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Abstract: The aim of this paper is to develop a fractional-order sliding mode control (FSMC) and to 
compare its application with the conventional sliding mode control (SMC) for a class of fractional-order 
non-linear commensurable systems using particle swarm optimization (PSO) algorithm which calculates 
optimum saturation gain   and the parameter   of the sliding surface. According to the obtained results 
from the two used systems for these applications, it’s clearly shown that the stability and the robustness 
issues using FSMC are more enhanced than those obtained using SMC. This robustness is also depending 
on the nature of the chosen sliding surface.  
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1. INTRODUCTION 

Extending classical integer order calculus to non-integer 
order case leads to the so-called fractional calculus. It has a 
firm and long-standing theoretical foundation and the earliest 
systematic studies of fractional calculus were in the 19th 
century by Liouville, Riemann and Holmgren see (Oldham 
and Spanier, 1974). At present, the number of applications of 
fractional calculus rapidly grows. These mathematical 
phenomena allow us to describe and model a real object more 
accurately than the classical “integer” methods. The real 
objects are generally fractional (Nakagawa and Sorimachi, 
1992; Oustaloup, 1995; Podlubny, 1999; Westerlund, 2002). 
However, for many of them, the fractionality is very low. A 
typical example of a non-integer (fractional) order system is 
the voltage-current relation of a semi-infinite lossy 
transmission line (Wang, 1987) or diffusion of heat through a 
semi-infinite solid, where the heat flow is equal to the half-
derivative of the temperature (Podlubny, 1999). 

In motion control branch, some example applications can be 
found in (Xue and Li, 2006). The application of the theory of 
fractional calculus in sliding mode control is just beginning, 
but with more and more research efforts on this subject (Efe, 
2008 and 2011; Yahyazadeh, 2008). Fractional sliding mode 
control (FSMC) is the use of the classical sliding mode 
control with fractional systems, or the use of sliding mode 
control with a sliding surface corresponding to a fractional 
order dynamic, or both. In this paper, we have developed a 
sliding mode control with fractional-order sliding surface via 
a class of fractional-order non-linear commensurable systems 
using PSO algorithm. The objective of PSO is to determinate 
the optimum parameters of fractional-order sliding surface 
and the gain of saturation. The contribution of this paper is to 

demonstrate that the response of the fractional-order systems 
under control is significantly better for the FSMC than that 
for the conventional integer-order SMC.  

This paper is organized as follows: in section 2, the 
determination of the state representation of this class of 
fractional order systems is presented. In sections 3 and 4, the 
FSMC, the conventional SMC and the use of PSO algorithm 
are respectively discussed. In section 5, SMC and FSMC 
controllers optimized by PSO algorithm are applied to control 
fractional order non-linear commensurable systems. Finally, 
concluding remarks are drawn in section 6. 

2. FRACTIONAL-ORDER SYSTEMS 

Fractional-order calculus has been known since the 
development of the integer-order calculus, but for a long 
time, it has been considered as a sole mathematical problem. 
It is an area of mathematics that deals with derivatives and 
integrals from non-integer orders. In other words, it is a 
generalization of the traditional calculus that leads to similar 
concepts and tools, but with a much wider applicability. In 
recent decades, fractional calculus has become an interesting 
topic among system analysis and control fields and has also 
applied in an increasing number of other fields. The success 
of fractional-order controllers is unquestionable with a lot of 
success due to emerging of effective methods in 
differentiation and integration of non-integer order equations 
(Sabatier and Farges, 2012). 

2.1 Fractional order calculus 

The Fractional-order continuous integro-differential 
fundamental operators defined as (Petras, 2011): 
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   =       ,  ( ) > 01           ,  ( ) = 0∫ (  )     ,  ( ) < 0                                             (1) 

where   and   are the limits of the operation,   is the order of 
the operation which can be a complex number and Re(α) its  
real part. Generally   ∈   (  ( ) =  ). In this paper, we 
focus on the case where the fractional order is a real number. 

There are several definitions of fractional derivatives. The 
most frequently used are: the Grunwald-Letnikov (GL), the 
Riemann-Liouville (RL) and the Caputo definitions (Miller 
and Ross, 1993). An elementary definition of the fractional 
derivative of a continuous function  ( ) can be formalized as 
follows (Podlubny, 1999).     ( ) =     →    ∑ (−1)      ( −  . ℎ)                     (2)  
where  =       , where [⋅] means the integer part, ℎ is the 
time incremented and the coefficients      are given by:      =  (   ) (   ) (     )                                                            (3) 

and the Euler’s gamma function ( ) defined for positive real   is a generalized integral, given by:   ( ) = ∫                                                                       (4) 

It is also possible to generalize several results based on 
transforms; yielding expressions such as the Fourier 
transform expression: 

      ( ) = (  ).  ( )  with     ( ) = ∫  ( )               (5) 

For a wide class of functions which appear in real physical 
and engineering applications, these definitions are equivalent. 
The derivation operation is a multiplication by (  ) and the 
derivation to the order n is a multiplication by (  ) . It is 
then natural to try to define the derivation of order α by a 
multiplication by (  )  in Fourier transform. For causal 
function, one can also use the Laplace transform in the same 
manner as Fourier (deriving order   corresponds to a 
multiplication by   , where    is a Laplace operator). There 
are several methods for the approximation fractional order 
operators to rational functions. The most approximation used 
is that of Oustaloup.  

The Oustaloup’s approximation model of a fractional order 
differentiator    ( ∈   ) can be written as:   ( ) =  .∏                                                                           (6) 

where the poles, zeros and gain are evaluated from:    =   .  (      )/  ,   =   .  (      )/ ,  =          (7)    is the unity frequencies gain and the central frequency of 
a band of frequencies distributed geometrically. Let   =   .   , where    and    are respectively the upper and 
the lower frequencies.   is the order of derivative and   is the 
order of the approximating function (Bensafia and Ladaci, 
2011). 

Distinctly, the fractional-order operator has more degrees of 
freedom than that with integer order. It is likely that a better 
performance can be obtained with the proper choice of order. 
The long-standing discussion about the pros and cons of the 
different definitions are outside the scope of this paper. In 
short, while the Riemann-Liouville definition involves an 
initialization of fractional order, the Caputo counterpart 
requires integer order initial conditions which are easier to 
apply (often the Caputo initial conditions are called freely as 
‘with physical meaning’). So the Grünwald-Letnikov 
formulation is frequently adopted in numerical algorithms 
and control systems because it inspires a discrete-time 
calculation algorithm, based on the approximation of the time 
increment through the sampling period. 

2.2 Fractional-order non-linear commensurate systems 

The fractional-order linear time-invariant (LTI) system can 
also be represented by the following state-space model 
(Matignon, 1998):    ( ) ( ) =   ( ) +   ( ) ( ) =   ( )                                                  (8) 

where  ∈   ,  ∈   and  ∈    are state, input and output 
vectors of the system and  ∈   × ,  ∈   × , ∈   ×  
and  = [  ,  , … . .   ]  are the fractional orders.  

If   =   = ⋯ =   =  , system (8) is called a 
commensurate-order system, otherwise it is an 
incommensurate-order system. 

The fractional-order non-linear system can be taking the 
flowing fractional order state space system:    (  )( ) =     ( );  = 1,2, … ,  − 1.  (  )( ) =  ( ) +  ( ) ( )                                  (9) 

 where 0 <   ≤ 1 are the fractional differentiation orders,  ( ) and  ( ) are nonlinear continuous functions of the state 
variables (Jianqing and Zibin, 2009). 

 If  1= 2=⋯=  = , this form of systems is known fractional 
order non-linear commensurate systems. These systems are 
controlled and stabilized in this work, by the conventional 
SMC and the proposed FSMC controllers both optimized by 
PSO algorithm. 

3. FRACTIONAL ORDER SLIDING MODE CONTROL 
(FSMC) 

Sliding mode control is an important and a widely studied 
robust scheme that has a switching nature. The state of the 
process under this type of control is guided towards a 
predefined attracting subspace of the state space such that the 
trajectories on it display a desired behaviour. The phase 
lasting until the hitting of a trajectory to the switching 
subspace is called reaching phase, while the motion thereafter 
is called sliding mode. The latter phase exhibits certain 
degrees of robustness against disturbances and variations in 
the process parameters and this result is called the invariance 
property. So, for a class of systems, sliding mode controller 
design provides a systematic approach to the problem of 
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maintaining stability and consistent performance in the face 
of modelling imprecision. On the other hand, by allowing the 
trade offs between modelling and performance to be 
quantified in a simple fashion, it can illuminate the whole 
design process (Efe, 2011). 

The purpose of the switching control law is to drive the non-
linear system’s state trajectory onto a pre-specified (user-
chosen) surface in the state space and to maintain the 
system’s state trajectory on this surface for subsequent time. 
The surface is called a switching surface. When the system 
state trajectory is “above” the surface, a feedback path has 
one gain and a different gain if the trajectory drops “below” 
the surface. This surface defines the rule for proper 
switching. This surface is also called a sliding surface 
(sliding manifold). Ideally, once intercepted, the switched 
control maintains the system’s state trajectory on the surface 
for all subsequent time and the system’s state trajectory slides 
along this surface. The most important task is to design a 
switched control that will drive the system state to the 
switching surface and maintain it on the surface upon 
interception. A Lyapunov stability approach is used to 
characterize this task (Mahieddine and Chrifi-Alaoui, 2008).  

In this work, this control scheme type is adapted to fractional 
order case; we will modify the sliding surface design for a 
fractional order control for a class of systems with the same 
nature. i.e., we need to design a fractional order sliding mode 
controller (FSMC) for fractional order systems from a new 
form of the sliding surface which contains fractional order 
derivatives. Let a fractional-order commensurable non-linear 
system be defined as:    ( )( ) =     ( );  = 1,2, … ,  − 1  ( )( ) =  ( ) +  ( ) ( )  ; 0 <  ≤ 1            (10) 

where   is the order of derivation ( ( ) =  ( ) ( )  ( ) =  ( )( )).  
The design procedure for a FSMC can be divided into two 
steps:  
- Step.1: Finding the sliding surface. 
- Step.2: Designing a controller  ( ).  

3.1 Sliding surface  

Consider a given reference trajectory  ( ) and define the 
state tracking errors   =   −     with    =  ( )(   ) and   = ∑         ;  =2, 3,…,  . It should be noted that, 
according to (10),   = ∑         = ∑  =      ( − 1)   ;   =2, 3,4,5…,  . We choose a sliding surface (11) such that 
the dynamics described by  =0 is stable:  ( ) =   +∑            ;    ≥ 0                                        (11) 

Now differentiate S at order  , this yields: 

 ( )( ) =   ( ) +      ( ) =  ( ) +  ( ) ( )   
   −    ( )                                                             +∑     ( )                     (12)      

 
3.2 Designing a FSMC controller  

Equating  ( )( ) to – .    ( ) and solving the control signal 
would let us have:  ( ) =   ( )  − ( ) +    ( ) −∑     ( ) −       .    ( )                            
            (13) 

Indeed, the application of this signal forces the reaching 
dynamics  ( ) = –   .    ( ), which enforces  ̇. ( ) = − | | <0,   ≠  0. In conventional sense, one can have the following 
equalities to see the closed loop stability, see (Vinagre and 
Calderon, 2006):  ( ) = –   .    ( )                                                              (14) 

Integrating both sides by order α yields (15), and 
differentiating once at order unity gives:  = –   . ( (  )   ( ))                                                      (15) 

            ⇒  ̇ = –   . ( (   )   ( ))                                  (16) 

            ⇒ –    .  ̇ =  ( (   )   ( ))                                  (17) 

It implies:  

             (–    .  ̇)  =     ( (   )   ( ))                       (18) 

According to (Vinagre and Calderon, 2006),     ( (   )   ( )) =    ( ); equation (18) yields:    (–    .  ̇)  = s  ( )                                                          (19) 

with:     ( ) =  1        S > 0−1      < 00         = 0                                          (20) 

and:     –    .  ̇ = ⎩⎪⎨
⎪⎧1       –    .  ̇ > 0−1     –    .  ̇ < 00        –    .  ̇ = 0                            (21) 

Case 1: 

if:        –    .  ̇ = s  ( ) = 1⇒ –    .  ̇ . >0 

                                      ⇒ ̇. < − ⇒ ̇. < 0; ( > 0 )              (22) 

Case 2:  

if:        –    .  ̇ = s  ( ) = −1⇒ –    .  ̇ . >0⇒ ̇. <−  

                                            ⇒   ̇. < 0 ; ( > 0)                   (23) 

Case 3:  

if :        –    .  ̇ = s  ( ) = 0⇒ –    .  ̇ .  = 0⇒ ̇. =0 

                                            ⇒   ̇. =0                                 (24) 

And this proves that the chosen form of the control signal 
causes     . S ≤ 0 ̇  which verifies the sliding condition. 
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4. PARTICLE SWARM OPTIMIZATION (PSO) 
ALGORITHM 

Initially, the PSO algorithm chooses candidate solutions 
randomly within the search space. Figure 1 shows the initial 
state of a four-particle PSO algorithm seeking the global 
maximum in a one-dimensional search space. The search 
space is composed of all the possible solutions along the x-
axis; the curve denotes the objective function. It should be 
noted that the PSO algorithm has no knowledge of the 
underlying objective function and thus has no way of 
knowing if any of the candidate solutions are near to or far 
away from a local or global maximum. The PSO algorithm 
simply uses the objective function to evaluate its candidate 
solutions and operates upon the resultant fitness values. 

 
Fig. 1. Initial PSO State. 

Each particle maintains its position, composed of the 
candidate solution, its evaluated fitness and its velocity. 
Additionally, it remembers the best fitness value it has 
achieved thus far during the operation of the algorithm, 
referred to as the individual best fitness and the candidate 
solution that achieved this fitness, referred to as the 
individual best position or individual best candidate solution. 

Finally, the PSO algorithm maintains the best fitness value 
achieved among all particles in the swarm, called the global 
best fitness and the candidate solution that achieved this 
fitness, called the global best position or global best 
candidate solution. 

The PSO algorithm consists of just three steps, 

which are repeated until some stopping condition 

is met (Frans, 2001): 
1. Evaluate the fitness of each particle; 
2. update individual and global best fitnesses and positions;  
3. update velocity and position of each particle. 

The first two steps are fairly trivial. Fitness evaluation is 
conducted by supplying the candidate solution to the 
objective function. Individual and global best fitnesses and 
positions are updated by comparing the newly evaluated 
fitnesses against the previous individual and global best 
fitnesses, and replacing the best fitnesses and positions as 
necessary. The velocity and position update step is 
responsible for the optimization ability of the PSO algorithm. 
The velocity of each particle in the swarm is updated using 
the following equation: 

  ( + 1) =  .   ( ) +   .   .        ( )−   ( )  +                            .   . [     ( )−   ( )]                              (25) 

The index of the particle is represented by i. Thus,   ( ) is 
the velocity of particle   at time   and   ( ) is the position of 
particle   at time  . The parameters  ,    and    (0 ≤  ≤1.2, 0 ≤   ≤ 2 and 0 ≤   ≤ 2) are user-supplied 
coefficients. The values    and    (0 ≤   ≤ 1 and 0 ≤   ≤1) are random values regenerated for each velocity update. 
The value       ( ) is the individual best candidate solution 
for particle   at time  , and      ( ) is the swarm’s global 
best candidate solution at time  .  
Each of the three terms of the velocity update equation has 
different roles in the PSO algorithm:  
The first term  .  ( ) is the inertia component, responsible 
for keeping the particle moving in the same direction it was 
originally heading. The value of the inertial coefficient w is 
typically between 0.8 and 1.2, which can either dampen the 
particle’s inertia or accelerate the particle in its original 
direction (Yuhui and Russell, 1998). Generally, lower values 
of the inertial coefficient speed up the convergence of the 
swarm to optima, and higher values of the inertial coefficient 
encourage exploration of the entire search space. 

The second term   .   .        ( )−   ( ) , called the 
cognitive component, acts as the particle’s memory, causing 
it to tend to return to the regions of the search space in which 
it has experienced high individual fitness. The cognitive 
coefficient c  is usually close to 2, and affects the size of the 
step the particle takes toward its individual best candidate 
solution       . 
The third term   .   . [     ( )−   ( )], called the social 
component, causes the particle to move to the best region the 
swarm has found so far. The social coefficient    is typically 
close to 2, and represents the sizeof the step the particle takes 
toward the global best candidate solution      ( ) the swarm 
has found up until that point. 

The random values    in the cognitive component and    in 
the social component cause these components to have a 
stochastic influence on the velocity update. This stochastic 
nature causes each particle to move in a semi-random manner 
heavily influenced in the directions of the individual best 
solution of the particle and global best solution of the swarm. 
In order to keep the particles from moving too far beyond the 
search space, we use a technique called velocity clamping to 
limit the maximum velocity of each particle (Frans, 2001). 
For a search space bounded by the range [−    ,     ], 
velocity clamping limits the velocity to the range [−    ,     ], where     =  ×     . The value   
represents a user-supplied velocity clamping factor, 0.1 ≤ ≤ 1. In many optimization tasks, such as the ones 
discussed in the paper, the search space is not centered 
around 0 and thus the range [−    ,     ] is not an 
adequate definition of the search space. In such a case where 
the search space is bounded by [    ,     ], we define     =  × (    −     )/2. 
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Once the velocity for each particle is calculated, each 
particle’s position is updated by applying the new velocity to 
the particle’s previous position:   ( + 1) =   ( ) +   ( + 1)                                          (26) 

This process is repeated until some stopping condition is met. 
Some common stopping conditions include: a preset number 
of iterations of the PSO algorithm, a number of iterations 
since the last update of the global best candidate solution, or 
a predefined target fitness value. Figure 2 shows the basic 
PSO algorithm: 

 
Fig. 2. Pseudo code of basic PSO algorithm (Rama and 
Sivasubramanian, 2008). 

At the end of the iterations, the best position of the swarm 
will be the solution of the problem. It is not possible to get an 
optimum result of the problem always, but the obtained 
solution will be an optimal one. It cannot be able to an 
optimum result of the problem, but certainly it will be an 
optimal one. The convergence of the PSO algorithm toward 
the global optimal solution is guided by an objective 
function. In this work, it is defined by the following formula:  ( ) = ∑ |  ( )| + | ( )|                                                  (27)   is the number of sample,   is the iteration number,   is the 
state tracking error and   is the control signal.  

5. SIMULATION RESULTS 

We will try to control and stabilize two fractional order non-
linear commensurable dynamic systems with SMC and 
FSMC controllers optimized by the PSO algorithm. The first 
system is characterized by a second order non-linear 
fractional system and the second system is a fractional Van 
der Pol oscillator (FVPO). The population size is set to 15 
particles; each particle    has 2 elements. We set [0, 52] the 
range of target parameters of SMC and FSMC controllers. 

The simulation is carried out using the “Matlab/Simulink” 
tools within 0.009 sample time. The parameters   and   of 
FSMC and SMC will be calculated by using the 
approximations of Oustaloup to stabilize the system with 
approximation order  = 5 in a waveband [10  , 10 ]rad/s . 

Ø Application to a second order non-linear fractional 
system  

This fractional order dynamic system is given by the 
following fractional order non-linear differential equations:      ( . ) =     ( . ) = −   +   +                                                     (28) 

In this simulation, both optimized controllers are tested for 
two control objectives, namely: 

• regulation problem, i.e. for a reference signal  ( ) = 01, and ;  
• tracking problem, i.e. for a reference signal  ( ) =   ( ).   

A. Designing of SMC 

The choice of a sliding surface is given by:  
  ( ) =  ̇ + .    with    =   −    and    =  ( )        (29) 
             ⇒ ( . ) =   ( . ) +  .   ( . )                            =  ̇ −    ( . ) +  .   ( . )                           (30)  
with:     ( . ) =   ( . ) −    ( . )                       =    −    ( . )                                                (31)                         ⇒   ( . ) =  ̇ −    ( . )                                     (32)  
Equating (30) to zero, we obtained:   ̇ −    ( . ) +  .   ( . ) = 0                                               (33)                    ⇒ ̇ =    ( . ) −  .   ( . )                                  (34)                    ⇒ (  . )( ̇ ) =  (  . )(   ( . ) −  .   ( . ))     (35)                    ⇒  ( . ) =    ( . ) −  .   (  . )                           (36) 

From (28), equation (36) yields: −   +   +    =    ( . ) −  .   (  . )                               (37) 

The equivalent control signal designed is:    ( ) =  13− 22 +   1 (0.6) −  .   (−0.4)                                (38) 

The global control signal designed is:  ( ) =    −   +    ( . ) −  .   (  . ) −  .    ( )          (39) 

In order to reduce the chattering phenomenon in sliding mode 
control, it is possible to change the function    ( ) by a 
saturation function    ( ) to replace the discontinuity in the 
sgn function, the control signal will be:  ( ) =    −   +    ( . ) −  .   (  . ) −  .    ( )           (40) 

B. Designing of FSMC 

The sliding surface is given by:   ( ) =   + .   =   ( . )+ .   ;   =   −    ;    =  ( . )     
                                                                                            (41)  
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and the control signal FSMC obtained is:  ( ) =    −   +    ( . ) −  .   ( . ) −  .    ( )            (42)   and   parameters obtained after optimization for both 
controllers are given in Table.1. 

Table 1.  λ  and k parameters of SMC and FSMC 
controllers obtained after optimization. 

  ( ) = 1  ( ) = sin( ) 
λ k   k 

SMC 2.2419    10.0000    9.9959     8.6824    
FSMC 3.6381      6.4864    4.7288    5.0450    

The optimal SMC-PSO and FSMC-PSO controller responses, 
control signals and fitness functions for both references cases 
are given in Figures (3-10). 

 

 

 
 
 
 
 
 

 
 
 
 

 
 
Fig. 3.  Objective function value F during the optimization 
process with SMC for  ( ) = 1. 
 
 
 
 
                                                                                                              
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 4.  Objective function value F during the optimization  
process with SMC for   ( ) = sin( ). 

 
Fig. 5.  Objective function value F during the optimization 
process with FSMC for  ( ) = 1. 

 
Fig. 6.  Objective function value F during the optimization  
Process with FSMC for  ( ) = sin( ) 

 
Fig. 7.  Step responses of system with SMC and FSMC 
Controllers. 
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Fig. 8.  Control signals of SMC and FSMC controllers with  ( ) = 1 

 
Fig. 9.  Harmonium responses of system with SMC and 
FSMC controllers. 

 
Fig. 10. Control signals of SMC and FSMC controllers with  ( ) =    ( ). 

From those simulation results, we can easily see the 
superiority of the FSMC-PSO controller to the SMC-PSO 
controller. 

Ø Fractional Van der Pol oscillator (FVPO) 

The Van der Pol oscillator (VPO) represents a nonlinear 
system with an interesting behavior that exhibits naturally in 
several applications. It has been used for study and design of 
many models including biological phenomena, such as the 
heart beat, neurons, acoustic models, radiation of mobile 
phones, and as a model of electrical oscillators (implemented 
with a tunnel diode, memristor or operating amplifier). 

The VPO model was used by Van der Pol in 1920 to study 
oscillations in vacuum tube circuits. In the standard form, it is 
given by a nonlinear differential equation of type:   ̈( ) +  ( ( ) − 1) ̇( ) +  ( ) = 0                                (43) 

Equation (43) can be rewritten into its state-space 
representation as follows:    ̇ =     ̇ = − (   − 1)  −      with        =  ( )  =  ̇( )                 (44) 

Let us consider the modified version of the VPO in the 
fractional order form:     ( ) =                         ( ) = − (   − 1)  −      ; with 0 <  < 1                (45) 

We inject the signal control  ( ) in the system (45) to 
stabilize the FVPO. It can write it in the following form:    ( ) =                         ( ) = − (   − 1)  −   +  .                                     (46) 

We consider  = 0.9,  = 1,  = 7, initial conditions 
[  (0) = 0.6;   (0) = 0] and the choice of a sliding surfaces 
is given by:  

- For SMC:  ( ) =  ̇ + .    with:   =   −    and     =  ( ) 
- For FSMC:  ( ) =   + .   =   ( . )+ .   ;   =   −   ;    =  ( )( . ) 

We applied the same steps as in the last application, we find 
the following results. 

The control signal SMC is given by:  ( ) =   .  (   − 1)  +   +   ( . ) −  .   ( . ) −  .    ( )   
                                                                                            (47) 
and the control signal FSMC obtained is:  ( ) =   .  (   − 1)  +   +   ( . ) −  .   ( . ) −  .    ( )                             
                                                                                            (48)   and   parameters obtained after optimization for both 
controllers are given in Table.2. 

Table 2.  λ  and k parameters of SMC and FSMC 
controllers obtained after optimization. 

  ( ) = 1  ( ) = sin( ) 

λ k   k 
SMC 9.0000 2.2683                           9.0000 3.4412     

FSMC 5.0167 4.1086      8.8758 2.1570    
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The optimal SMC-PSO and FSMC-PSO controllers 
responses, control signals and fitness functions for both 
references cases are given in Figures (11-19).  

 
Fig. 11.  Objective function value F during the optimization 
process of FVPO with SMC for  ( ) = 1. 

 
Fig. 12.  Objective function value F during the optimization 
process of FVPO with SMC for  ( ) = sin( ). 

 
Fig. 13.  Objective function value F during the optimization 
process of FVPO with FSMC for  ( ) = 1. 

 
Fig. 14.  Objective function value F during the optimization 
process of FVPO with FSMC for  ( ) =    ( ).  

 
Fig. 15.  Step responses of FVPO with SMC and FSMC 
controllers. 

 
Fig. 16.  Control signals of SMC and FSMC controllers with  ( ) = 1. 
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Fig. 17.  Harmonium responses of FVPO with SMC and 
FSMC controllers. 

 
Fig. 18.  Zoom of harmonium responses of FVPO with SMC 
and FSMC controllers. 

 
Fig. 19.  Control signals of SMC and FSMC controllers with  ( ) =    ( ) (zoom) 

We can see that the FSMC-PSO controllers stabilize the 
FVPO and ensure the best rapidity by comparing them with 
those of an integer order SMC-PSO controllers. 

 

 

6. CONCLUSION 

In this paper a design of SMC and FSMC controllers for 
controlling a class of fractional order nonlinear systems is 
investigated. A comparison between SMC and FSMC in two 
application examples based on the optimization of the two 
parameters   and   by PSO algorithm is made. The 
simulation results show clearly that the stability and the 
robustness issues using FSMC are more enhanced than those 
obtained using SMC (a better speed and a very little error). 
This robustness is also depending on the nature of the chosen 
sliding surface. We can also conclude that the choice of a 
sliding surface should be the same nature with the systems to 
be controlled, i.e., to design a fractional order sliding mode 
control for stabilizing this form of fractional order systems, it 
must select a fractional order sliding surface also contains 
same derivatives (or integrals) orders of the plants to be 
stabilised. 
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