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Abstract: Private cloud systems have the potential to offer the advantages of virtualization in terms of 
resource utilization to enterprises that can’t choose migrating their data and applications outside of their 
premises, for legal, privacy or compliancy reasons. However, in order to achieve their full potential, these 
private clouds need to be extended in order to support an integrated and adaptive behaviour in regards to 
the specific applications that are executed on the upper layers. Modern applications are more and more 
aware of the fact that the underlying platform is virtualized and so resources might be allocated and de-
allocated in an adaptive fashion with respect to the current load and capacity. This paper presents a 
service oriented mechanism for adaptability of a typical private cloud system to load fluctuations that is 
capable of intelligent resource allocation in both terms of amount and co-locations based on virtualization 
optimization. The real time monitoring information is gathered with a multi-agent system capable of 
multi-layer and multi-factor monitoring. The smart resource allocation is achieved with a distributed 
genetic algorithm that considers the workload characteristics in conjunction with physical optimum 
allocation and the current load. The pilot implementation is presented in the context of IBM Cloud Burst 
2.1 private cloud implementation with a study on DayTrader J2EE benchmark application in load test 
scenarios. The results illustrate how the private cloud can show an adaptive behaviour related to the load 
variations. 
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1. INTRODUCTION 

With the advances of private cloud technologies in the last 
half decade, an important new direction in enterprise system 
architectures has been established that refers to adaptability 
of the informational system to the dynamic requirements of 
the ever changing business environment. Public clouds have 
the advantage to benefit from a highly predictable load, when 
considering the large number of low granularity customers 
and large resource pool available, regardless if these 
resources are delivered as IaaS or in some sort of multi-tenant 
mode like PaaS or even SaaS. This predictability is assuring 
high resource utilization and ability for long term strategic 
planning for public cloud providers and this causes, to some 
extent, the ability to offer computing resources, services and 
applications over the Internet at low costs. In contrast, private 
clouds are characterized by a limited resource pool available, 
as these resources have to be physically located within the 
enterprise premises. These aspects cause the fluctuation in the 
resource demand to have a high impact on any private cloud 
environment and thus, it reduces its efficiency in terms of 
resource utilization, as it requires reservation of a significant 
percentage of capacity in order to be able to respect certain 
service level agreements (SLAs), see (Patel, 2009). This 
problem becomes even more important when the amount of 
resources utilised by the average project within the enterprise 

is significant in relation to the total amount of resources 
available in the private cloud, and when the lifetime of the 
project is small. These two factors cause a high fluctuation in 
resource allocation and thus, contribute to an overall low 
predictability of the entire private cloud.  

In this context, in order to improve predictability of resource 
utilization in private cloud systems, the private cloud 
resource management layer needs to implement an adaptive 
behaviour in order to automatically adjust the resource 
allocation for cloud applications according to the real time 
capacity requirements.   

Modern applications are more and more aware of the fact that 
the underlying platform is virtualized and so resources might 
be allocated and de-allocated in an adaptive fashion in 
regards to the current load and capacity. Active monitoring of 
the cloud applications at multiple layers (web, J2EE, 
database) as explained by (Iqbal, 2011) and recording 
multiple factors (CPU, memory, I/O, networking) can 
provide relevant information that represents complex triggers 
for the cloud adaptive behaviour and smart resource 
allocations. A similar approach for assuring platform 
adaptability for such applications is to extend them in order 
to explicitly trigger resource allocation changes depending on 
specific application requirements. The general idea is that the 
more information is provided to the private cloud system by 
monitoring both tools and application specific triggers, the 
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more accurate the adaptive behaviour will be, and so better 
resource utilization and better SLAs can be achieved. This 
addition to the basic request model resource allocation in 
private clouds represents a step forward in the automation of 
the cloud management system. This approach has direct 
applications in many industrial areas, where private clouds 
represent a valid architectural solution for replacing physical 
systems. 

This paper presents a service oriented mechanism for 
assuring adaptability of a typical private cloud system to load 
fluctuations that is capable of intelligent resource allocation, 
both in terms of amount and co-locations based on 
virtualization optimization. The real time monitoring 
information is gathered with a multi-agent system capable of 
multi-layer and multi-factor monitoring. The smart resource 
allocation is achieved with a distributed genetic algorithm 
that considers the workload characteristics in conjunction 
with physical optimum allocation and the current load. The 
pilot implementation is presented in the context of IBM 
Cloud Burst 2.1 private cloud implementation with a study on 
DayTrader J2EE benchmark application in load test 
scenarios. The results illustrate how the private cloud can 
show an adaptive behaviour with respect to the load 
variations.  

2. RELATED WORK 

Dynamic resource allocation and adaptive behaviour of 
computer platforms have been studied by many researchers in 
both grid research and autonomous computing area. (Iqbal  
2011) proposes a methodology and presents a prototype 
system for automatic detection and resolution of bottlenecks 
in multi-tier Web applications, running in cloud systems. The 
solution does monitor multiple tiers, but does not monitor 
multiple metrics, which limits the adaptability of the overall 
solution.  Other research by (Zhu, 2011; Padala, 2007)  
introduce an architecture for resource allocation control 
within physical systems based on a two level loop. While the 
control mechanism is able to allocate resources with great 
accuracy, it lacks the capability to span over more physical 
machines (or blades) as available in these private cloud 
systems. A commercial implementation that attempts to 
provide a solution in this direction is (VMware DRS, 2013). 
This mechanism is capable to adjust the resources allocated 
to a single machine by using VMotion technology, based on 
predefined rules. While this technology is complementary to 
our solution, it does not address the overall application 
requirements that usually span over multiple workloads 
(virtual machines). The VMware DRS is using a virtual 
machine (VM) centric approach for policy definitions, and so 
it has a limited scope.  An HP technical report by presents the 
possibility to dynamically allocate resources to applications 
in real time by use of virtualization technologies. The reports 
points out that allocation overhead and provisioning delay 
may occur due to frequent re-scheduling in the virtualization 
layer, which proves to be a valid point for our solution as 
well. The report however does not address the problem by 
optimal resource allocation, which, together with an effective 
management of events has the potential to limit the impact of 
this overhead. Ghanbari (2012) introduces a feedback-based 

optimization of resource allocation in private clouds, that 
focuses on mapping a given service level and resource 
consumption to profit metrics. Similarly (Sharma, 2011;  
Galante, 2012) discuss an implementation of Kingfisher 
method for reducing allocation costs is presented. A QoS 
(Quality of Service) driven model for resource allocation is 
discussed by (Calheiros, 2011), with emphasis on using an 
analytical performance queuing network model to generate 
intelligent provisioning instructions independent of the 
physical infrastructure. While these cost reduction strategies 
are highly effective on medium and large cloud platforms, 
they do have a limited applicability in small private cloud 
infrastructures used within a single organization. The solution 
proposed in this paper differentiates from the above 
mentioned work by relaying on real time multi-factor 
monitoring data and allowing definition of complex rules to 
model an adaptive behaviour of the private cloud. 

3. WORKLOAD CLASSIFICATION AND TYPES OF 
TRIGGERS FOR ADAPTIVE ALLOCATION  

Private clouds usually have a very specific designated 
purpose and can benefit of additional upfront information, 
decision power and flexibility at a scheduling level and, 
based on this, optimized schedules can be constructed. The 
additional information refers to the typical workload types or 
workload scheduling patterns while decision power and 
flexibility refers to the fact that in some scenarios, the 
customer does not require a specific time frame for the 
workload execution, and allows the cloud provider to 
schedule the workload based on a set of given rules. 
Applications of such clouds are in e-Learning, (Morariu, 
2012), software testing, (Riungu, 2010), data mining and 
reporting, payroll, proof of concepts and many others as 
presented by (Cloud Computing Use Case Discussion Group, 
2010). An optimum schedule of workload executions must 
take into consideration the primary factors that affect 
performance in a virtualized environment and the dependency 
between them. A study on this topic by (Huber, 2011;   
Noorshams, 2013) explores the virtualization overhead on 
CPU, memory and IO performance. This overhead can be 
lowered by grouping specific types of workloads together 
based on the requirements of the workload types considered 
(e.g. CPU intensive, IO intensive, etc.) keeping in mind the 
virtualization overhead between them. The result of the study 
shows that there is almost no influence when running IO 
intensive workloads together with CPU intensive workloads, 
while the influence between similar workloads is linear in 
relation with the number of such workloads.  

Another important aspect to consider when scheduling 
workloads is to benefit as much as possible of the underlying 
virtualization platform features, see (Li, 2013). One such 
feature is memory over-commitment as supported by 
VMware hypervisor described in a VMware whitepaper by 
(VMware, 2011; Banerjee, 2013). Memory over-commitment 
technology allows allocation of more memory to the virtual 
machines than is actually available in the physical machine, if 
the virtual machines are running similar operating systems. 
The technology works by loading static sections of the guest 
operating system only once and allows the usage of that 
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memory by all the guest virtual machines. In order to benefit 
of this feature, it is therefore optimum to schedule similar 
workloads in terms of operating systems, at the same time on 
a physical server. The IO profile of a workload has a great 
impact on the virtualization performance. Current research by 
(Ahmad, 2012) in this area is focusing on increasing the 
virtual adaptors IOPS throughput and at the same time 
minimizing the CPU overhead generated by interrupts 
processing. The principle is to use a set of interrupt 
coalescing techniques to assure an upper level of IO 
notifications to the guest operating systems. 

3.1 Workload Classification 

The characteristics presented above have created the need for 
a scheduling algorithm that would consider the requirements 
of workload scheduling and virtualization optimization  
(memory over-commit, uniform distribution of IOPS). Table 
1 describes the workload types considered based on: 
operating system (OS), CPU profile and IO profile. 

Table 1. Workload profiles. 

OS CPU Profile IO Profile 

Windows High Low 
Windows Low High 
Linux High Low 
Linux Low High 

For example, a workload can run parallel processing 
applications which have a CPU intensive profile or run a high 
end relational database system, which has an IO intensive 
profile. Similarly the operating system used can differ 
according to each customer. In real life implementations, the 
applications are typically designed in three layers: user 
interface (UI) layer, business layer and database layer. When 
running such applications in cloud environments, the 
mapping with virtual machines is at the UI/Business layers, 
where the clustering is configured at the application server 
layer and at the database backend. Out of these, the 
application server workloads are the ones that drive the 
application capacity most of the time. The application server 
workloads show a high CPU profile, while the database 
workloads have rather a high IO Profile. However, these 
characteristics depend greatly on the application 
implementation and so a baseline should be established 
before a workload profile can be defined.   

3.2 Types of triggers for adaptive allocation 

The events that affect the adaptive resource allocation 
process can be triggered from two main sources: the 
monitoring layer and the application itself. The monitoring 
layer considered in this paper is part of our previous work 
described by (Morariu, 2012). This monitoring solution is 
using a multi agent system to gather real time data at multiple 
layers in the cloud application stack: hypervisor layer, OS 
layer, application layer (Morariu, 2013) and can be extended 
with custom monitoring data. The data generated by the 

monitoring solution sends multi-factor data (CPU, Memory, 
IO, and network) towards a repository in a continuum stream. 
This allows the possibility to define and implement central 
monitoring agent that could trigger events based on a set of 
rules, either on a single metric or on complex multi-factor 
conditions. This agent can use constraint programming 
techniques to trigger events, like IBM ILOG or similar 
technologies. The following table (Table 2) presents the main 
types of event triggers that can be defined to invoke the 
adaptive resource allocation process. 

Table 2. Event triggers. 

Metric Definition Type 

CPU (OS Layer) Threshold Simple 
Memory (OS Layer) Threshold Simple 
Disk IO (OS Layer) Threshold Simple 
Network (OS Layer) Threshold Simple 
Combined (OS Layer) Rule Complex 
CPU (App Layer) Rule Simple 
Memory (App Layer) Rule Simple 
Disk IO (App Layer) Rule Simple 
Network (App Layer) Rule Simple 
Application Defined Rule Simple 
Combined (App Layer) Rule Complex 

As shown in Table 2, the event can be triggered either by 
simple threshold based conditions, for example when CPU 
usage on a given VM is higher than a given value, or by pre-
defined rules. A rule definition is essentially an XML file, 
with a simple schema, that supports nested definitions of 
rules consisting of operands, comparators and logic operators. 
A rule has a name, a comparator and two operands. The 
comparators can be HIGHER or LOWER and the operands 
can be a metric or a constant. An example of such a rule is 
presented in the outline below:  

<rule name="high_cpu_mem"> 
        <operator>AND</operator> 
        <rule name="high_cpu"> 
            <comparator>HIGHER</comparator> 
            <operand>cpu_os_prc</operand> 
            <operand>50</operand> 
        <rule> 
        <rule name="high_mem"> 
            <comparator>HIGHER</comparator> 
            <operand>cpu_mem_prc</operand> 
            <operand>70</operand> 
        <rule> 
</rule> 

The association between the rules and the events triggered is 
stored in an XML file in the Adaptive Rules repository. An 
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example of such an association is presented in the outline 
below: 

<association> 
       <event>trigger_horizonal_add</event>  
       <rule>high_cpu_mem</rule> 
</association> 

Fig. 1. Adaptive provisioning mechanism architecture. 

These rules and data structures are defined by the cloud 
engineers and adjusted during runtime, based on the 
application-specific requirements.  

4. ADAPTIVE PROVISIONING MECHANISM FOR 
OPTIMAL RESOUCE ALLOCATION 

The overall architecture of the adaptive provisioning 
mechanism with optimal resource allocation is illustrated in 
Fig. 1. The mechanism consists in a comprehensive multi 
agent monitoring solution that is capable to gather real time 
metrics, a multi-factor monitor that triggers reconfiguration 
events based on administrator-defined rules, a business 
process that manages the life cycle of the cloud project and a 
genetic algorithm for optimal resource allocation in the 
private cloud.  The next sections present the administrative 
units which are used in private clouds and considered in this 
implementation, they also describe in detail each component 
implementation and the links and bindings between them.  
 
4.1 Administrative units 

Private clouds typically use the following administrative 
units for resource allocation to internal customers: 
• Organization - represents the organization unit that is an 

internal customer for the private cloud. The organization 
consists in a group of employees, a department, external 
contractors or a combination of these; 

• Project - represents a logical grouping of the resources 
used by an organization in the context of a specific 
scope. An organization can have one or multiple cloud 
projects running in parallel; 

• User - a specific user, member of a given organization. 
The user administrative unit is specifically important at 

higher level cloud delivery models, like SaaS, where the 
chargeback is based on a fixed license fee for each user;  

• Virtual CPU - represents a virtual CPU which the cloud 
implementation can allocate to a VM. The virtual CPU 
(vCPU) granularity is given by the number of cores in 
the physical CPUs used in the cloud implementation. 
However, this is not always the case, as some specialised 
hypervisors can adjust to smaller granularities; 

• Virtual Memory - represents the virtual RAM memory 
allocated to a VM. This memory is generally mapped to 
a percentage of physical RAM installed on the respective 
blade server, and is subject to various optimization 
techniques implemented by the hypervisor; 

• Virtual Network - represents the virtualized network 
connection mapped to a VM. This virtual network 
connections are managed by the cloud software, usually 
in the context of an organization; 

• Resource Allocation Request - is the standard interaction 
model between the customer organization and the cloud 
administrators in the context of resource allocations. 

4.2 Adaptive provisioning mechanism architecture 

The adaptive provisioning mechanism illustrated in Fig. 1 
aims to scale up and down the resources required by the 
application, being aware of three important questions: “when 
to scale?”, “what to scale?” and “how to scale?” 
The solution is implemented as a BPEL process and runs on 
top of a generic SOA engine. The overall flow is: 
Step1: A new project is created in the cloud management 
system. The monitoring agent instantiates a new process 
instance, which will be running for the entire life cycle of the 
cloud project; 
Step2: The BPEL process is initialized and starts to listen for 
adaptive scaling events triggered by the Event Manager based 
on thresholds or rules; 
Step3: The multi-factor monitoring agent matches on a 
threshold trigger or a predefined rule and triggers an event;  
Step4: The event is sent to the BPEL process that computes 
the scale up/down requirements based on the event received; 
Step5: The genetic algorithm is invoked to determine the 
optimal resource allocation/de-allocation based on the current 
status of the cloud; 
Step6: The process continues until the project is finished. 
In this architecture the Event Manager has the responsibility 
to match the event triggered with the corresponding BPEL 
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process and to sequence the events that might be triggered for 
the same process in short amounts of time. This aspect has 
been proved to be very important in reducing the impact of 
the resource allocation overhead and resource configuration 
on the decision making process. It also has an important role 
in eliminating duplicate events that can be generated from a 
local monitoring perspective. These events can be generated 
as a result of persistent CPU usage. 

4.3 Business process for project lifecycle 

The business process overall view is illustrated in Fig. 2. The 
business process is exposed as a web service end point called 
SmartAllocationServiceEndPoint (shown in the left side of 
the figure). The process starts with a receiveInput activity 
that parses the payload containing the project identifier, the 
organization and the event actions. The values from the 
payload are assigned to the process variables in 
Assign_Parameters activity. At this point the process starts 
to listen for events in a while loop; this behaviour will 
continue for the entire life cycle of the project. When an 
event is received, the OnMessage activity will be triggered 
and the event is processed by the HandleMessage block 
(detailed in Fig. 3). The callbackClient informs the caller, in 
this case the agent invoking the web service end point, of the 
process completion. The Terminate activity finalizes the 
process in the BPEL execution engine. 

 

Fig. 2. Adaptive allocation BPEL process. 

The HandleMessage activity block, shown in Fig. 3, starts 
with a Decode_Message activity, which is implemented 
inside a Java embedding activity, and decodes the actual 
event from the packaged message. Implementation wise, the 
messages are stored in JMS queues by the Event Manager, 
each queue being specific for the process. This event JMS 
queue is generated at runtime and known by a naming 
convention by both the BPEL process and the event manager.  

Once the message is decoded, the next activity is to fetch the 
current allocation of the VMs in the cloud. This integration is 
realized by invoking the cloud management web services. In 
our pilot implementation, the process invokes the IBM Tivoli 
User and Accounting Management (IBM TUAM) RESTfull 
web service, as it can be seen in the right side of Fig. 3. The 
next activity invokes the web service exposed by the multi-
agent monitoring solution to fetch the current load. The 
current allocation and the current load, and also the event 
generated are used to compute the changes (scale up or down 
decision). Once all this information is gathered and 
structured, the genetic algorithm is invoked to compute the 
best allocation pattern for the event. The design and 
implementation of this genetic algorithm is detailed in the 
next section. Once the decision on what and how to provision 
is in place, the InvokeCloudAPI activity invokes the cloud 
API to perform the resource allocation changes. In our pilot 
implementation the cloud API is offered by IBM Tivoli 
Service Automation Manager (IBM TSAM) as a set of REST 
web services.   

 
Fig. 3. HandleMessage activity block. 
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Fig. 5. AllocationSolution references (individual) 

4.4 Genetic algorithm for smart resource allocation 

The workload scheduling problem is NP-Complete, so the 
solutions generated would be sub-optimal, (Ullman, 1975). 
There are several hard conditions that need to be respected in 
order for a schedule to be accepted as a viable solution such 
as resource allocation levels and cloud capacity and several 
soft conditions that are meant to exploit the virtualization 
features and minimize the performance overhead of 
concurrent workloads.  

As these conditions are sometimes conflicting, a genetic 
algorithm would be able to generate only sub-optimal 
solutions for the scheduling problem. The genetic algorithm 
starts with a randomly generated population of solutions and 
by applying operations as selection, crossover and mutation 
on individuals creates new generations evaluating the fitness 
of each individual of the population in the process. When the 
fitness level in the population reaches a satisfying value, a set 
of solutions is obtained. In the design of the genetic 
algorithm prototype, six objects have been considered as 
shown in Fig. 4: 

 
Fig. 4. Data Objects class diagram. 

 

The AllocationSolution class holds the allocation information 
of the cloud resource to the workload in the scope of a 
project. The allocation solution class instance has a reference 
to the Project for which the allocation is computed. The 
CloudResource class represents the top of a hierarchy of 
cloud resources like: blade server, memory unit, virtual core, 
network, disk storage and so on. These resources correspond 
in granularity to the hypervisor administrative units, and map 
directly to these. The Workload class has a reference to the 
cloud service catalogue and represents a virtual machine 
template. The resources are defined by the organization 
administrators in the context and scope of a project.  Each 
workload is described by a WorkloadType as mentioned in 
section 3 of this paper. Finally, the Organization class holds a 
reference to all the projects the organization has. 

The AllocationSolution instances are the actual individuals 
in the solutions population of the genetic algorithm. The class 
contains at this point references to two types of resources; 
specifically virtual CPUs mappings on physical cores and 
virtual disks mappings on SANs. The AllocationSolution is 
illustrated in Fig. 5. The solution, implemented in the 
GlobalSolution class, contains a list of allocation solutions 
representing the entire population (Fig. 6). 

 
Fig. 6. Global solution and allocation solution relation. 

The fitness function computes the fitness value for each 
individual in the population. The fitness is computed by 
evaluating a set of conditions against the schedule instance as 
follows: 
• Condition1 (Hard Condition) Total Load: iterates all 

the time slots and computes a sum of all workloads that 
are scheduled for each blade. If the total load scheduled 
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is less than the maximum capacity of the blade, then 10 
points are awarded. 

• Condition2 (Hard Condition) Possible Allocation: 
Checks that the resource allocation scheme is valid. 
Specifically it checks that the physical cores allocated to 
the workload are located on the same physical blade. If 
the condition is fulfilled for all workloads, then 7 points 
are awarded. 

• Condition3 (Soft Condition) Memory Over-
commitment: This condition checks that for each time 
slot only a single set of WorkloadType is scheduled. For 
each blade that fulfils this condition, 3 points are 
awarded. When all the blades are evaluated, the score is 
divided by the number of blades and added to the global 
score. 

• Condition4 (Soft Condition) CPU Intensive: Iterates the 
physical CPUs and checks that no more than two CPU 
intensive WorkloadTypes are scheduled at the same 
time. For each physical CPU that passes this check, 1 
point is awarded. The score is then divided by the 
number of physical CPUs and added to the global score. 

• Condition5 (Soft Condition) IO Intensive: Similar to 
condition 4 above, it checks that for each SAN there are 
no more than two IO intensive WorkloadTypes 
scheduled. For each SAN that passes this check, 1 point 
is awarded. The score is then divided by the SANs and 
added to the global score. 

• Condition6 (Soft Condition) Uniform Distribution: This 
condition computes a factor characterizing the 
distribution of workloads. One is interested in obtaining 
a uniform distribution of workloads across all blades. 
The factor is computed by first calculating the average 
number of workloads scheduled across the blades, then 
by evaluating the difference between the calculated 
average and the number of workloads scheduled. A 
threshold of 20 workloads is considered acceptable; so if 
the threshold is respected across all blades, 5 points are 
added to the global score.   

The score computed based on above evaluation is divided to 
the maximum score to obtain a fitness value between 0 and 1. 
Genetic algorithms have typically three operations: selection, 
crossover and mutation, refer to (Mitchell, 1998). 

The selection operation consists in computing the fitness 
value for each individual in the population and sorting the 
population based on the results. Then, the best 65% 
individuals are selected for crossover operation. 

The crossover operation represents the combination of two 
AllocationSolution instances that produce an offspring. The 
crossover operation is implemented by generating a random 
number X (crossover point) between 1 and N, where N is the 
number of workloads. The offspring will inherit the resource 
allocations of the first parent from Workload1 to WorkloadX 
and the schedule of the second parent from WorkloadX+1 to 
WorkloadN. Fig. 7 represents this crossover operation.  

The mutation operation is applied to a randomly chosen 
subset of individuals in each generation, and consists in 

rescheduling of one Workload from the data structure. 
The new schedule is generated by randomly assigning a new 
alternative set of resources (CPU cores and virtual disks) for 
the selected Workload instance. 

 
Fig. 7. Crossover operation. 

Both the Workload instance and the new resource allocations 
are selected and generated randomly. 
The genetic algorithm itself has the following structure: 

Step1: generateInitialPopulation() 
Step2: while(best individual fitness < min_fitness){ 
Step3:      do_crossover(best 65% individuals) 
Step4:      calculate_fitness(offsprings) 
Step5:      remove_worst(worst 35% individuals) 
Step6:      calculate_best_individual_fitness  
Step7:  } 

As one can see in the above pseudo code, the genetic 
algorithm sorts the individuals after the crossover operation 
based on the fitness, and removes the worst individuals from 
the population. This assures the evolution from one 
generation to another. 

5. PILOT IMPLEMENTATION AND EXPERIMENTAL 
RESULTS 

This section describes the pilot implementation of the 
adaptive resource allocation mechanism and the experimental 
results in a benchmark performed. The experiments are 
performed in three phases: the first is used to determine the 
monitoring baselines and monitoring system stability in 
regards to the upper layer application. The second phase 
focuses on validating the adaptive behaviour of the smart 
resource allocation mechanism. Finally, the third phase is 
focusing on testing the behaviour and characteristics of the 
genetic algorithm for optimal resource allocation. 

5.1 Private Cloud environment and benchmark application 

The cloud hardware considered for the experimental tests of 
the scheduling algorithm is based on an IBM CloudBurst 
System. The IBM Cloud Burst (IBM, 2010) system is an 
offering based on IBM Blade Center. It adds virtualization 
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using the VMware ESX hypervisor, and enhanced 
administration capability by leveraging the Tivoli Service 
Management Stack, as illustrated in Fig. 8 (IBM, 2012).The 
virtualization platform is powered by 14 blade servers with 
two Intel processors with 6 cores each at 2.8 GHz and 12 Mb 
L3 cache. The installed memory is 72GB for each blade. The 
estimated capacity is in the area of 400 concurrent virtual 
machines, considering an optimum scheduling with mixed 
CPU/IO profiles.  From an integration perspective, the 
algorithm proposed in this paper was implemented in Java 
1.6 and generates the schedule that will be provisioned to the 
IBM CloudBurst 2.1 solution.  

Fig. 8. IBM Cloud Burst general architecture. 

The benchmark application used for testing the solution is the 
classic DayTrader, (Apache, 2005), application. DayTrader is 
a benchmark application designed to simulate an online stock 
trading system. The application was originally developed by 
IBM for WebSphere and was known as the Trade 
Performance Benchmark Sample. In 2005 the DayTrader 
application was donated by IBM to the Apache Geronimo 
community. The most important feature of DayTrader is that 
the application is easy to scale in a cluster environment by 
adding multiple application server nodes. The response time 
of the application is linear in regards to multi node scaling. 
This aspect is key to the test environment setup, as is 
important to have a clear relation between HTTP response 
time and the number of nodes, in order to validate the 
adaptive resource allocation. 

The functionality implemented in the DayTrader application 
consists in user authentication, management of portfolio, 
stock quotes lookups, stock operations (buy or sell). Using  
load generation tools like Apache JMeter, (Halili, 2008) or 
HP Load Runner (Jinyuan, 2012), the workload provided by 
DayTrader can be used to evaluate the performance of Java 
Enterprise Edition (Java EE) application servers. 
Additionally, the application is designed to offer a set of 
primitives for functional and performance testing of various 
Java EE components in the J2EE platform and as well some 
common design patterns. These characteristics make 
DayTrader the perfect benchmark application to evaluate the 
capabilities of the adaptive system described in this paper.  

 

5.2 Experimental results 

The experimental environment is configured initially on a 
single blade server, running a single virtual machine, 
installed with Linux CentOS 6.4 x86-64, with two cores 
assigned and 16GB RAM. The application server used is 
WildFly 8.0.0.Beta1 (former JBoss Application Server), 
configured with 4GB heap size, running on Java JDK 7u45 
64bit. The application was exposed to constant load from HP 
LoadRunner during a normal day, to validate the setup 
stability and establish a baseline for configuring the adaptive 
rules for dynamic scalability.  

The first step of the experiment is represented by the 
validation of baseline monitoring application. For visualizing 
the data collected by the monitoring agents in real time, 
Munin was used as a frontend application to graphically show 
the data.  Fig. 9 shows a set of collected metrics during a 
daylong test with constant load of the application. The 
metrics are collected from the guest operating system and 
from the application layer (the HTTP load time by day). 
Along with these metrics, Java heap details are collected in 
real time by automatic analysis of garbage collector log file.  
Based on these metrics, complex rules are defined for 
scalability. These rules create a binding between the trigger 
of the event, the targeted workload and the defined scaling 
action. The rules have a general format as defined below: 

If <condition1> and/or <condition2> ...  then 
  Perform <action 1>  
  Perform <action 2> 
EndIf 

For example, such a rule would be: if the CPU usage % 
exceeds 40% and memory usage exceeds 70%, then: allocate 
another virtual CPU and 1GB RAM to the virtual machine, 
and then configure the application server with the additional 
heap size. This approach represents scaling by allocating  
more resources to a given workload. The other approach 
supported is to provision another workload, which would 
mean scaling by clustering. The experimental setup used was 
configured to illustrate both approaches, defining the 
following rules: 

If <HTTP Response Time > 60ms> then 
  Perform <provision another cluster node> 
EndIf 
If <CPU_TH% > 40%> then 
  Perform <provision another cluster node> 
  Perform <add VCPU to VM> 
EndIf 
If <CPU_TH% < 30%> then 
  Perform <remove a cluster node> 
EndIf 
If <CPU_TH% < 20%> then 
  Perform <remove a cluster node and remove VCPUx2 
from VM> 
EndIf 

 



CONTROL ENGINEERING AND APPLIED INFORMATICS    31 

     

 

Fig. 9. Monitoring data for baseline load during a day. 
 
The load data used is captured using Google Analytics 
(Clifton, 2012) on a real-life online booking application, 
targeted to a regional US audience, during Cyber Monday 
sales. This data is shown in Fig 10. As it can be seen, the load 
starts with less than 1000 concurrent users and peaks to 
38.000 users in the early morning hours. The load fluctuates 
during the day and drops back to around 2000 users by the 
end of the day. The data was recorded from the real life 
application, was played  with LoadRunner application against 
the adaptive system described in this paper and the results 
shown in Fig. 11 were obtained.  In order to compare the 
traditional threshold based approach (illustrated in light green 
and red events) with the adaptive approach (illustrated in 
strong green and blue events), both were plotted on the same 
graph. For clarity, only the “scaling by clustering” or in other 
words, by provisioning additional nodes or workloads, is 
illustrated in Fig. 11. 

 

 
The graph shows the 24 hours time-span while feeding the 
real data to the DayTrader application. The graph shows a 
slight shift with respect to the concurrent users. This is 
explained by the fact that initially the system utilization is 
low. The first events are triggered only after a relevant set of 
concurrent users are established. The experiment shows that 
the scale up is more accurate with the rule based adaptive 
provisioning, while the scale down is more aggressive on the 
threshold approach. 

This experiment, obtained using the live data presented on 
DayTrader application, produced an improvement of 12% in 
resource utilization, by exploiting the adaptive approach, 
compared to the simple factor threshold approach supported 
by most solutions for automatic scaling. This has been 
achieved while maintaining the HTTP response time to the 
same levels. A second experiment was set up to validate the 
optimum allocation of workloads on blades using the genetic 
algorithm proposed in this paper. 
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Fig. 10. Google Analytics real load during Cyber Monday. 

Fig. 11. Adaptive system behaviour for Cyber Monday data. 
 
The environment consisted in random allocation of 100 
workloads with mixed CPU/IO profiles using both Windows 
and Linux operating systems. The allocation statistics on the 
tracked blades were focusing on the collocations achieved 
with respect to the workload profiles.  

Fig. 12 illustrates an almost ideal combination of workload 
profiles for each blade, combining CPU intensive workloads 
with IO intensive workloads.  

The test used a uniform distribution of Windows/Linux guest 
operating systems. The GA allocation shows (as illustrated in 
Fig. 13) a tendency to collocate the similar OS workloads to 
favour memory over-commitment.  
 

 

 

 

Fig. 12. CPU intensive (in blue)/IO intensive (in red). 
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Fig. 13. Windows OS (in blue)/Linux OS (in red). 

The genetic algorithm was also simulated in NetLogo (Tisue, 
2004) platform in order to validate the evolutionary 
characteristics. Fig. 14 shows the typical fitness evolution in 
the population over the algorithm execution. The tests show 
that it takes between approximately 100 and 250 generations 
for the fitness function to reach the acceptable threshold, and 
thus, a semi-optimal solution to be selected. Fig. 15 illustrates 
the population diversity over the 136 generations generated in 
this test run. 

 
Fig. 14. Genetic algorithm fitness per generation. 

 
Fig. 15. Genetic algorithm diversity evolution per generation. 

5.3 Limitations of the solution 

One of the most important problems identified with this 
approach is represented by the scaling delay. The 
provisioning/de-provisioning of the workloads can take (in 
our tests) up to 5 minutes, while the start-up and 
configuration phase takes some additional time depending on 
the application. 

The adaptive rules mechanism presented in this paper cannot 
work in real time, as the provisioning decisions will not affect 
the higher layer metrics immediately; the HTTP response 
time will be affected only after a new node is provisioned, 
started, configured and the load balancer configuration is 
changed to include this new node. In practice there are other 
aspects that affect this time, like cache coordination between 
nodes, session replication and so on. The key to resolve this 
problem is the Event Manager (Fig. 1), which has the role to 
sequence the events, and even drop duplicate events that are 
caused by this delay. It is essential that the BPEL process is 
given only unique events, at a rate that is capable to react at.  

Another limitation is related to the dynamic nature of the 
target application running on top of the private cloud 
platform. The application load must not have a large variation 
in small amounts of time, otherwise the events will overlap. 
Specifically, in the pilot implementation it was established 
that the DayTrader application has a scaling time of around 7 
minutes for provisioning an additional node, including the 
configuration of the clustering bindings. This has been 
measured with virtual machines running Linux CentOS 6.4 
x86-64 with 16GB RAM. The adaptive solution is more 
effective for applications that scale up and down more 
quickly, specifically under 1 minute. These workloads are 
generally applications that relay on a networked file system 
and are used mostly for processing. In practice this means 
that the scaling is more effective at the application server tier, 
rather than at the database tier. 

6. CONCLUSIONS 

This paper presents a novel mechanism for adaptive resource 
allocation in private clouds. The mechanism is constructed as 
a SOA BPEL process and uses a real time monitoring 
solution to gather multi-factor data about the application 
running in the private cloud. The data collected is used to 
trigger re-configuration events that are handled by the BPEL 
process and, using a genetic algorithm, decide the optimum 
way to scale up and down the resources allocated.  

Conceptually the mechanism supports two types of scaling: 
allocating more/less resources to a given workload or 
provisioning/de-provisioning additional workloads. This 
scaling decision is based on a set of flexible IF/Then/Action 
rules that define the trigger and link with the action to be 
performed. The experimental results illustrate the second 
approach, for clarity. The results show that the adaptive 
mechanism performs better (approximately 12% 
improvement) than a simple threshold mechanism in our test 
environment, based on real life usage data. However, the 
potential for optimizing special purpose applications where 
usage patterns are available is much higher, as it allows 
definition of complex scaling rules that can take advantage of 
these. Compared to other approaches for adaptive resource 
allocation, the solution presented in this paper is superior in 
two regards: the multi-factor monitoring of guest operating 
system and application metrics, and the optimum resource 
allocation based on the genetic algorithm proposed. The 
multi-factor monitoring allows generating complex events 
that provide insight information on what needs to be scaled 
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and when this should be done. The genetic algorithm assures 
the optimum scaling in this context.  

Future work will extend the genetic algorithm design to 
consider additional resource allocation optimization criteria, 
including virtual network optimization and disk allocation, 
according to the capabilities of the private cloud.    
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