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Abstract: This paper concerns the design of a new active fault tolerant control framework for a class of 
switched linear systems subject to sensor faults and unknown bounded disturbances. The framework 
herein proposed ensures the fault tolerance capabilities by means of the interaction between three main 
blocks called generalized switched observer scheme, pre-designed multiple controllers and 
reconfiguration block. The fault detection and isolation problem has been solved by minimization of the 
H -norm and maximization of the H index. Then, a suitable trade-off between the robustness to 

disturbances and the sensitivity to sensor faults has been obtained. The main results are reformulated by 
using linear matrix inequality formulation. An example is included to illustrate the design procedure. 
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1. INTRODUCTION 

Nowadays, Switched Systems (SS) begin to find place 
everywhere in our life. They are widely used in control, 
communication network and biology engineering (Balluchi et 
al., 2000; Belkhiat et al., 2011; Jabri et al., 2012). Generally, 
a SS is a two-level Hybrid Dynamic Systems (HDS). The 
lower level is governed by a set of modes described by 
differential and/or difference equations, whereas the upper 
level is a coordinator that orchestrates the switching among 
the modes. The system clearly admits continuous states and 
discrete states which take values respectively from a vector 
space and from a discrete index set. The interaction between 
the continuous and discrete states makes, that the switched 
systems are widely representatives, see (Corona et al., 2014; 
Zhang et al., 2014). 

Furthermore, the complex technological systems including 
the switched systems are often vulnerable to unpredictable 
events (faults) which can cause unwanted behaviours, and as 
a consequence, damage to technical parts of the plant, to 
personnel or to the environment. For these reasons, the Fault-
Tolerant Control (FTC) is continuing to receive growing 
interest, see (Yang et al., 2000; Noura et al., 2000; 
Staroswiecki, 2005). The main objective of the FTC system 
is to prevent faults from being developed into serious 
failures, and therefore increases the availability and reliability 
of the system and reduces the risk of loss. Generally, FTC 
systems are divided into two classes: passive and active. 
Passive FTC systems are based on robust controller design 
techniques and aim at synthesizing one (robust) controller 
which makes the closed-loop system insensitive to certain 
faults. This approach does not require online fault detection. 
Hence, it is computationally more attractive. Quite the 

reverse, the active approach is based on controller redesign or 
selection/mixing of predesigned controllers. This technique 
usually requires a Fault Detection and Diagnosis (FDD) 
scheme which has the task to detect and localize the faults 
that eventually occur in the system. A look at the literature 
shows that various approaches for FTC have been suggested 
(Wen et al., 2008; Park and Cho, 2009; Yang et al., 2010; 
Nke and Lunze, 2010). 

However, only a few results were devoted to FTC for SS. 
Then, the authors in (Rodrigues et al., 2006) have developed 
a FTC strategy for a class of discrete-time Switched Linear 
Systems (SLS) in order to preserve closed-loop stability in 
spite of multiple actuator failures. In the same context, 
another approach based on switched observer has been 
proposed in (Yang et al., 2007). This one deals with fault 
accommodation problem for a class of SLS with both 
continuous and discrete faults, and without full state 
measurements. Moreover, a safe-parking and safe-switching 
framework to handle actuator faults for a class of switched 
nonlinear systems, subject to input constraints, has been 
considered in (Du and Mhaskar, 2011). In the same way and 
for the case of the SLS, a new synthesis approach allowing to 
ensure a fault tolerant capability has been proposed in (Gao 
and Zhang, 2011). By means of Linear Matrix Inequality 
(LMI) techniques, a stabilizing state feedback controller and 
a class of switching signals are designed, so as to guarantee 
the finite-time stability of the SLS. Recently, a non-fragile 

2H  reliable control problem for SLS with actuator faults and 

circular disk pole constraints has been investigated in (Hu et 
al., 2013). The state feedback and the switching law were 
designed in terms of LMI to guarantee that the closed-loop 

2H  performance is less than a specified scalar and all closed-

loop poles are located in a specified circular disk. 
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Furthermore, other authors (Jin et al., 2013) developed a 
robust FTC method for a class of uncertain switched systems 
with strong structural uncertainties. The proposed controller 
can stabilize the switched systems containing strong 
uncertainties with actuator faults.  

Based on the statement above, we can remark that there is 
still much room for new synthesis approaches such that 
concerning the sensor faults affecting the SLS. In fact, the 
impact of sensor failure can vary considerably with the 
application domain. It can range from a nuisance (e.g. when 
the set point of an air conditioner is not properly read) to 
equipment damage (e.g., when sensors on an assembly line 
are malfunctioning) or even to loss of life (Sensor failures in 
the aircraft domain). Thus, to our knowledge, the FTC for 
switched linear systems with sensor faults has not been fully 
investigated, which motivates the present study.  

Hence, the aim of this work consists in the proposition of 
new active-FTC framework for a class of Multiple-Input 
Multiple-Output (MIMO) SLS with sensor faults, unknown 
bounded disturbances, and without full state measurements. 
The proposed FTC framework is designed around an 
observer-based state-feedback strategy to guarantee the 
stability of MIMO SLS and to maintain the nominal 
performance of the system when sensor fault occurs. The 
primary contribution of this paper can be stated within the 
following points: 

 Taking account the advantage of separation principle 
between estimation and control, the proposed synthesis 
approach is based on the separation of both state-
feedback control and observer designs. 

 The state-feedback control is designed such that the SLS 
has a robust H  performance.   

 For the purpose of Fault Detection and Isolation (FDI), 
we develop a Generalized Switched Observer Scheme 
(GSOS). The FDI problem is solved by minimizing H -

norm and  maximizing H index, allowing a suitable 

trade-off between the robustness to disturbances and the 
sensitivity to sensor faults. 

 The main results of this work are formulated in terms of 
LMI conditions. 

The paper is organized as follows: section 2 presents the 
considered class of MIMO SLS. Section 3 gives an overview 
about the proposed FTC framework. Section 4 details the 
design of the observer-based state-feedback control. Finally, 
some numerical results illustrating the efficiency of the 
approach are given in section 5. 

2. SYSTEM DESCRIPTION 

We consider in this paper a class of MIMO SLS affected by 
sensor faults and unknown bounded disturbances. The SLS 
considered is composed of N  linear continuous-time 
subsystems. Each linear subsystem is defined as follows: 

       
       

qq q d

d

x t A x t B u t B d t

y t Cx t D d t f t

  


  


  (1) 

with   nx t   is the state vector (unmeasurable),   mu t   

is the control input vector,   py t   is the measurement 

(output) vector and   md t   is the 2L -norm bounded 

external disturbances.   pf t   represents the 2L -norm 

bounded sensor fault to be detected and isolated. qA , qB , 

qdB , C , dD  are known matrices with appropriate 

dimensions, 1, 2, ,q Q N    is the index indicating the 

active mode at instant t . q  is known at any time.  

Note that the matrices C  and dD  can be written as: 

1

TT T
pC C C    , 

1 p

T
T T

d d dD D D    , where iC  and 

di
D , for 1, 2, ,i p   , are respectively the i th row of 

matrices C  and dD . 

Moreover, we define the following variables   1p
iy t  , 

  1p
if t  , 1p n

iC   and 1

i

p m
dD    such as: 

for 1, 2, ,i p   , 

          1 1 1

TT T T T
i i i py t y t y t y t y t      , 

         1 1

TT T T T
i i i i pf t f t f t f t f t      ,  

1 1 1

TT T T T
i i i pC C C C C      ,  

1 1 1i i i p

T
T T T T

d d d d dD D D D D
 

     . 

Without loss of generality, we assume that there are only a 
finite number of mode changes in finite time, all the couples 

 ,q iA C  are observable and all the couples  ,q qA B  are 

controllable. Furthermore, we consider only the single-sensor 
fault.  

Notations: In the sequel, when there is no ambiguity, the 
time t  in a time varying variable will be omitted for space 
convenience. As usual, TX  and 1X   are the transpose and 
the inverse of matrix X , respectively. The star symbol    

in a symmetric matrix denotes the transposed block in the 
symmetric position. Moreover, .n pI  represents the identity 

matrix of dimension n p . 

The 2L -norm is defined as      
2

0

Tx t x t x t dt


  . 

3. FTC FRAMEWORK 

In this section, we give an overview about the proposed FTC 
framework for a class of SLS subject to sensor faults. The 
whole structure of the proposed method is shown in figure 1. 
It is based on the interaction between three main blocks 
called GSOS, pre-designed multiple controllers (PMC) and 
reconfiguration block (RB). 
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Fig. 1. FTC framework. 

3.1  GSOS Block 

The GSOS block, illustrated in figure 2, is composed of p  

Switched Robust observers (SR). They receive the system’s 
inputs  u t  and outputs  y t . Their task are to generate a 

set of p  state estimation vectors       1 , , pX t x t x t  , 

and a set of p  residual signal       1 , , pR t r t r t  . 

 
Fig. 2. Structure of GSOS block. 

The working principle of the GSOS is quite simple. Assume 
that there exist p  faults to be isolated. The fault isolation 

using the GSOS consists in the design of a bank of residual 
generator (SR observer) that fulfils the relation: 

 

 

    

    

1 11
,

,p p p

Q u t y tr t

r t Q u t y t

  
      
      

    (2) 

where      ,i iQ u t y t , for  1, ,i p  , stands for a function 

of inputs  u t  and the i th  vector  iy t . Then, an unique 

fault isolation is performed in accordance with the following 
logic: 

If all   0ir t   except  1r t   then  1 0f t  . 

  

If all   0ir t   except  
fkr t  then   0

fkf t  . 

This logic is resumed in a binary table, named theoretical 
signatures table. To design this table, when the i th residual 
must be sensible (respectively robust) to the j th fault 

apparition, the binary value 1 (respectively 0) in the line and 
the column correspond to the theoretical signatures table.  

The theoretical signatures table associated to the proposed 
GSOS structure is given in the following table: 

Table 1. Theoretical signature table corresponding to the 
sensor faults localization. 

 1f  2f 3f    pf

1r
 0  1  1  1  1  1  

2r
 1  0  1  1  1  1  

  

1  
1  
  
1  

1  
1  
  
1  

0  
1  
  
1  

1  1    1  
0 1    1  

         
1  1  0  

1  
1  
  
1

pr 1  1  1  1 1  0  
 

We note by if  the i th sensor fault affecting the component 

of the vector output y . For example, the theoretical fault 

signature 1f  is equal to    
1 1 2

, , , 0,1, ,1
pf r r r      . 

Thus, for the case of the considered class of MIMO SLS, the 
i th  SR observer can be defined as: 

          
     

ˆ ˆ ˆ

ˆ

i
i q i q q i i i

i i i i

x t A x t B u t L y t C x t

r t y t C x t

    


 


   (3) 

with ˆ n
ix  , for 1, 2, ,i p   , is the state estimation 

vector delivered by the i th SR observer.    1p
ir t   is the 

residual signal delivered by the i th SR observer. 1i n p
qL    

is a gain matrix. 

In normal operation (without fault), the GSOS allows to have 
a redundancy of p  state estimation vector that are correct. 

Hence, we have p  residual that converge to zero. However, 

when one among the sensors is out of order, only one state 
estimation vector is correct (instead of p  state estimation 

vector). 

Remind that the estimation error and the residual signal are 
respectively defined as: For 1, 2, ,i p    

     ˆi ie t x t x t   and      ˆ
i i ir t y t y t   

Then, we can develop that: 

           
       

q i

i

i i i
i q q i i d q d q i

i i i d i

e t A L C e t B L D d t L f t

r t C e t D d t f t

     


  


   (4) 

The design of GSOS, which is one of the main objectives of 
this work, can be considered as a problem of deriving 
matrices i

qL  (for i , q Q )  such that the matrices 

 i
q q iA L C  are asymptotically stable. Moreover, a trade-off 

between the sensitivity to the sensor-faults and the robustness 
to the disturbances should be obtained. In other words, the 
objective can be resumed as follows: 

SLS
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ith SR

pth SR 
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py    

  
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






 
ˆix  

1̂x  
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Problem 1.  The objective is to determine the observer gains 
i
qL  (for i , q Q ) , such that the generalized switched 

observer scheme is called /H H   fault detection observer. 

Definition 1: Given the MIMO switched linear systems (1), 
positive scalars 0i   and 0i   (for i , q Q ). The 

generalized switched observer scheme (3) is called /H H   

fault detection observer if the following conditions are 
satisfied: 

Residual’s convergence. For i , q Q , with zero 

disturbance input condition   0d t  , with zero fault input 

condition   0if t  , the residual signal  ir t  and the 

estimation error  ie t  are asymptotically convergent. 

Residual’s robustness. With zero fault input condition 

  0if t  , for all non zero disturbance input   2d t L -norm, 

under the zero-initial condition  0 0ie t  , it holds that: 

       2

0 0

T T
i i ir t r t dt d t d t dt

 

    (5) 

Residual’s sensitivity. With zero disturbance input condition 

  0d t  , for all non zero fault input   2if t L -norm, under 

the zero-initial condition  0 0ie t  , it holds that: 

       2

0 0

T T
i i i i ir t r t dt f t f t dt

 

    (6) 

3.2  PMC Block 

Regarding the PMC block, its role is to select the appropriate 
control vector    ˆq iu t K x t   for each mode of SLS. This 

block consists in three modules: two activation mechanisms 
(Control Law activation mechanism (CL), State Vector 
activation mechanism (SV)) and a bank of pre-designed 
multiple controllers. The structure of the PMC block is 
shown in figure 3. The SV activation mechanism aims to 
establish the estimated-state feedback by choosing a state 
estimation vector from the p  state estimation vector 

provided by the GSOS block. This selection is ordered by the 
selection signal co . In the same way, the role of the CL 
activation mechanism consists in activating the appropriate 
control vector    ˆq iu t K x t   for each mode of SLS. The 

choice of the control vector is done using the input q  

(switching signal of SLS) which is known at any time. The 
problem of the design of PMC bank can be resumed as 
follows: 

Problem 2.  The objective is to design the switched 
controller    ˆq iu t K x t   such that the switched linear 

systems (1) has a robust H  state-feedback performance. 

Definition 2: The switched linear systems (1) is said to have 
a robust H  state-feedback performance, if the following 

conditions are satisfied: 

System’s stability. With zero disturbance input   0d t  , the 

closed-loop switched linear systems is stable. 

Robustness. For all non zero disturbance input   2d t L -

norm, under zero initial condition  0 0x t  , it holds that: 

       2

0 0

T Tx t x t dt d t d t dt
 

    (7) 

with   is positive scalar. 

Noting that, the synthesis of the GSOS block and the PMC 
block are detailed later in the paper. 

       

Fig. 3.  Structure of pre-designed multiple controllers. 

3.3  RB Block 

The RB block is used to evaluate the set of p  residual 

signals provided by the GSOS block in order to reconfigure 
the SV activation mechanism. This block is composed of two 
main functions: evaluation function and decision function. 
The structure of the block is illustrated in figure 4. 

The evaluation function aims to assess on-line the set of 
residual in order to generate the fault signature. It receives as 

input the residual vector       1 , , pR t r t r t  . In against 

part, it has two types of output, continuous outputs including 

all norms of residual       1 22, 2, 2,
, , , pT T T

r t r t r t  and 

binary outputs which include a set of bits representing the 

real sensor fault signature  1
, , , ,

i pFS r r r      . This 

latter is generated using the so-called norm based residual 
evaluation approach. Thus, each bit of the real sensor fault 
signature is determined by comparing the norm of 
corresponding residual with a pre-determined threshold: 

 
 

2,

2,

0

1

i

i

th
r i iT

th
r i iT

if r t J

if r t J





  


 
  with i . 

with  
2,i T

r t  is defined as follows:  

     
2

1

1

2

2 12,
,

t
T

i i iT
t

r t r t r t dt T t t
 

   
  
 . 

1K

qK

NK

  

  

 1̂x t  

 ˆix t  

 ˆ px t  








 
 X t  

 x̂ t  
 u t  

co  q


 

SV activation 
mechanism 

 

CL activation 
mechanism 






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The threshold th
iJ  is the tolerant limit for unknown inputs 

and uncertainties during the fault free operation. In this work, 
the threshold is computed as follows: 

 
2

2,
supth c

i i Td L
J r t


  with       0i

c
i i f t

r t r t


    (8) 

 

Fig. 4.   Structure of RB block. 

The decision function receives as input all norms of residual 
and the fault signature generated by the evaluation function. 
It generates the selection signal co  and aims to designate, 
during both normal and faulty operations, SR observer able to 
give the best estimation. This estimation is then used to 
establish the state-feedback that ensures asymptotic stability 
of the SLS. 

The working principle of the decision function can be stated 
within the following points: 

Fault isolation. The first step consists in isolation of the 
sensor fault by decoding the real fault signature using the 
theoretical signature table associated to the proposed GSOS. 
For example, if the real fault signature  FS  is zero, this 

means that the MIMO SLS is free from fault. However, when 
a fault occurs, the fault signature is nonzero. In this case, the 
fault isolation task will be to seek in the theoretical signature 
table the signature that corresponds to the real fault signature 
(cf. Table .1).  

Observer’s selection.  Objective is to select the SR observer 
who provides a better state estimation in order to establish the 
state-feedback. Two cases are possible: in the absence of 
fault, all the norms of residual are compared and only the SR 
observer who generates the residual closer to the zero will be 
selected to establish the state-feedback. In contrast, in the 
presence of fault, only one residual is closer to the zero. 
Thus, the SR observer corresponding to this residual is 
selected to establish the state-feedback. 

Noting that, for reasons related to the convergence times, of 
the proposed SR observers, which are not same, it is most 
likely that we obtain a real fault signature which does not 
exist in the theoretical signature table. In this case, we 
consider that the MIMO SLS is free from fault and the SR 
observer establishing the state-feedback remains the same. In 
the following, we describe the synthesis approach used to 
design the observer-based state-feedback control. 

4. OBSERVER-BASED STATE-FEEDBACK CONTROL 
DESIGN 

The approach developed in this section is based on the 
systems theory notion of state–feedback controller that using 
an observer to estimate the state vector. The main goal is to 
propose a sufficient LMI conditions allowing to obtain the 

gain matrices qK  and i
qL  values such that the conditions 

given in definitions 1 and 2 are satisfied. Hence, the closed-
loop system (SLS +GSOS) can be written as follows: 

         
       

q

i

q q q q q i d

i i d i

x t A B K x t B K e t B d t

y t C x t D d t f t

    


  


  (9) 

where i  and q Q  . 

Then, the equations of the closed-loop system (9) and the 
equations of the estimation error (4) are combined to obtain 
the following augmented system with 

      TT T
i iz t x t e t    ,       TT T

i i iy t y t r t     are 

augmented variables. 

       
       

, ,, q i q i

i i

i q i i d f i

i i i d f i

z t A z t B d t B f t

y t C z t D d t D f t

   


  

  

     (10) 

with , 0
q q q q q

iq i
q q i

A B K B K
A

A L C

 
   

 , 
,

q

q i

q i

d

d i
d q d

B
B

B L D

 
  

  
 , 

,

0
q i if

q

B
L

 
   

 , 
0

0
i

i

i

C
C

C

 
  
 

 , i

i

i

d

d

d

D
D

D

 
  
  

 , 1

1
i

p

f
p

I
D

I




 
  
 

 . 

Considering the augmented system (10), we can remark that 

the matrices ,q iA , with  i  and q Q , are triangular. 

Then, the eigenvalues of these latter are just those of the 
matrices q q qA B K  together with those of the matrices 

i
q q iA L C . Hence, the stability of the augmented system (10) 

can be solved by designing separately a /H H   fault 

detection GSOS, which feeds into a robust H  controllers. 

Thus the problem can be divided into two separate parts, 
which facilities the design. This principle is called separation 
principle, which is widely used in the case of the switched 
linear systems. In the following, we start by the design of a 
robust  H  state-feedback control.   

4.1  State-feedback Control 

According to the separation principle, we break the observer-
based state-feedback control design into two separate parts: 
State-feedback control design and GSOS design. Moreover, 
we assume that the state vector  x t  of the MIMO SLS is 

measurable. This assumption allows to redefine the controller 

   ˆq iu t K x t   as    qu t K x t   and to study separately 

the design of a robust  H  state-feedback control (cf. 

problem 2). Then, the robust H  state-feedback control can 

be formulated as finding a controller    qu t K x t   such 

that (condition 1, definition 2) the closed-loop switched 
system is stable when   0d t   and (condition 2, definition 

2) under the zero-initial condition  0 0x t  , the state vector 

 x t  satisfies    2 22

2 2
x t d t  for any non-zero 

 ir t  
 pr t  

 1 2,T
r t  


Evaluation 

function 
Decision  
function 

 
2,p T

r t  
FS  

co   
2,i T

r t  

 1r t  
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  2d t L -norm. The main result is summarized in the 

following theorem. 

Theorem 1. Given positive 0  , 
,

1
q q

   , for ,q q Q  , 

q q , if there exist matrices 0T
q qX X   and qY  such 

that the following LMI hold: 

0q q

T T T T
q q q q q q q q d d q

n

X A Y B A X B Y B B X

I

    
 

   
      (11) 

,
0

q qq q

q

X X

X

 



 
 

   
               (12) 

Then, the switched linear systems (1) under controllers 

   qu t K x t   is stable and the robust H  state-feedback 

performance is guaranteed with attenuation level 1  . 
Moreover the controller gains are constructed by 

  1

q q qK Y X


 . 

Proof. Based on the separation principle, the closed-loop 
switched linear systems (9) can be simplified as follows: 

       
       

q

i

q q q d

i i d i

x t A B K x t B d t

y t C x t D d t f t

   


  


   (13) 

According to the definition 2, we have two conditions in 
order to ensure that the switched linear systems (1) has a 
robust H  state-feedback performance: 

Condition 1. With zero disturbance input condition   0d t  , 

we aim to give a sufficient LMI conditions to ensure that the 
closed-loop switched systems (13) is stable.  

Then, we consider a multiple Lyapunov-like functional 

candidate   V x t  composed of N  quadratic Lyapunov 

function   q x t . Each one is defined as follows: 

      T
q qx t x t P x t    (14) 

with 0T
q qP P   and q Q . 

Then, the closed-loop switched systems (13) is stable if the 
following inequalities (15) and (16) are satisfied: 

   0q x t  , for q Q .  (15) 

and       , qq q q
x t x t    , for q Q , q Q   and 

q q .  (16) 

where q  is the successor mode of q  and the decreasing rate 

,
1

q q
    is positive scalar describing the Lyapunov-like 

evolution at the switching time 
q q

t 
.   

We develop now the inequality (14).  

           0T T
q q qx t x t P x t x t P x t       

           0
TT

q q q q q q q q qx t x t A B K P P A B K x t        
  

 (17) 

The inequality (17) is verified if: 

     0
T

q q q q q q q qA B K P P A B K      (18) 

Then, left and right multiplying the latter condition (18) by 
1

qP  and by considering the following change of variable 
1

q qX P , it yields: 

    0
T

q q q q q q q qX A B K A B K X       (19) 

Now, let us focus on the stability condition (16). Their aim is 
to ensure the global behaviour of the Lyapunov-like function 
at the switching time 

q q
t 

. We assume that, we have not 

state jump at switching time which implicates that 

   q q q q
x t x t 

 
 

 . Then, based on the condition (16),  we 

can write: 

, qq q q
P P    (20) 

with ,q q Q   and q q .  

The latter inequality (20) is equivalent to the following 
inequality: 

 1 1

, qq q q
X X 

    (21) 

Then, left and right multiplying the condition (21) by qX , it 

yields: 
1

,
0q q qq q q

X X X X 
     (22) 

Applying Schur’s complement, the LMI (12) of the theorem 
1 is provided. 

Condition 2. In this part, under zero-initial condition 

 0 0x t  , the objective is to provide a sufficient LMI 

conditions which ensure that the state vector  x t  satisfies 

   2 22

2 2
x t d t  for any non-zero   2d t L -norm.  

From the inequality condition (7), we can develop: 

        2

0

0T Tx t x t d t d t dt


    (23) 

Let us consider the multiple Lyapunov-like functional 

candidate   V x t , which is defined previously. Hence, the 

inequality (23) can be written as follows: 

       
  

  

2
1

0

0

T T
dV x t

J x t x t d t d t dt
dt

V x t


  

    
 

 


   (24)  

At this stage of the study, the objective is to provide 
sufficient conditions that the criterion 1J  is negative. From 
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the inequality (24),  we can remark that if the condition (25) 
is verified then the criterion 1J  is negative. 

       
  2 0T T

dV x t
x t x t d t d t

dt
     (25) 

The latter inequality (25) can be reformulated as follows: 

 
 

 
 

0

T
x t x t

E
d t d t

   
   

   
  (26) 

with 
   

2

q

T

q q q q q q q q n q d

m

A B K P P A B K I P B
E

I

    
 
   

. 

The inequality (26) is verified if the matrix E  is negative. 
Applying the inverse of Schur’s complement, we can write 
the matrix E  as follows: 

    0
q q

T T
q q q q q q q q n q d d qA B K P P A B K I P B B P       (27) 

with   12 


 . 

Then, left and right multiplying the condition (27) by 1
qP  

and by considering the following change of variable 
1

q qX P , it yields: 

    0
q q

T T
q q q q q q q q q q d dX A B K A B K X X X B B       

 (28) 

Remark 1. At this stage of study, a significant simplification,  
relating the both inequalities (28) and (19), can be 
considered.  Regarding the inequality (19), we can remark 
that it is bounded by the inequality (28). Then, the inequality 
(19) is systematically verified when the inequality (28) is 
satisfied. In other words, if the inequality (28) is verified then 
the inequality (19) verifies that 

   19 0
q q

T
q q d dX X B B     because the term 

 q q

T
q q d dX X B B  is positive. For this reason, the theorem 1 

contains only the condition (28). 

Using Schur’s complement, the inequality (28) can be written 
as follows: 

    0
0q q

T T
q q q q q q q q d d q

n

X A B K A B K X B B X

I

     
  
   

 

 (29) 

Using the following change of variable p q qY K X , the LMI 

condition (11) is provided.   

Remind that according to separation principle, the second 
phase of the observer-based state-feedback control design is 
to deal separately with the design of GSOS block. In the 
following text, we discuss the GSOS design problem.  

 

4.2  GSOS Design 

One of the key issues related to a FDI technique is concerned 
with its robustness, which involves two aspects. The first one, 
concerns the robustness of the residual generator to the 
disturbances and the second one is related with the sensitivity 
to the faults that should be detected and isolated. Thus, in this 
subsection, the GSOS block herein considered is designed for 
the task of robust FDI. The idea is to design each SR 
observer of the GSOS block so as to have a good robustness 
to disturbances and sensitivity to faults. In other words, SR 
observer design problem (cf. problem 1) can be described as 
designing matrices i

qL  (for i , q Q ) such that the 

residuals  ir t  is sensitive to fault  if t  and is robust to 

disturbances  d t .  

Then, concerning the residual robustness to disturbances, the 
proposed approach is inspired from the robust control 
techniques, specially the H  model matching. This choice is 

justified by the capacity of the H  technique to extenuate 

the undesirable effects of the external disturbances. The idea 
consists on minimizing the transfer of the external 
disturbances  d t  on the residual signals  ir t  according to 

   2 22

2 2i ir t d t  with i  (cf. condition 2, definition 

1). 

Moreover, to make the residual  ir t , with i , as 

sensitive to sensor faults  if t , the proposed approach is 

based on H  index. The idea consists in maximising the 

transfer of the sensor faults  if t  on the residual signals 

 ir t  according to    
22 2

2 2i i ir t f t  with i  (cf. 

condition 3, definition 1). The main result concerning the 
GSOS design problem is summarized in the following 
theorem. 

Theorem 2. Given positive 0i  , 0i  , 
,

1i

q q
   , for 

i , ,q q Q  , q q , if there exist matrices  

, , 0T
q i q iW W   and i

qZ  such that the following LMI hold: 

 , , 0
TT T i i

q q i i q q i q q iA W C Z W A Z C     (30) 

,, ,
0i

q iq i q q
W W     (31) 

,

2

1

0
q i

i

i i T
q q i d q d i

T
i m d

p

W B Z D C

I D

I





  
 
   

 
    

  (32) 

2
1 1 1

1

2 0

i i T
q q i

i p p p

p

Z C

I I I

I

   



 
    
    

  (33) 
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with  , ,

Ti T T i i
q q q i i q q i q q iA W C Z W A Z C      and 

 , , 2
Ti T T i i T

q q q i i q q i q q i i iA W C Z W A Z C C C      . 

Then, the residual signal  ir t , with i , is asymptotically 

convergent and the conditions (5) and (6) (cf. definition 1) 
are satisfied. Moreover, the gain matrices of the i th switched 

robust observer (3) are constructed by   1

,
i i
q q i qL W Z


 .  

Proof. According to the definition 1, we have three 
conditions if that ones are satisfied, the generalized switched 
observer scheme (3) can be called /H H   fault detection 

observer. In the following, we will develop each condition in 
the form of LMI condition. 

Condition 1. With zero disturbance input condition   0d t  , 

with zero fault input condition   0if t  , the objective is to 

provide a sufficient LMI conditions which ensure that the 
residual signals  ir t , with i , are asymptotically 

convergent.  

Then, we consider a set of p  multiple Lyapunov-like 

functional candidate. Each multiple Lyapunov-like functional 

candidate   i ie t  is associated to one SR observer, with  

i , and it is composed of  N  quadratic Lyapunov 

function   ,q i x t .   ,q i x t  is defined as follows: 

     , ,
T

q i i q i it e t W e t     (34) 

with  , , 0T
q i q iW W  , i  and q Q . 

Similar to the condition 1 of theorem 1 (cf. proof of theorem 
1), the residual signal  ir t  and the estimation error  ie t  

are asymptotically convergent if the following inequalities 
(35) and (36) are satisfied: 

  , 0q i ie t  , for q Q , i .  (35) 

and       ,, ,

i
i q i iq i q q

e t e t    , for i , q Q , 

q Q   and q q .  (36) 

where q  is the successor mode of q  and the decreasing rate 

,
1i

q q
    is positive scalar describing the i th Lyapunov-like 

evolution at the switching time 
q q

t 
.   

Then, following the same steps as the previous proof (cf. 
proof of theorem 1, condition 1) and by considering this 
change of variable  ,

i i
q q i qZ W L , we can obtain the LMI 

conditions (30) and (31) of theorem 2. 

Condition 2. In this part, under zero-initial condition 

 0 0ie t   ( i ), with zero fault input condition   0if t  ,  

the objective is to provide a sufficient LMI conditions which 
ensure that the residual vector  ir t  satisfies 

   2 22

2 2i ir t d t  for any non-zero   2d t L -norm and 

for i . From the inequality condition (5), we can develop: 

        2

0

0T T
i i ir t r t d t d t dt



    (37) 

Let us consider the set of p  multiple Lyapunov-like 

functional candidate, which are defined previously. Hence, 
the inequality (37) can be written as follows: 

       
  

  

2
2

0

0

i ii T T
i i i

i i

d e t
J r t r t d t d t dt

dt

e t


 

    
 

 

   (38)  

with i . 

We can develop 2
iJ  as: 

 2

0

0
T

i ii i
d i i

e e
J E dt e

d d

    
      

   
   (39) 

with  

 , , , , ,

2

q i

i

i

T iT

q i q i q i q i q i d q dii

d i dT

d
i m

W W W B L DC
E C D

D I

   
 

 

   
      

      

and  ,
i

q i q q iA L C   , i  and  q Q . 

At this stage of the study, the objective is to provide 
sufficient conditions that the criterions 2

iJ , for i , are 

negative. From the inequality (39),  we can remark that if the 
conditions  0i

dE  , for i ,  are verified then the criterions 

2
iJ  are negative. Using Schur’s complement on the matrices 

0i
dE  , for i ,  and by considering this change of 

variable ,
i i
q q i qZ W L , the LMI conditions (32) of the theorem 

2 are provided. 

Condition 3. In this part, under zero-initial condition 

 0 0ie t   ( i ), with zero disturbance condition   0d t  , 

the objective is to provide a sufficient LMI conditions which 
ensure that the residual vector  ir t  satisfies 

   
22 2

2 2i i ir t f t  for any non-zero   2if t L -norm and 

for i . From the inequality condition (6), we can develop: 

        2

0

0T T
i i i i ir t r t f t f t dt



    (40) 

In the same way, we consider the set of p  multiple 

Lyapunov-like functional candidate, which are defined 
previously. Hence, the inequality (40) can be written as 
follows: 

       
  

  

2
3

0

0

i ii T T
i i i i i

i i

d e t
J r t r t f t f t dt

dt

e t


  

    
 

  


  (41) 
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with i . 

 3

0

0
T

i ii i
f i i

i i

e e
J E dt e

f f

    
      

   
  (42) 

 

with  

, , , , ,

1 2

1 1

T T i

i q i q i q i q i q i qi

f i p

p i p

C W W W L
E C I

I I

 

   
 



    
      

    
and 

 ,
i

q i q q iA L C   , i  and  q Q . 

The objective now is to provide sufficient conditions that the 
criterions 3

iJ , for i , are positive. From the inequality 

(42),  we can remark that if the conditions  0i
fE  , for 

i ,  are verified then the criterions 3
iJ  are positive. Then, 

the matrices 0i
fE  , for i , can be developed as follows: 

, , , , ,
2

1 1

0
T T T i
i i q i q i q i q i i q i q

p i p

C C W W C W L

I I 

     
    

  (43) 

The latter inequality (43) is equivalent to: 

, , , , ,
2

1 1

0
T T T i
q i q i q i q i i i i q i q

i p p

W W C C C W L

I I  

     
    

  (44) 

We can develop the inequality (44) as follows: 

1
1

, , , , ,
2

1 1

1

2

2

0

T
i

i p
p

T T i
q i q i q i q i i i q i q

i p p

T T
i i i

p

C
C I

I

W W C C W L

I I

C C C

I






 




 

     

    
    
 

    
  (45) 

By using Schur’s complement on the inequality (45) and by 
considering this change of variable ,

i i
q q i qZ W L , the LMI 

conditions (33) of the theorem 2 are provided.  

5. SIMULATION AND RESULTS 

In this section, a numerical example is provided to illustrate 
the effectiveness of the proposed FTC method. Let us 
consider the following MIMO SLS with three discrete 
modes. 

Mode 1: 
1

0.863 0.120 12 0

1 1.160 1.430 0

1.488 1 2.590 0

0.893 1 0.815 0.160

A






 

  

 
 
 
 
 
 

, 
1

1 0

0 1

1 0

0 1

d
B 

 
 
 
 
 
 

, 

0.1 0 0 0

0 0.1 0 0.1

0 0.1 0.1 0.1

0.1 0 0.1 0

C 

 
 
 
 
 
 

,
1

0.083 0

0 0

0 0.333

0 0

B 

 
 
 
 
 
 

,

0.1 0.01

0.1 0.1

0.1 0.012

0.1 0.02

d
D



 


 

 
 
 
 
 
 

. 

Mode 2: 
2

1.863 0 1 1

0 1.160 0.430 0

0.88 120 0.590 1

0.893 0 0.815 1.160

A




 

 

 
 
 
 
 
 

, 
2

1 0

1 0

0 1

0 10

d
B 

 
 
 
 
 
 

, 

2 1
B B . 

Mode 3: 
3

0.597 1.034 1.240 0.5

0.244 0.050 1 0.5

0.042 3.013 1.160 0

0 0 0 1.160

A

  

 


  

 
 
 
 
 
 

, 
3

3 0

0 1

0 1

10 0

d
B 



 
 
 
 
 
 

, 

3

1.143 0

0 0

0 0

0 9.500

B 

 
 
 
 
 
 

. 

The discrete switching sequence of the MIMO SLS is as 
follows: 
mod 1 mod 2 mod 3 mod 1 mod 2 mod 3e e e e e e     

Before starting the synthesis of the proposed FTC method, 
we remind that all the subsystems and the SLS are unstable. 

Moreover, we can easily verify that all the couples  ,q iA C  

are observable and all the couples  ,q qA B  are controllable, 

for  1, 2,3q  and  1, , 4i  . 

As mentioned above, the design of the proposed FTC method 
has been broken into two separate parts: State feedback 
control design and GSOS design. Concerning the synthesis of 
the state-feedback control, we apply the theorem 1 and we 
can obtain the following results: 

1.80   , 
1, 2 2.3 3.1

0.9     , 

3

1

0.1632 5.5324 0.1043 0.3632
10 *

0.0466 2.0215 0.0738 0.2565
K


 




 
  

, 

2

196.965 201.378 3.6769 185.017

1.077 800.937 47.075 1.071
K



 
  

, 

3

12.939 6.689 2.016 0.116

0.074 1.615 0.153 1.686
K

  




 
  

. 

Now, for FDI task, we use the results provided by theorem 2, 
and we can obtain the following gain matrices: 

1st SR observer: 
1

0.1  , 
1

2  , 1 1 1

1, 2 2,3 3,1
0.9     ,  

1

1

12.294 2.422 27.497

3.118 9.0163 31.755

0.937 2.713 6.519

12.085 3.0602 37.8049

L










 
 
 
 
 
 

,
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1

2

4.4508 39.381 52.038

25.061 33.395 66.720

59.933 245.407 235.065

57.253 6.693 80.537

L

 








 
 
 
 
 
 

,

1 3

3

0.6775 0.203 0.052

0.208 0.0727 0.059
10 *

1.367 1.805 1.899

1.151 0.330 0.321

L









 

 
 
 
 
 
 

.  

2nd SR observer: 
2

0.2  , 
2

1.68  , 2 2 2

1, 2 2,3 3,1
0.9     , 

2

1

14.607 0.288 18.584

5.618 7.221 27.825

1.679 1.813 5.990

11.909 6.396 32.174

L





 

 
 
 
 
 
 

,

2

2

26.253 1.099 32.592

4.731 28.611 52.153

42.609 193.924 217.010

10.434 17.312 72.777

L 


 

 
 
 
 
 
 

,

2

3

54.017 32.510 104.152

0.203 3.284 20.856

186.852 456.210 634.388

17.3 135.706 34.787

L
 






 
 
 
 
 
 

. 

3rd SR observer: 
3

0.2  , 
3

2  , 3 3 3

1, 2 2,3 3,1
0.85     , 

3

1

14.480 2.593 19.557

9.983 3.009 29.355

2.425 0.345 6.098

3.434 13.532 31.925

L





 

 
 
 
 
 
 

3

2

31.865 19.890 22.977

2.998 10.42 78.542

92.869 14.339 399.239

11.516 95.196 14.863

L



 




 

 
 
 
 
 
 

, 3 3

3

0.073 0.036 0.141

0.003 0.018 0.048
10 *

0.306 0.195 1.296

0.055 0.289 0.255

L




 






 
 
 
 
 
 

. 

4th SR observer: 
4

0.3  , 
4

1.45  , 4 4 4

1, 2 2,3 3,1
0.95     , 

4

1

37.582 9.334 14.746

55.503 26.522 22.651

7.355 3.225 1.984

55.982 19.7225 34.409

L








 
 
 
 
 
 

4

2

82.334 8.585 41.253

38.805 2.599 79.994

69.103 26.373 505.202

67.077 29.897 66.315

L





 

 
 
 
 
 
 

, 4 3

3

0.111 0.075 0.082

0.012 0.118 0.036
10 *

0.198 0.463 1.115

0.004 0.313 0.144

L







 



 
 
 
 
 
 

. 

In order to illustrate the efficiency of the proposed FTC 
method when a sensor fault occurs, let us consider the 
bounded external disturbance  d t  as a band-limited white 

noise with power 0.01.  The fault signal is simulated as a 
pulse of amplitude 0.3, from 1.5 to 1.6 sec, affecting the 1st 

output of MIMO SLS when this latter evolves in the 2nd 
mode. The evolution of residual signals (   3

1r t  , 

  3
2r t  ,   3

3r t  ,   3
4r t  ), generated by the four 

SR observers, is illustrated in the figure 5. This figure shows 
that the residual signals converge to zero which implies that 
the SR observers closely match the MIMO SLS. After that, 
only the residual signals (  2r t ,  3r t ,  4r t ), sensitive to the 

fault affecting the 1st output of MIMO SLS,  depart 
significantly from zero when the sensor fault occurs.  

0 0.5 1 1.5 2 2.5 3
-0.5

0

0.5

r 1(
t)

0 0.5 1 1.5 2 2.5 3
-0.5

0

0.5
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t)

0 0.5 1 1.5 2 2.5 3
-1

0

1

r 3
(t
)

0 0.5 1 1.5 2 2.5 3
-1

0

1

Time [s]
r 4

(t
)
 

Fig. 5. Evolution of the residual signals. 

The figure 6 depicts the evolution of the residual signal’s 
norms. Note that, the solid lines represent the value of the 
thresholds, calculated in accordance with equation (8) 
( 1 0.769thJ  , 2 0.578thJ  , 3 0.748thJ  , 4 0.742thJ  , 

0.01T  ).   

0 0.5 1 1.5 2 2.5 3
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0 0.5 1 1.5 2 2.5 3
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||r
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T

0 0.5 1 1.5 2 2.5 3
0

1

2

Time [s]

||r
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Fig. 6. Evolution of the residual signal’s norms. 

Moreover, the evolution of the real sensor fault signature 

 
1 2 3 4
, , ,FS r r r r      is illustrated in Figure 7. By 

comparing the evolution of the real sensor fault signature 
with those given in theoretical signature table (cf. table. 1.), 
we can see that: Between 0 and 1.5 sec, the real fault 
signature is equal to zero  0,0,0,0FS  , meaning that the 

MIMO SLS is free from fault. After that, between 1.5 and 1.7 
sec, the real fault signature is equal to  0,1,1,1FS  , which 

implies that the first output of SLS is affected by the fault. 
Finally, the real fault signature returns to its initial value, 
whereas the fault is disappeared. 
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0 0.5 1 1.5 2 2.5 3
-1

0

1

0 0.5 1 1.5 2 2.5 3
-1

0

1

2

0 0.5 1 1.5 2 2.5 3
-1

0

1

2

0 0.5 1 1.5 2 2.5 3
-1

0

1

2

Time [s]  

Fig. 7. Evolution of the real sensor fault signature. 

Then, by decoding the real fault signature, the 
reconfiguration block is now able to detect and to isolate the 
fault. Hence, the next step consists to choose one among the 
four SR observers which establishes the state-feedback 
control.  

Furthermore, the figure 8 presents the evolution of the 
selection signal co  and the switching signal q .  During the 

fault apparition, we remark that the RB block chooses the 
first SR observer to establish the state-feedback control. 

0 0.5 1 1.5 2 2.5 3
0
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2
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0 0.5 1 1.5 2 2.5 3
0

1
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3

4

5

Time [s]

q

 

Fig. 8. Evolution of the selection signal co  and of the 
switching signal q . 

Finally, the stat vector evolution  x t  and the control input 

evolution  u t  are illustrated in the figure 9. As expected, 

these latter are not affected by the sensor fault. 
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-200

0

200

400

600
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t)

0 0.5 1 1.5 2 2.5 3
-2

-1

0

1
x 10

5

Time [s]
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t)

 

 

 

Fig. 9. Evolution of the state vector ( )x t  and of the control 

input  u t . 

5. CONCLUSIONS 

In this paper, a new observer-based fault tolerant control 
approach is designed for a large class of switched linear 
systems subject to sensor faults and unknown bounded 
disturbances.  The proposed approach aims to preserve the 
system stability in the presence of sensor faults. The 
synthesis of the observer-based state-feedback control takes 
into account the information provided by a FDI scheme. 
Beside, the FDI problem has been solved by minimization of 
the H -norm and maximization of the H index. Then, a 

suitable trade-off between the robustness to disturbances and 
the sensitivity to sensor faults has been obtained. LMI 
conditions have been provided to guarantee both the 
robustness and the convergence of the proposed method. An 
illustrative example with switched system has been presented 
to demonstrate the effectiveness of the proposed approach. 

Moreover, in this work, we assumed that the MIMO SLS 
modes are known at any time. Further relaxation of this 
assumption and extension of the proposed approach to more 
general hybrid systems will be the focus of future work. 
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