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Abstract: This paper presented a discrete-time integral sliding mode control for a large-scale system with 

unmatched uncertainty. A new theorem is presented and proved that the controller is able to handle the 
effect of interconnection for the large-scale systems and unmatched uncertainty, and the system stability 

is ensured. The controller will ensure the system achieve the quasi-sliding surface and remains on it. The 

results showed a fast convergence to the desired value and the attenuation of disturbance is achieved. 
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1. INTRODUCTION 

Large-scale systems usually refer to systems that consists of a 
large number of state variables, system parametric 
uncertainties, a complex structure and a strong interaction 
between subsystems (Siljak, 1978). The development of 
discrete-time control methodology for large-scale variable 
structure system such as multi-axis robotic arm or large 
process control systems is relatively limited as compared to 
its continuous-time counterpart. Discrete-time controller is 
important for implementing computerized control technique. 
(Li et al., 1982) used decentralized control by dynamic 
programming method to achieve the control of three-reach 
river pollution problem. This paper addressed the dynamic 
issue of the interconnections and external disturbance of the 
systems. (Hou, 2001) has used neural network for dynamic 
hierarchical optimization of nonlinear discrete-time large-
scale system. The challenge for this method is the speed of 
computation required for systems with fast respond. (Haddad,  
et al., 2004) developed an analysis framework for discrete-
time large-scale dynamical system using vector dissipativity 
notion. They introduced a generalized definition of 
dissipativity for large-scale nonlinear discrete-time dynamical 
systems in terms of a vector inequality involving a vector 
storage functions and vector supply rates. Subsequently, 
linear matrix inequality (LMI) technique has been used by 
(Park and Lee, 2002) to derive a sufficient condition for 
robust stability in decentralized discrete-time large-scale 
systems with parametric uncertainty. (Park et al., 2004) 
applied the dynamic output feedback controller design to a 
discrete-time large-scale system with delay at subsystem 
interconnections. Lyapunov method has been combined with 
LMI technique to develop the dynamic output feedback 
controller to guarantee the cost stabilization of the systems 
and achieve asymptotically stable closed-loop system with 
adequate level of performance. (Ou et.al., 2009) also used 
LMI method  to achieve the stability analysis and H∞ 
controller design to achieve disturbance attenuation 
performance by using Fuzzy Logic approach for the 
decentralized control of discrete-time large-scale systems. 

In the early development stage of discrete-time sliding mode 
control theory which is also known as variable structure 
control, the basic conditions for achieving the equivalent of 
sliding mode as in continuous-time variable strucuture 
control have been proposed by (Dote and Hoft, 1980;  
Sarpturk et al., 1987; Milosavljevic, 1985; Furata, 1990). 
Method for quasi-sliding mode design and the use of reaching 
law approach to develop the control law for robust control in 
discrete-time sliding mode method has been proposed by 
(Gao et al., 1995). Discrete-time integral sliding mode control 
for sampled data system under state regulation was reported 
in (Abidi et al., 2007). Subsequently,( Xi and Hesketh, 2010) 
demonstrated the discrete-time integral sliding mode system 
to deal with both matched and unmatched uncertainties 
focused on SISO system. 

Discrete-time large-scale systems in variable structure control 
has been introduced by (Sheta, 1996) with optimum control 
method. His study focused on the uncertain changes in the 
interconnection between subsystems and these uncertainties 
are governed by Markov chain technique. The controller was 
designed off-line based on a set of expected system failure 
modes and switched on-line when failure detected. It is 
relatively fewer literatures that have been focusing in the 
research of discrete-time sliding mode control for large-scale 
systems. 

In this paper, a new theorem using integral sliding mode 
control method to control a large-scale discrete-time system 
with matched and unmatched uncertainties is proposed. Such 
that the proposed controller renders the large-scale system to 
be stable and handle the effect of the interconnections with 
matched and unmatched uncertainties. 

This paper is organized into 5 sections, Section 1 as the 
introduction, followed by the problem statement in Section 2. 
The controller design and proof of the theorem is given in 
Section 3. Section 4 presents the simulation results of two 
examples of large-scale systems under study and the 
conclusion is given in Section 5.  
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2. PROBLEM STATEMENTS 

This paper consider a discrete-time large-scale system given 
by, 

                                  (1) 

It is assumed that the system can be decomposed into p 
subsystems as follows, 

                                
             

 

   
   

        

   (                              (2)         

where   is system parameter,   is input parameter,      
     ,         ,       is the matched uncertainty, 
                         is the unmatched uncertainty, 
       is constant matric with appropriate dimension, 
            is the interconnection between 
subsystem         with, 

                                           (3) 

                                        (4) 

                   ,                 are matric with 
appropriate dimension. 

It is assumed that both        and        are bounded, that 
is, 

            ,             

and the bounds are known. 

Assumption 1, 

     is invertible (G can be arbitrarily chosen by 
assuming that the following conditions are met), 
according to (Xi and Hesketh, 2010), 

                                                       (5) 

                                                  (6) 

                

 

   

   

             

 

   

   

          

                                 (7) 

It is assumed that N,M,L is known, and         and         are 

the last value of the disturbance signal.  

According to Su et al., 2000), the last value of a disturbance 

signal can be taken as estimate of its current value if the 

updated value is not accessible, under the assumption that the 

disturbance is continuous and smooth: 

                                                      (8) 

                                         (9) 

The objective is then to design a decentralized controller 

      such that the large-scale discrete-time system (2) & (3) 
can be controlled. 

3. INTEGRAL SLIDING MODE CONTROLLER DESIGN 

In this paper, a decentralized discrete-time controller       
based on integral sliding mode control technique is proposed 
for each subsystem. As in centralized case, the sliding surface 
is designed for each subsystem followed by the switching 
controller as presented in the following: 

In order to guarantee the existence of sliding mode and 
reduce chattering effect, the following condition must be 
satisfied (Sarpturk et al., 1987): 

1.                                (10) 

2.                            (11) 

3.1 Sliding Surface Design 

In this paper, a discrete-time integral sliding surface for each 
subsystem is designed as: 

                                    (12) 

where       is iteratively computed as: 

                                         
     (13)     

with                           ,           . 

It is assumed that the control law is given as: 

                                           (14) 

where the first component,                 is the 
equivalent control portion after system achieve the quasi-
sliding mode. The gain K to be designed later. 

By taking                                     , 
the sliding surface dynamics can be obtained from (2), (12) & 
(13) as follow: 

                                  

                            

             

 

   
   

        

              
                      

                              

                        
   
   

         

                          
            (15) 

By substituting (14) into (15), the equation of sliding surface 
becomes: 

                                       
                     

   
   

        

                       (16) 
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From (12) & (16), 

                                             
               

   
   

        

                        (17) 

3.2 Controller Design 

The controller is designed according to (14) with two 
components,                     where the second 
component is given as, 

              
                         

     =1            1      +      +    
  (   )         (18) 

where, 

        

       
               

or, 

                             

with       
     

       
             

                                  

otherwise. 

       is the reaching mode control component that will 
ensure the system able to achieve a quasi-sliding mode. 

Theorem 1: Subject to Assumption 1 and sliding surface 
design of (12), the large-scale discrete-time system will 
achieve quasi-sliding mode and remain in it by having the 
control input of (14). 

Proof: The proof of the theorem is given below: 

While        , define a Lyapunov function: 

          
                              (19) 

Ensuring that J(k) is non-increasing is equivalent to ensuring 
the condition in (10) & (11) (Xi and Hesketh, 2010). 

Let, 

                                              
                

   
   

                
   
   

  

              (20) 

Substitute (18) into (17) gives, 

                                          

                                       
                

   
   

                
   
   

 

                          (21) 

Multiply both sides with      , gives:   

                    

          
                         

            

                         

              (22)   

When        , this implies that, 

                       , provided        . 

Subsequently, following the conditions stated in (5),(6) and 
(7), it can be shown that: 

                                   

When         and since        
               , (22) 

becomes: 

               

                
                  

                           
    

              

       
                        

By substituting       as defined in (20) into (21), gives 

                                
                 

Since it is defined in (18) that,       
     

       
 and       

                  , let                         
          , and it is known that 
                          according to Edwards and 

Spurgeon (1998). Then substitute                       

and                          into equation below,   

                                   

                  

                                  

                  

                

                       

                      

                                  

                     

                                  

Hence,  

                         

                            

                        

This will ensure that                   is satisfied when 
the conditions below are met, 

        
  

          
    or, 
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In the case of        , it should be noted that in order to 
ensure                        , there is another 
condition to be met, that is        . Equation (18) stated 
that                          ,             , 
therefore, in order to guarantee        , it is necessary to 
have, 

      
     

       
                              (23) 

So (23) imply that when        , the second condition to 
ensure the size of       decreasing is, 

               

Since                  and                
     , this imply that, 

              

It can be concluded that       exhibits a quasi-sliding mode 
with lower and upper bound (    and     respectively) and the 
band is 

            

            
        

 
            

       
        

   
                    

While        , 

By substituting         into (18), 

              
                         

                 
   
   

                  (24) 

Since from (12),   

                           ,  

                      
                   

                 
   
   

                  (25) 

Substitute (25) into (16) gives, 

                                       

                         
   
   

 

             
   
   

            (26) 

This concludes the proof for Theorem 1. 

3.3 Overall System Stability 

The overall system stability as the closed-loop performance 
while travelling along the sliding surface will be discussed in 
this section, that is when        . Substituting (14) and (18) 
into (2), the closed-loop dynamic is derived below: 

               

                         

                    

 

   
   

 

                            

                 
                  

        
                    

         
             

   
   

 

        
                   

   
   

         (27) 

Since                             and        
        , (27) becomes, 

                                          

                 
           

         
                  

             

 

   
   

         
                  

 

   
   

 

               (28) 

Taking into account (8) and (9) and (26), 

                              

                      

                  
   
   

 

                        
   
   

            

                   (29) 

Thus (28) becomes 

                    
                

                          
                     

          
           

              

              
 
   
   

         
                   

   
   

 

        
                   

   
   

 h 

             (30) 

Owing to the assumption that both       and       are 

bounded, it can be assumed that: 
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                        (31) 

Then the closed-loop system dynamic can be represented by, 

                    
                     

        

                         (32) 

The gain, K must be selected so that         with       

standing for the largest eigenvalue of            
     

    . 

Thus, 

  
                   

   
                

    

             

   
          

       
                

    
           

                 
       

            (33) 

Since it is necessary to have        to ensure the stability 
of the system, then  

          
   

      

        
                          (34) 

It can be seen from (33) that when the system is not affected 
by any uncertainty, that is W=0, a        is sufficient to 
ensure the system stability. When    , the larger the 
uncertainty, W, the more negative      must be to guarantee 
the stability. This is due to the nature of discrete-time system 
that       will never converge to zero but stays within a band 
about the origin. 

4. EXAMPLES AND SIMULATION RESULTS  

4.1 Example 1 

In this example, a simulation on balancing double-inverted 
pendulums connected by a spring as used in (Ou et al., 2009). 
It is composed of 2 subsystems and the dynamic equation of 
the subsystems can be written as: 

 

                                                  (35) 

                    
    

  
 

   

   
             

  ( )  +  ( )  +   2  24       1            
(36) 

                                      (37) 

where,  

       
      

      
                    

       is the angular displacements of the i-th  pendulum 
from the vertical reference. Each pendulum may be 
positioned by a torque input      applied by a servomotor  at 
its base.                    and 
                   are the torque disturbance. It is 
assumed that        and         (angular position and 
velocity) is available to the i-th controller. The end masses of 
the pendulums are                    , the moments 
of inertia are                        , the constant of 
the connecting torsional spring is k=100 N/m, the pendulum 
height is r=0.5m, the gravitational acceleration is g=9.81m/s2, 
the natural length of the spring is l=0.5m. The distance 
between the pendulum hinges is b=0.5m, and then the spring 
is relaxed when the pendulums are all in the upright position. 
So the origin                   is the equilibrium 
point of this nonlinear large-scale system. The sampling 
period is T=0.005s.  

The value of        was chosen as                  . 
The value of       was chosen as                   . In 
this case,        

 .   The value of K is obtained as    
                 

                   , which is    
                             The initial contition is 
              and                for this simulation. 

The sliding surfaces,                  are chosen to be of 
the same parameter. Example below shows the equation of 
      and       as implemented in the simulation: 

                                       

           
    

         

         
      

       
          

                                       

           
    

         

               
       

          

where, 

                           and         and  

                           and        . 

      is the control signal for the first inverted pendulum 
with the present of disturbance and interconnection from the 
second subsystem.  
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The same conditions apply to the second subsystem with the 
present of disturbabce and interconnection effect. The control 
signal,       , is given below: 

                 
 

    
                   

                              

                           

                   

The simulation has been done at a period of 2 seconds and 

the results are shown in figures 1 to 5 below: 

It is shown in Figure 1 to Figure 4 that, for both inverted 
pendulum, the system trajectories under discrete-time integral 
sliding mode control able to achieve stabilility and reached 
the desired conditions with attenuated disturbance. The 
output of subsystems 1 and 2 at steady state is shown in 
Figure 3 and Figure 4. It can be observed that the magnitude 
of disturbance has been reduced while the systems are 
controlled by VSC as compared to systems controlled solely 
by feedback control. Figure 5 shows the sliding sufaces 
signal that the quasi-slding mode has been achieved. 

 

 

 

 

 

 

 

 

 

Fig. 1. Angular displacement,         for first inverted 
pendulum under discrete-time integral sliding mode control. 

 

 

 

 

 

 

 

 

 

Fig. 2. Angular displacement,        for second inverted 
pendulum under discrete-time integral sliding mode control. 

 

 

 

 

 

.  

 

 

 

Fig. 3. Comparison of subsystem 1 output with and without 
discrete-time integral sliding mode controller input (VSC), 
      . 

 

 

 

 

 

 

 

Fig. 4. Comparison of subsystem 2 output with and without 
discrete-time integral sliding mode controller  input (VSC), 
      . 

 

 

 

 

 

 

 

 

Fig. 5. Sliding surface signal for subsystem 1 and subsystem 
2,                and               . 

4.2 Example 2 

In this example, a simulation of large-scale discrete-time 

system with three interconnectted subsystems is performed to 
illustrate the new control strategy. This example taken from 

Park and Lee (2002) and the dynamic equation of the 

subsystems can be written as: 
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0.01   ⁡( ) 3    
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where,  

       
      

      
         

      

      
  

        

The initial conditions for this simulation are: 

                                  
                

The value of        was chosen as            
              . The value of       was chosen as 

                         . In this case,     

                              .   The value of 

K is obtained as 

                    
                             , 

                    
                    

          ,and 

                    
                   

               . 

The sliding surfaces,                        are chosen to 

be of the same parameter. Example below shows the equation 

of      ,        and       as implemented in the simulation: 

                           

        

         
 
         

       
  
  

          

                           

        

         
 
         

          
       

     

     

                           

        

         
 
         

              
  

     

     

where, 

                           and        ,  

                           and        , and 

                                and        . 

      is the control signal for the first subsystem with the 

present of disturbance and interconnection from the second  

and third subsystems.  

      

          
  

                

        
 
   

 
          

         

       
    co    

          
      

       
  
     co    

      

       
    co      

            
                 

                  

The same conditions apply to the second subsystem with 

the present of disturbance and interconnection effect. The 

control signal,       and        , are given below: 
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The simulation has been done at a period of 50 seconds and 

the results are shown in figures below: 

It is shown in Figure 6 to Figure 8, the system trajectories of 

all the 3 subsystems of the discrete-time large-scale system 

under discrete-time integral sliding mode control able to 

achieve stability and reached the desired conditions with 
disturbance being rejected. A comparison has been made for 

the output of the system with only the feedback control input, 

      without the sliding mode controller input,      . It is 

clearly shown in the Figure 9 to Figure 11 that the system is 

unable to be controlled and unstable. Figure 12 has shown 

that the sliding surface signal for all 3 subsystem achieved 

quasi-sliding mode with the discrete-time integral sliding 

mode controller in place. 

 

 

 

 

 

 

 

 

Fig. 6. States respond of subsystem 1,       and        

under discrete-time integral sliding mode control. 

 

 

 

 

 

 

 

 

Fig. 7. States respond of subsystem 2,       and        
under discrete-time integral sliding mode control. 

 

 

 

.  

 

 

Fig. 8. States respond of subsystem 3,       and        

under discrete-time integral sliding mode control. 

 

 

 

 

 

 

Fig. 9. States respond of subsystem 1,       and        
under feedback control, without discrete-time integral sliding 

mode control. 

 

 

 

 

 

 

Fig. 10. States respond of subsystem 2,       and        
under feedback control, without discrete-time integral sliding 

mode control. 
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Fig. 11. States respond of subsystem 3,       and        

under feedback control, without discrete-time integral sliding 

mode control. 

 

Fig. 12. Sliding surface signal for subsystem (      , 

sigma1), subsystem 2 (     , sigma2), and subsystem 3 

(     , sigma3). 

5. CONCLUSIONS 

The control of large-scale discrete-time system with matched 
and unmatched uncertainty using discrete-time integral 
sliding mode control has been proposed in this paper. A new 
theorem has been presented and proved that it will ensure the 
system to achieve the quasi-sliding surface and remains there. 
The proposed controller showed that the effect of 
interconnection in large-scale system is being handled well 
and the system stability is ensured. It is also shown that the 
effect of matched and unmatched uncertainty in the system 
also being rejected. Two examples of large-scale systems 
have been used to evaluate the performance of the controller. 
It can be seen that the proposed controller is able to control 
the system to achieve the stability and desired value, and also 
reduce the effect of disturbance as compared to the system 
without using the integral sliding mode controller. As the 
conclusion, it can be concluded that the proposed discrete-
time integral sliding mode controller has the advantage in 
controlling large-scale discrete-time system with matched or 
unmatched uncertainties and nonlinearities as it is able to 
handle the effect of interconnection, matched and unmatched 
uncertainty very well. 
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