Indeed, the lower bound of the range is updated as γl = (γl +
γh)/2. After a few number of iterations in which a set of
feasibility problems are solved indeed the range is partitioned,
the range of the feasibility becomes γh − γl ≤ ε, hence the
produced solution is optimal.

2.2 Uncertainty in 2D/3D features

Since, non-directional features are rarely available, it was pro-
posed in Ke and Kanade (2007) to minimize a weighted form of
the L∞ norm. The norm is weighted based on the directionality
of the uncertainty in the image measurement. In other words,
the Mahalanobis distance between the image measurement and
its corresponding reprojection is considered instead of the Eu-
clidean distance. For example, the Euclidean distance was used
in Kahl (2005); Ke and Kanade (2005); Hartley and Schaffal-
itzky (2004). Since the directionality is well-represented using
the covariance matrix of the 2D feature measurement, they
proposed to use covariance-weighted L∞ norm. It was shown
that it is a quasi-convex function indeed a global minimum
can be obtained by minimizing it. Using such error function,
the contribution of each feature to the minimization process
is inversely proportional to the amount of directionality in the
image uncertainty. In other words, less directionality imposes
stronger constraints on the unknowns under optimization.

Following, we demonstrate the uncertainty in image measure-
ment and how it can be projected into the 3D space to represent
the uncertainty of the estimated 3D point. Consider the pro-
jection m = (x, y) of the 3D point M = [X, Y, Z]T to the
image space of a given camera. Additive noise and different
kinds of errors can affect the measurement m̂ of this image
point. The zero mean Gaussian probability function is a suitable
model for considering noise and errors. Consequently, the im-
age measurement is represented as a random variable that has
the distribution (Flandin and Chaumette (2001); Abdul Hafez
and Jawahar (2006)) given by

p(m |M) =
1

(2π|Σm|1/2)
exp[(−

1

2
(m−KM)T Σ−1

m (m−KM))]. (3)

The matrix Σm is the covariance matrix. It depends on the
image measurements.

The inverse of the covariance matrix is computed using the
following formula:

Σ−1
m =

∑
(x,y)∈w

(
I2
x IxIy

IxIy I2
y

)
(4)

Here, w is a small patch considered around the feature position
m = (x, y) in image I of the corresponding camera. The
vectors Ix and Iy are image gradient vectors along x and y
directions respectively.

Based on the type of the uncertainty, shown in Figure 2, the
matrix Σm shows three mathematical characteristics:

(1) The matrix has two identical variance values in both x and
y directions, i.e. Σm = diag(λ, λ). This expresses scalar,
isotropic, and uncorrelated uncertainty in both directions.
This case is demonstrated in Figure 2(left).

(2) The matrix has two different variance values in both x
and y directions, i.e. Σm = diag(λ1, λ2). This expresses
directional but uncorrelated uncertainty in both directions.
This case is demonstrated in Figure 2(middle).

(3) The matrix Σm is full 2 × 2 matrix. This expresses cor-
related uncertainty with high directionality in both direc-
tions x and y. This case is demonstrated in Figure 2(right).

Let us have a depth map as the distribution p(Z) = N (Z; Z̄, σZ).
The mean of this distribution is Z̄ and the variance is σZ . The
uncertainty in the image measurements can be reprojected to
the Cartesian space using the function F−1, the inverse of the
reprojection function of the camera. A 3D distribution of 3D
point M that corresponds to the image point measurement m is
obtained. This distribution is p(M | m) = N (M ; M̄,ΣM ) and
the parameters M̄ and ΣM are computed as follows Flandin
and Chaumette (2001)

M̄ = [Z̄x̄, Z̄ȳ, Z̄]T , Σ−1
M = JT

F

(
Σ−1

m 0

0 σ−1
Z

)
JF . (5)

Here, the matrix JF is the Jacobian of the inverse of the re-
projection function Flandin and Chaumette (2001) and defined
as

JF =
∂F−1

∂M

∣∣∣
M̄

=

( 1/Z̄ 0 −x̄/Z̄
0 1/Z̄ −ȳ/Z̄
0 0 1

)
. (6)
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Fig. 3. Uncertainty in image measurement and its reprojection
to the Cartesian space.

Figure 3 depicts the resulting 3D distribution of the estimated
3D point coordinates. This distribution is used to perform the
visual servo control task and the localization process.

3. TRIANGULATION USING QUASICONVEX
OPTIMIZATION WITH UNCERTAINTY

This section discusses the triangulation problem using quasi-
convex optimization framework, and its extension to the real
time situation. However, the presented method is general and
can be applied to other problems like planar homography esti-
mation and camera resectioning.

3.1 The image Re-projection error and its norms

It is commonly known that minimizing the image re-projection
error is geometrically more meaningful than other algebraic
errors Ke and Kanade (2007). Usually, the image re-projection
error is defined as the difference between a given measurement
m̂ of the image point and the projection of its 3D estimate M .

Assume that this projection m = PM is the image of the 3D
estimate M using the camera matrix P . Given an image point
m̂, we can write the n-norm Ln of the re-projection error as

Ln = ‖ m̂−m ‖n = ‖ m̂− PM ‖n . (7)
When n = 2, it means that the Euclidean distance is used. It

is denoted as L2 norm and given as L2 =
[

1
N

∑N
i=1 d

2
i

]1/2
whereN is the number of images (or cameras), and the distance
d is given for a certain camera as

d2 =

(
x̂− PT1 M

PT3 M

)2

+

(
ŷ − PT2 M

PT3 M

)2

. (8)

In other words, when we write using the L2 norm notation ‖.‖
we get

d =‖ 1

PT3 M

[(
x̂
ŷ

)
PT3 −

(
PT1
PT2

)]
M ‖ (9)

Here, PTj is the jth row of the camera projection matrix P . The
error L∞ norm can be similarly written as

L∞ = max
i
{di}Ni=1 (10)

where d is the distance function defined in (8).

The L2 norm of the error is difficult to minimize due to multi-
ple potential local minima problems Hartley and Schaffalitzky

(2004). In contrast, L∞ norm has only one minimum. Hence,
minimizing this L∞ norm, obviously results in a global solu-
tion. Unfortunately, the L∞ norm can be easily affected by
noise and outliers, indeed more care needs to be taken regarding
robustness issues. Additional robust processing stage is needed.

3.2 The L∞ norm weighted using uncertainty

In this section we are going to see how the directionality of the
image measurement uncertainty is considered while minimiz-
ing the L∞ reprojection error. Assume that M = (X,Y, Z, 1)
are the 3D homogenous coordinates and m̂ = (x, y) are the
2D homogenous coordinates of the image measurement. The
uncertainty in the location of the image features is characterized
using the inverse covariance matrix Σ−1

m .

The method which was proposed in Ke and Kanade (2007) to
handle the directional uncertainty is adopted here. The essence
of the method is to project the reprojection error function onto
a new data space. In this new space the uncertainty becomes
isotropic and uncorrelated. This is done by weighting the error
function using the covariance matrix of the uncertainty. This
can be thanks to the symmetric positive semi-definite form of
the matrix Σ−1

m . This form allows it to be decomposed into V
and Λ matrices like

Σm = V ΛV T (11)
where the matrix Λ = diag(λ1, λ2), and V is a 2×2 orthogonal
matrix. Similarly to Eq.(11), the inverse covariance matrix can
be written as

Σ−1
m = V Λ−1V T (12)

One can note that the transformation
Tw = Λ−1/2V T (13)

is affine transformation that can transform image data, hence
the reprojection error, into uncertainty-weighted space. In this
space the noise is isotropic and uncorrelated, that is indepen-
dently and identically distributed.

Using the transformation Tw given in Eq.(13) we can write the
image measurement m̂ as m̂′ and the projection m as m′

m̂′ = Twm̂ = Tw(x, y)T , (14)

m′ = Twm = TwPiM. (15)
To write the error d in the new space, we substitute in Eq.(9) to
get the weighted reprojection error

dw =‖ Tw
PT3 M

[(
x̂
ŷ

)
PT3 −

(
PT1
PT2

)]
M ‖, (16)

which can be simplified as

dw =‖ ΦM

PT3 M
‖ (17)

by denoting Φ = Tw

[(
x̂
ŷ

)
PT3 −

(
PT1
PT2

)]
.Our final Uncertainty-

weighted Lw∞ norm is defined as

Lw∞ = max
i
{dwi }Ni=1. (18)

3.3 Triangulation using quasiconvex optimization given N
images

The triangulation problem can be formulated as quasi-convex
optimization problem with respect to the 3D coordinates of
the features (X,Y, Z). The model considers that N images of
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a 3D point M collected with Pi cameras are available. Here
i = 1, · · · , N and Pi is the ith camera matrix. Figure 4 depicts
the 3D configuration of the triangulation problem.

Let us have a set of camera matrices Pi, which are estimated
and independently available. Our problem is to find an estimate
M of the world points using the N camera matrices and the
corresponding N images. This problem can be formulated as
quasi-convex optimization problem Kahl (2005).

The triangulation problem can be reformulated to consider the
directionality in the image uncertainty. The 3D points Mi can
be estimated by minimizing the weighted reprojection errorLw∞
shown in Eq. (18) as follows

min
M

max
i
{dwi }Ni=1 (19)

subject to PT3iM > 0.

Since the objective function is dw =‖ ΦM
PT

3 M
‖, the constraints

in the second line from Eq.(19) are justified, i.e. the uncertainty-
weighted distance function The termPT3iM represents the depth
of the 3D point coordinate frame of camera Pi. Bisection
algorithm can efficiently solve this problem. Every iteration of
the bisection algorithm solves a feasibility problems of the form

find M

subject to ‖ ΦiM ‖≤ γPT3iM (20)

PT3iM > 0 fori = 1, · · · , N.
It is clear that this feasibility problem is convex. It tries to find
out whether the optimal solution Lw∞ is less or more than a
given value γ. Thus, the quasi-convex function given in Eq. (19)
can be solved through a sequence of feasibility problems like
the one in Eq.(20) within the bisection algorithm whose steps
are stated in Algorithm 1.

This method is used to efficiently solve reconstruction prob-
lems Kahl (2005); Ke and Kanade (2007) where a set of N
images of the 3D point M is available. The bisection algorithm
runs k times over the measurement values till reaching a value
of the objective function that is Lw∞ ≤ ε. In fact, it needs
5 to 10 iterations. This usually does not satisfy the real time
requirements, i.e. working at the video rate. In the next section,
We present an online bisection algorithm that is able to satisfy
the real-time requirements of the considered problem.

Algorithm 1 Solution to the triangulation problem as quasicon-
vex optimization problem via off-line bisection algorithm.

1: Input: Given N images, the upper and lower bound[
γl, γh

]
of the optimal value Lw∞(M) range, and tolerance

ε > 0.
2: Repeat

(a) γ = (γl + γh)/2.
(b) Solve problem (20), i.e. convex feasibility problem.
(c) If feasible, γh = γ;

else, γl = γ.
3: Until γh − γl ≤ ε.

4. SEQUENTIAL SOLUTION TO THE L∞ PROBLEMS

In this section, we present our sequential bisection algorithm.
The proposed algorithm is able to produce real time solution.
Let us start with the batch triangulation problem that produces
an optimal estimate of the unknowns. After that, we discuss

the situation when new image is available. The measurements
from the new image are used to update the optimal estimate.
Finally, we will present our algorithm that works sequentially
in real time without any initial guess or priori available about
the optimum solution.

The original batch 3D feature estimate problem is defined as
follows. Given a set of N image correspondences m̂i , estimate
the 3D pointM , given the camera(s) information, with minimal
re-projection error over these image point correspondences.
This problem is solved by Kahl in Kahl (2005) as batch convex
optimization problem. If some initial optimal solution is already
available from already observed N image correspondences and
their concern camera matrices, we may have the following
problem. Given an optimal estimate M∗N of the corresponding
3D point, estimate the new optimal 3D point as M∗N+1 when a
new image measurement m̂N+1 is acquired. This solution is se-
quentially updated to be still an optimal when new observations
are available. This problem is discussed by Seo et al. in Seo and
Hartley (2007). The final case which is discussed in this paper
is there is no initial optimal solution available.

We assume that we do not have an initial optimal solution. In
addition, the image correspondences m̂i are presented sequen-
tially starting from i = 1 initially, till i = N at the current
moment in time when the m̂N measurement is presented. The
problem here is to sequentially estimate the optimal solution
M∗N as soon as two image measurements are available. Our task
is to find a 3D estimate Mi, starting by i = 2 that converges to
the optimal one M∗i soon after a few image measurements, say
k images, are available.

Let us assume that we have a moving camera attached to frame
F t and has the camera matrix Pt at every time instance t.
The camera frame F 0 is assumed to be the reference frame.
Let us note that γ is set as an upper bound of the objective
function in problem (19). Consequently, we can say that dwi =‖
ΦiM
PT

3i
M
‖< γ for i = 1, · · · , N . Assume that the optimal value

γ∗ is bounded between a known lower threshold γl and a higher
one γh. Finally, the sequential bisection algorithm works as
described in Algorithm 2.

The algorithm starts as soon as two views N = 2 are available.
At each time instance t, the algorithm solves single convex fea-
sibility problem of the form in (20) as one iteration of the quasi-
convex triangulation problem given in (19). Whenever new
image measurements are available in the next time instance, the
objective function Lw∞ = maxi(‖ ΦiM

PT
3i
M
‖) and the bounding

thresholds are updated based on the new measurements. Here
γh is the higher bound of the objective function, i.e. the Lw∞
norm. This γh should be equal or greater than the re-projection
error dwi =‖ ΦiM

PT
3i
M
‖ in all the considered images. Thus, for

the N th observed image, if the re-projection error dN is greater
than the higher bound γh then, set this higher bound equal to
the re-projection error dN . Next is solving the convex feasibility
problem in (20) once. This feasibility problem results in an
update of the higher bound γh and the lower one γl based on
whether the problem is feasible or not; as well as an estimate
of the 3D point M with a re-projection error within the range
(γl, γh). Then, new convex feasibility problem is solved.

This process is repeated whenever new image is acquired pro-
viding new measurements. The solution of this problem is ob-



66 CONTROL ENGINEERING AND APPLIED INFORMATICS

Fig. 4. The figure depicts the geometric reconstruction problem given N images along with corresponding N camera matrices Pi.
The objective is to compute the unknown 3D point coordinate M .

served to converge within 5-10 frames. Mapping process for
another 3D feature begins to be solved within a few frames.

Algorithm 2 On-line Bisection algorithm to solve the Quasi-
convex optimization Problem

1: Input: N = 2 image measurements, optimal value
f∗0 (M) ∈

[
γl, γh

]
and tolerance ε. Initially, the time pa-

rameter t is set to N .
2: Repeat

(a) Collect the measurements from the N th image.
(b) If (dwN =‖ ΦNM

PT
3N
M
‖) ≥ γh then,

γh = ‖ ΦNM
PT

3N
M
‖ .

(c) γ = (γl + γh)/2.
(d) Solve the convex feasibility problem as in (20).
(e) If feasible, γh = dwN ,

else, γl = γ.
(f) N = N + 1

3: Until γh − γl ≤ ε

5. APPLICATIONS TO MAPPING IN VISUAL SLAM

The visual SLAM problem can be defined as the simultaneous
real time estimation of the 3D pose of a moving camera and
the structure of the environment. The pioneer work on visual
SLAM has been presented by Davison Strasdat et al. (2012);
Davison et al. (2007) using the Extended Kalman Filter (EKF).
Their motion model using EKF utilizes the camera’s state
vector

xv = (r,q,v,w)
T (21)

This state vector consists of camera position r, camera rotation
q, linear velocity v, and rotational velocity w. All are given
with respect to a world frame. The state vector update is
produced as

fv = (rnew,qnew,vnew,wnew)T = fv(xv , ẋv ,n,∆t) (22)

Here, ∆t is the time interval and n = (V,Ω), these are the
linear and rotational respectively. The uncertainty of the 3D
estimates was used to constrain the search within an elliptical
region in the image.

The feature initialization process in Davison et al. (2007); Stras-
dat et al. (2012) is based on a one dimensional particle filter to

represent the depth of a newly observed feature. The filter is a
set of particles (hypotheses) that is uniformly distributed along
the projection ray of the feature. The image measurements
collected from the consecutive frames are used to iteratively
update the distribution of the depth particles. The feature ini-
tialization process is completed by inserting the estimated 3D
feature along with its uncertainty in the map. This insertion is
done when the depth distribution has converged to Gaussian.
One may note that the depth range is limited since the number
of particles is determined in advance and cannot be chosen
arbitrarily. Since the number of depth particles affect the per-
formance in the real time, it is chosen in such a way to keep the
computations at a minimum.

Since knowledge about the uncertainty of the depth is not avail-
able and no sufficient observations to estimate it, we propose
a deterministic model. The 3D feature estimates are initialized
using a robust and deterministic method built within convex op-
timization framework. In this case, an estimate of the depth can
be sequentially available and consistent with the EKF frame-
work due to the sequential triangulation algorithm proposed in
this paper and given in Algorithm 2 presented in Sec. 4.

5.1 Searching for Features

Two methods of searching for features are adopted here to come
up with the real-time active search method. The first one is used
to search the image features corresponding to features currently
being initialized only. The second method is used to search for
image features that have been already initialized in the map.

The first method is based on the uncertain epipolar lines. The
apriori motion distribution allows us to construct a distribution
of the epipolar lines in the second image. This is subject to the
availability of image measurements in the first frame. It was
shown in Hartley and Zisserman (2003) that given a distribution
of epipolar lines with mean l and covariance Σl, the region
L that contains a certain portion of the epipolar lines can be
analytically described. In other words, the features will be
searched first in the initial two frames and then feature matching
is performed. The search is limited to a region of epipolar lines
given based on the motion model uncertainty.
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Fig. 5. The value of the initialization reprojection error over bisection iterations.

The second search method is used for already mapped features.
In later time instances, the uncertain 3D features will be pro-
jected to the image to form a search region for expected feature
measurement. The apriori knowledge about the 3D estimates of
the features is projected to the image space using the proposal
distribution of the motion posterior Pt+1/t. Each particle of
the distribution Pt+1/t will form measurement distribution in
the image. The set of projections using the whole particles
is approximated by a Gaussian distribution in the image. The
region of search is determined by the ellipse with 3σ. This
method is similar to the one presented in Davison et al. (2007)

6. EXPERIMENTAL RESULTS

In this section we show the results that demonstrate the effi-
ciency of our proposed method. We show different kinds of
results. First, we show preliminary results illustrating the on-
line triangulation algorithm. Second, the application of the al-
gorithm to mapping for VSLAM is shown.

6.1 Results from On-line Triangulation

We have carried out an experiment which is applied to data from
real video sequence. The real video sequence was acquired with
hand-held low cost Unibrain IEEE 1394 camera, with a 90deg
field of view and 320x240 resolution monochrome at 30 fps.
In fact this sequence is available on the web by the authors
of Davison et al. (2007); Strasdat et al. (2012). In addition, we
have used the Matlab code provided by them for both com-
parison of their mapping method with ours and for plugging
our mapping algorithm to the VSLAM framework. In other
words, many of our processing steps are same as in Davison
et al. (2007); Strasdat et al. (2012) except the mapping stage.
We compare with the work presented in Davison et al. (2007);
Strasdat et al. (2012) since its source code of implementation is
the only one available for use.

The on-line triangulation algorithm is applied to data collected
from the mentioned video sequence. The camera matrices cor-
responding to the sequence images are collected from the lo-
calization stage output of the VSLAM framework. However,
we present these camera matrices (camera pose with respect to

Fig. 6. A sample picture arbitrarily taken out from the consid-
ered video sequence.

the reference frame) to the triangulation algorithm assuming
that they are correct estimates. The L∞ error along with its
boundaries γl and γh are illustrated in Fig. 5. The figure depicts
the average value over all features. The error Lw is in dashed-
red, the upper bound γh in dotted-blue, and the lower bound γl
in (solid-green). It is clear that the L∞ error converges to small
values within the acceptable range of γl and γh. One may note
that there are no notable variations of the estimated values after
a few iterations.

6.2 Results from Mapping in VSLAM

To illustrate the applicability of our on-line triangulation
method to VSLAM, we have applied it for mapping many
features detected and extracted from the said video sequence.
We have selected features that belong to two different classes,
particularly far features that appear to be at infinity and near
features that provide enough parallax. In addition, we compare
the re-projection error for the two classes of features with the
mapping method used in Montiel et al. (2006) which is the only
available VSLAM implementation for use. Figure 6 shows the
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Fig. 7. The average of the re-projection Euclidean error for a selected set of near (far) features at the top (bottom) respectively.
Errors that are shown above are in pixels.
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Fig. 8. The results of a comparison with Davison’s work in Montiel et al. (2006). Ours in dotted-red color and the other in solid-
green.

selected near and far features taken from the considered video
sequence in Montiel et al. (2006), in which features are marked
by a red circle.

The average re-projection error in pixels for near features is
shown in Fig. 7(at the top). The average RMS error is less than
one pixel and that is relatively small. Indeed, the mapping of the
3D features is precise and accurate. Similarly, the re-projection
error in pixels for far features is shown in Fig. 7(at the bottom).
The average is about three pixels. This means that the accuracy
of the 3D estimates is much less for far features than the one
for near features. This is due to the amount of parallax available
from near features motion.

A comparison with the mapping results of the method presented
in Montiel et al. (2006) are shown in Figure 8 for near and
far features respectively. The average re-projection error for
a selected set of far features, at the top, and selected set of
near features, at the bottom during iterations of the bisection
algorithm. In the case of near feature, our mapping method
clearly outperforms the method in Montiel et al. (2006). They

show a notable improvement with smaller re-projection error in
the image. Eventhough in far feature case where the accuracy of
our estimate is less, it shows less re-projection error. The error
of our mapping method is presented using a dashed line in red
color while the error from the method presented in Montiel et al.
(2006) is presented using a solid line in green color.

7. CONCLUSION

We have presented a sequential algorithm for solving a set of
problems in multi-view geometry, the triangulation problem
as a particular example with its application to the mapping
problem in Visual SLAM . The algorithm provides an efficient
solution to these problems in the real time. The algorithm be-
gins with an unknown estimate and its output converges to the
actual values within a few iterations. This algorithm is used to
solve the mapping problem in VSLAM framework. It initializes
features with the 3D information required before introducing
the feature in the map. The experimental comparisons on map-
ping for VSLAM show that the proposed sequential algorithm
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superpasses the most common mapping techniques like using
particle filter.
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