
CEAI, Vol.16, No.3 pp. 23-34, 2014 Printed in Romania

Smart Resource Allocations for Highly Adaptive Private Cloud Systems

Octavian Morariu*, Cristina Morariu**, Theodor Borangiu*, Silviu Raileanu*

*University Politehnica of Bucharest, Dept. of Automation and Applied Informatics, Bucharest, Romania
E-mail: (octavian.morariu, theodor.borangiu, silviu.raileanu)@cimr.pub.ro

**CloudTroopers Intl., Cluj-Napoca, Romania
E-mail: cristina@cloudtroopers.ro

Abstract: Private cloud systems have the potential to offer the advantages of virtualization in terms of
resource utilization to enterprises that can’t choose migrating their data and applications outside of their
premises, for legal, privacy or compliancy reasons. However, in order to achieve their full potential, these
private clouds need to be extended in order to support an integrated and adaptive behaviour in regards to
the specific applications that are executed on the upper layers. Modern applications are more and more
aware of the fact that the underlying platform is virtualized and so resources might be allocated and de-
allocated in an adaptive fashion with respect to the current load and capacity. This paper presents a
service oriented mechanism for adaptability of a typical private cloud system to load fluctuations that is
capable of intelligent resource allocation in both terms of amount and co-locations based on virtualization
optimization. The real time monitoring information is gathered with a multi-agent system capable of
multi-layer and multi-factor monitoring. The smart resource allocation is achieved with a distributed
genetic algorithm that considers the workload characteristics in conjunction with physical optimum
allocation and the current load. The pilot implementation is presented in the context of IBM Cloud Burst
2.1 private cloud implementation with a study on DayTrader J2EE benchmark application in load test
scenarios. The results illustrate how the private cloud can show an adaptive behaviour related to the load
variations.

Keywords: smart resource allocation, service oriented architecture, event driven, process, multi agent
systems, genetic algorithm, cloud optimization, private cloud, adaptive provisioning.

1. INTRODUCTION

With the advances of private cloud technologies in the last
half decade, an important new direction in enterprise system
architectures has been established that refers to adaptability
of the informational system to the dynamic requirements of
the ever changing business environment. Public clouds have
the advantage to benefit from a highly predictable load, when
considering the large number of low granularity customers
and large resource pool available, regardless if these
resources are delivered as IaaS or in some sort of multi-tenant
mode like PaaS or even SaaS. This predictability is assuring
high resource utilization and ability for long term strategic
planning for public cloud providers and this causes, to some
extent, the ability to offer computing resources, services and
applications over the Internet at low costs. In contrast, private
clouds are characterized by a limited resource pool available,
as these resources have to be physically located within the
enterprise premises. These aspects cause the fluctuation in the
resource demand to have a high impact on any private cloud
environment and thus, it reduces its efficiency in terms of
resource utilization, as it requires reservation of a significant
percentage of capacity in order to be able to respect certain
service level agreements (SLAs), see (Patel, 2009). This
problem becomes even more important when the amount of
resources utilised by the average project within the enterprise

is significant in relation to the total amount of resources
available in the private cloud, and when the lifetime of the
project is small. These two factors cause a high fluctuation in
resource allocation and thus, contribute to an overall low
predictability of the entire private cloud.

In this context, in order to improve predictability of resource
utilization in private cloud systems, the private cloud
resource management layer needs to implement an adaptive
behaviour in order to automatically adjust the resource
allocation for cloud applications according to the real time
capacity requirements.

Modern applications are more and more aware of the fact that
the underlying platform is virtualized and so resources might
be allocated and de-allocated in an adaptive fashion in
regards to the current load and capacity. Active monitoring of
the cloud applications at multiple layers (web, J2EE,
database) as explained by (Iqbal, 2011) and recording
multiple factors (CPU, memory, I/O, networking) can
provide relevant information that represents complex triggers
for the cloud adaptive behaviour and smart resource
allocations. A similar approach for assuring platform
adaptability for such applications is to extend them in order
to explicitly trigger resource allocation changes depending on
specific application requirements. The general idea is that the
more information is provided to the private cloud system by
monitoring both tools and application specific triggers, the

mailto:silviu.raileanu)@cimr.pub.ro
mailto:cristina@cloudtroopers.ro

24 CONTROL ENGINEERING AND APPLIED INFORMATICS

more accurate the adaptive behaviour will be, and so better
resource utilization and better SLAs can be achieved. This
addition to the basic request model resource allocation in
private clouds represents a step forward in the automation of
the cloud management system. This approach has direct
applications in many industrial areas, where private clouds
represent a valid architectural solution for replacing physical
systems.

This paper presents a service oriented mechanism for
assuring adaptability of a typical private cloud system to load
fluctuations that is capable of intelligent resource allocation,
both in terms of amount and co-locations based on
virtualization optimization. The real time monitoring
information is gathered with a multi-agent system capable of
multi-layer and multi-factor monitoring. The smart resource
allocation is achieved with a distributed genetic algorithm
that considers the workload characteristics in conjunction
with physical optimum allocation and the current load. The
pilot implementation is presented in the context of IBM
Cloud Burst 2.1 private cloud implementation with a study on
DayTrader J2EE benchmark application in load test
scenarios. The results illustrate how the private cloud can
show an adaptive behaviour with respect to the load
variations.

2. RELATED WORK

Dynamic resource allocation and adaptive behaviour of
computer platforms have been studied by many researchers in
both grid research and autonomous computing area. (Iqbal
2011) proposes a methodology and presents a prototype
system for automatic detection and resolution of bottlenecks
in multi-tier Web applications, running in cloud systems. The
solution does monitor multiple tiers, but does not monitor
multiple metrics, which limits the adaptability of the overall
solution. Other research by (Zhu, 2011; Padala, 2007)
introduce an architecture for resource allocation control
within physical systems based on a two level loop. While the
control mechanism is able to allocate resources with great
accuracy, it lacks the capability to span over more physical
machines (or blades) as available in these private cloud
systems. A commercial implementation that attempts to
provide a solution in this direction is (VMware DRS, 2013).
This mechanism is capable to adjust the resources allocated
to a single machine by using VMotion technology, based on
predefined rules. While this technology is complementary to
our solution, it does not address the overall application
requirements that usually span over multiple workloads
(virtual machines). The VMware DRS is using a virtual
machine (VM) centric approach for policy definitions, and so
it has a limited scope. An HP technical report by presents the
possibility to dynamically allocate resources to applications
in real time by use of virtualization technologies. The reports
points out that allocation overhead and provisioning delay
may occur due to frequent re-scheduling in the virtualization
layer, which proves to be a valid point for our solution as
well. The report however does not address the problem by
optimal resource allocation, which, together with an effective
management of events has the potential to limit the impact of
this overhead. Ghanbari (2012) introduces a feedback-based

optimization of resource allocation in private clouds, that
focuses on mapping a given service level and resource
consumption to profit metrics. Similarly (Sharma, 2011;
Galante, 2012) discuss an implementation of Kingfisher
method for reducing allocation costs is presented. A QoS
(Quality of Service) driven model for resource allocation is
discussed by (Calheiros, 2011), with emphasis on using an
analytical performance queuing network model to generate
intelligent provisioning instructions independent of the
physical infrastructure. While these cost reduction strategies
are highly effective on medium and large cloud platforms,
they do have a limited applicability in small private cloud
infrastructures used within a single organization. The solution
proposed in this paper differentiates from the above
mentioned work by relaying on real time multi-factor
monitoring data and allowing definition of complex rules to
model an adaptive behaviour of the private cloud.

3. WORKLOAD CLASSIFICATION AND TYPES OF
TRIGGERS FOR ADAPTIVE ALLOCATION

Private clouds usually have a very specific designated
purpose and can benefit of additional upfront information,
decision power and flexibility at a scheduling level and,
based on this, optimized schedules can be constructed. The
additional information refers to the typical workload types or
workload scheduling patterns while decision power and
flexibility refers to the fact that in some scenarios, the
customer does not require a specific time frame for the
workload execution, and allows the cloud provider to
schedule the workload based on a set of given rules.
Applications of such clouds are in e-Learning, (Morariu,
2012), software testing, (Riungu, 2010), data mining and
reporting, payroll, proof of concepts and many others as
presented by (Cloud Computing Use Case Discussion Group,
2010). An optimum schedule of workload executions must
take into consideration the primary factors that affect
performance in a virtualized environment and the dependency
between them. A study on this topic by (Huber, 2011;
Noorshams, 2013) explores the virtualization overhead on
CPU, memory and IO performance. This overhead can be
lowered by grouping specific types of workloads together
based on the requirements of the workload types considered
(e.g. CPU intensive, IO intensive, etc.) keeping in mind the
virtualization overhead between them. The result of the study
shows that there is almost no influence when running IO
intensive workloads together with CPU intensive workloads,
while the influence between similar workloads is linear in
relation with the number of such workloads.

Another important aspect to consider when scheduling
workloads is to benefit as much as possible of the underlying
virtualization platform features, see (Li, 2013). One such
feature is memory over-commitment as supported by
VMware hypervisor described in a VMware whitepaper by
(VMware, 2011; Banerjee, 2013). Memory over-commitment
technology allows allocation of more memory to the virtual
machines than is actually available in the physical machine, if
the virtual machines are running similar operating systems.
The technology works by loading static sections of the guest
operating system only once and allows the usage of that

CONTROL ENGINEERING AND APPLIED INFORMATICS 25

memory by all the guest virtual machines. In order to benefit
of this feature, it is therefore optimum to schedule similar
workloads in terms of operating systems, at the same time on
a physical server. The IO profile of a workload has a great
impact on the virtualization performance. Current research by
(Ahmad, 2012) in this area is focusing on increasing the
virtual adaptors IOPS throughput and at the same time
minimizing the CPU overhead generated by interrupts
processing. The principle is to use a set of interrupt
coalescing techniques to assure an upper level of IO
notifications to the guest operating systems.

3.1 Workload Classification

The characteristics presented above have created the need for
a scheduling algorithm that would consider the requirements
of workload scheduling and virtualization optimization
(memory over-commit, uniform distribution of IOPS). Table
1 describes the workload types considered based on:
operating system (OS), CPU profile and IO profile.

Table 1. Workload profiles.

OS CPU Profile IO Profile

Windows High Low
Windows Low High
Linux High Low
Linux Low High

For example, a workload can run parallel processing
applications which have a CPU intensive profile or run a high
end relational database system, which has an IO intensive
profile. Similarly the operating system used can differ
according to each customer. In real life implementations, the
applications are typically designed in three layers: user
interface (UI) layer, business layer and database layer. When
running such applications in cloud environments, the
mapping with virtual machines is at the UI/Business layers,
where the clustering is configured at the application server
layer and at the database backend. Out of these, the
application server workloads are the ones that drive the
application capacity most of the time. The application server
workloads show a high CPU profile, while the database
workloads have rather a high IO Profile. However, these
characteristics depend greatly on the application
implementation and so a baseline should be established
before a workload profile can be defined.

3.2 Types of triggers for adaptive allocation

The events that affect the adaptive resource allocation
process can be triggered from two main sources: the
monitoring layer and the application itself. The monitoring
layer considered in this paper is part of our previous work
described by (Morariu, 2012). This monitoring solution is
using a multi agent system to gather real time data at multiple
layers in the cloud application stack: hypervisor layer, OS
layer, application layer (Morariu, 2013) and can be extended
with custom monitoring data. The data generated by the

monitoring solution sends multi-factor data (CPU, Memory,
IO, and network) towards a repository in a continuum stream.
This allows the possibility to define and implement central
monitoring agent that could trigger events based on a set of
rules, either on a single metric or on complex multi-factor
conditions. This agent can use constraint programming
techniques to trigger events, like IBM ILOG or similar
technologies. The following table (Table 2) presents the main
types of event triggers that can be defined to invoke the
adaptive resource allocation process.

Table 2. Event triggers.

Metric Definition Type

CPU (OS Layer) Threshold Simple
Memory (OS Layer) Threshold Simple
Disk IO (OS Layer) Threshold Simple
Network (OS Layer) Threshold Simple
Combined (OS Layer) Rule Complex
CPU (App Layer) Rule Simple
Memory (App Layer) Rule Simple
Disk IO (App Layer) Rule Simple
Network (App Layer) Rule Simple
Application Defined Rule Simple
Combined (App Layer) Rule Complex

As shown in Table 2, the event can be triggered either by
simple threshold based conditions, for example when CPU
usage on a given VM is higher than a given value, or by pre-
defined rules. A rule definition is essentially an XML file,
with a simple schema, that supports nested definitions of
rules consisting of operands, comparators and logic operators.
A rule has a name, a comparator and two operands. The
comparators can be HIGHER or LOWER and the operands
can be a metric or a constant. An example of such a rule is
presented in the outline below:

<rule name="high_cpu_mem">
 <operator>AND</operator>
 <rule name="high_cpu">
 <comparator>HIGHER</comparator>
 <operand>cpu_os_prc</operand>
 <operand>50</operand>
 <rule>
 <rule name="high_mem">
 <comparator>HIGHER</comparator>
 <operand>cpu_mem_prc</operand>
 <operand>70</operand>
 <rule>
</rule>

The association between the rules and the events triggered is
stored in an XML file in the Adaptive Rules repository. An

26 CONTROL ENGINEERING AND APPLIED INFORMATICS

example of such an association is presented in the outline
below:

<association>
 <event>trigger_horizonal_add</event>
 <rule>high_cpu_mem</rule>
</association>

Fig. 1. Adaptive provisioning mechanism architecture.

These rules and data structures are defined by the cloud
engineers and adjusted during runtime, based on the
application-specific requirements.

4. ADAPTIVE PROVISIONING MECHANISM FOR
OPTIMAL RESOUCE ALLOCATION

The overall architecture of the adaptive provisioning
mechanism with optimal resource allocation is illustrated in
Fig. 1. The mechanism consists in a comprehensive multi
agent monitoring solution that is capable to gather real time
metrics, a multi-factor monitor that triggers reconfiguration
events based on administrator-defined rules, a business
process that manages the life cycle of the cloud project and a
genetic algorithm for optimal resource allocation in the
private cloud. The next sections present the administrative
units which are used in private clouds and considered in this
implementation, they also describe in detail each component
implementation and the links and bindings between them.

4.1 Administrative units

Private clouds typically use the following administrative
units for resource allocation to internal customers:
• Organization - represents the organization unit that is an

internal customer for the private cloud. The organization
consists in a group of employees, a department, external
contractors or a combination of these;

• Project - represents a logical grouping of the resources
used by an organization in the context of a specific
scope. An organization can have one or multiple cloud
projects running in parallel;

• User - a specific user, member of a given organization.
The user administrative unit is specifically important at

higher level cloud delivery models, like SaaS, where the
chargeback is based on a fixed license fee for each user;

• Virtual CPU - represents a virtual CPU which the cloud
implementation can allocate to a VM. The virtual CPU
(vCPU) granularity is given by the number of cores in
the physical CPUs used in the cloud implementation.
However, this is not always the case, as some specialised
hypervisors can adjust to smaller granularities;

• Virtual Memory - represents the virtual RAM memory
allocated to a VM. This memory is generally mapped to
a percentage of physical RAM installed on the respective
blade server, and is subject to various optimization
techniques implemented by the hypervisor;

• Virtual Network - represents the virtualized network
connection mapped to a VM. This virtual network
connections are managed by the cloud software, usually
in the context of an organization;

• Resource Allocation Request - is the standard interaction
model between the customer organization and the cloud
administrators in the context of resource allocations.

4.2 Adaptive provisioning mechanism architecture

The adaptive provisioning mechanism illustrated in Fig. 1
aims to scale up and down the resources required by the
application, being aware of three important questions: “when
to scale?”, “what to scale?” and “how to scale?”
The solution is implemented as a BPEL process and runs on
top of a generic SOA engine. The overall flow is:
Step1: A new project is created in the cloud management
system. The monitoring agent instantiates a new process
instance, which will be running for the entire life cycle of the
cloud project;
Step2: The BPEL process is initialized and starts to listen for
adaptive scaling events triggered by the Event Manager based
on thresholds or rules;
Step3: The multi-factor monitoring agent matches on a
threshold trigger or a predefined rule and triggers an event;
Step4: The event is sent to the BPEL process that computes
the scale up/down requirements based on the event received;
Step5: The genetic algorithm is invoked to determine the
optimal resource allocation/de-allocation based on the current
status of the cloud;
Step6: The process continues until the project is finished.
In this architecture the Event Manager has the responsibility
to match the event triggered with the corresponding BPEL

CONTROL ENGINEERING AND APPLIED INFORMATICS 27

process and to sequence the events that might be triggered for
the same process in short amounts of time. This aspect has
been proved to be very important in reducing the impact of
the resource allocation overhead and resource configuration
on the decision making process. It also has an important role
in eliminating duplicate events that can be generated from a
local monitoring perspective. These events can be generated
as a result of persistent CPU usage.

4.3 Business process for project lifecycle

The business process overall view is illustrated in Fig. 2. The
business process is exposed as a web service end point called
SmartAllocationServiceEndPoint (shown in the left side of
the figure). The process starts with a receiveInput activity
that parses the payload containing the project identifier, the
organization and the event actions. The values from the
payload are assigned to the process variables in
Assign_Parameters activity. At this point the process starts
to listen for events in a while loop; this behaviour will
continue for the entire life cycle of the project. When an
event is received, the OnMessage activity will be triggered
and the event is processed by the HandleMessage block
(detailed in Fig. 3). The callbackClient informs the caller, in
this case the agent invoking the web service end point, of the
process completion. The Terminate activity finalizes the
process in the BPEL execution engine.

Fig. 2. Adaptive allocation BPEL process.

The HandleMessage activity block, shown in Fig. 3, starts
with a Decode_Message activity, which is implemented
inside a Java embedding activity, and decodes the actual
event from the packaged message. Implementation wise, the
messages are stored in JMS queues by the Event Manager,
each queue being specific for the process. This event JMS
queue is generated at runtime and known by a naming
convention by both the BPEL process and the event manager.

Once the message is decoded, the next activity is to fetch the
current allocation of the VMs in the cloud. This integration is
realized by invoking the cloud management web services. In
our pilot implementation, the process invokes the IBM Tivoli
User and Accounting Management (IBM TUAM) RESTfull
web service, as it can be seen in the right side of Fig. 3. The
next activity invokes the web service exposed by the multi-
agent monitoring solution to fetch the current load. The
current allocation and the current load, and also the event
generated are used to compute the changes (scale up or down
decision). Once all this information is gathered and
structured, the genetic algorithm is invoked to compute the
best allocation pattern for the event. The design and
implementation of this genetic algorithm is detailed in the
next section. Once the decision on what and how to provision
is in place, the InvokeCloudAPI activity invokes the cloud
API to perform the resource allocation changes. In our pilot
implementation the cloud API is offered by IBM Tivoli
Service Automation Manager (IBM TSAM) as a set of REST
web services.

Fig. 3. HandleMessage activity block.

28 CONTROL ENGINEERING AND APPLIED INFORMATICS

Fig. 5. AllocationSolution references (individual)

4.4 Genetic algorithm for smart resource allocation

The workload scheduling problem is NP-Complete, so the
solutions generated would be sub-optimal, (Ullman, 1975).
There are several hard conditions that need to be respected in
order for a schedule to be accepted as a viable solution such
as resource allocation levels and cloud capacity and several
soft conditions that are meant to exploit the virtualization
features and minimize the performance overhead of
concurrent workloads.

As these conditions are sometimes conflicting, a genetic
algorithm would be able to generate only sub-optimal
solutions for the scheduling problem. The genetic algorithm
starts with a randomly generated population of solutions and
by applying operations as selection, crossover and mutation
on individuals creates new generations evaluating the fitness
of each individual of the population in the process. When the
fitness level in the population reaches a satisfying value, a set
of solutions is obtained. In the design of the genetic
algorithm prototype, six objects have been considered as
shown in Fig. 4:

Fig. 4. Data Objects class diagram.

The AllocationSolution class holds the allocation information
of the cloud resource to the workload in the scope of a
project. The allocation solution class instance has a reference
to the Project for which the allocation is computed. The
CloudResource class represents the top of a hierarchy of
cloud resources like: blade server, memory unit, virtual core,
network, disk storage and so on. These resources correspond
in granularity to the hypervisor administrative units, and map
directly to these. The Workload class has a reference to the
cloud service catalogue and represents a virtual machine
template. The resources are defined by the organization
administrators in the context and scope of a project. Each
workload is described by a WorkloadType as mentioned in
section 3 of this paper. Finally, the Organization class holds a
reference to all the projects the organization has.

The AllocationSolution instances are the actual individuals
in the solutions population of the genetic algorithm. The class
contains at this point references to two types of resources;
specifically virtual CPUs mappings on physical cores and
virtual disks mappings on SANs. The AllocationSolution is
illustrated in Fig. 5. The solution, implemented in the
GlobalSolution class, contains a list of allocation solutions
representing the entire population (Fig. 6).

Fig. 6. Global solution and allocation solution relation.

The fitness function computes the fitness value for each
individual in the population. The fitness is computed by
evaluating a set of conditions against the schedule instance as
follows:
• Condition1 (Hard Condition) Total Load: iterates all

the time slots and computes a sum of all workloads that
are scheduled for each blade. If the total load scheduled

CONTROL ENGINEERING AND APPLIED INFORMATICS 29

is less than the maximum capacity of the blade, then 10
points are awarded.

• Condition2 (Hard Condition) Possible Allocation:
Checks that the resource allocation scheme is valid.
Specifically it checks that the physical cores allocated to
the workload are located on the same physical blade. If
the condition is fulfilled for all workloads, then 7 points
are awarded.

• Condition3 (Soft Condition) Memory Over-
commitment: This condition checks that for each time
slot only a single set of WorkloadType is scheduled. For
each blade that fulfils this condition, 3 points are
awarded. When all the blades are evaluated, the score is
divided by the number of blades and added to the global
score.

• Condition4 (Soft Condition) CPU Intensive: Iterates the
physical CPUs and checks that no more than two CPU
intensive WorkloadTypes are scheduled at the same
time. For each physical CPU that passes this check, 1
point is awarded. The score is then divided by the
number of physical CPUs and added to the global score.

• Condition5 (Soft Condition) IO Intensive: Similar to
condition 4 above, it checks that for each SAN there are
no more than two IO intensive WorkloadTypes
scheduled. For each SAN that passes this check, 1 point
is awarded. The score is then divided by the SANs and
added to the global score.

• Condition6 (Soft Condition) Uniform Distribution: This
condition computes a factor characterizing the
distribution of workloads. One is interested in obtaining
a uniform distribution of workloads across all blades.
The factor is computed by first calculating the average
number of workloads scheduled across the blades, then
by evaluating the difference between the calculated
average and the number of workloads scheduled. A
threshold of 20 workloads is considered acceptable; so if
the threshold is respected across all blades, 5 points are
added to the global score.

The score computed based on above evaluation is divided to
the maximum score to obtain a fitness value between 0 and 1.
Genetic algorithms have typically three operations: selection,
crossover and mutation, refer to (Mitchell, 1998).

The selection operation consists in computing the fitness
value for each individual in the population and sorting the
population based on the results. Then, the best 65%
individuals are selected for crossover operation.

The crossover operation represents the combination of two
AllocationSolution instances that produce an offspring. The
crossover operation is implemented by generating a random
number X (crossover point) between 1 and N, where N is the
number of workloads. The offspring will inherit the resource
allocations of the first parent from Workload1 to WorkloadX
and the schedule of the second parent from WorkloadX+1 to
WorkloadN. Fig. 7 represents this crossover operation.

The mutation operation is applied to a randomly chosen
subset of individuals in each generation, and consists in

rescheduling of one Workload from the data structure.
The new schedule is generated by randomly assigning a new
alternative set of resources (CPU cores and virtual disks) for
the selected Workload instance.

Fig. 7. Crossover operation.

Both the Workload instance and the new resource allocations
are selected and generated randomly.
The genetic algorithm itself has the following structure:

Step1: generateInitialPopulation()
Step2: while(best individual fitness < min_fitness){
Step3: do_crossover(best 65% individuals)
Step4: calculate_fitness(offsprings)
Step5: remove_worst(worst 35% individuals)
Step6: calculate_best_individual_fitness
Step7: }

As one can see in the above pseudo code, the genetic
algorithm sorts the individuals after the crossover operation
based on the fitness, and removes the worst individuals from
the population. This assures the evolution from one
generation to another.

5. PILOT IMPLEMENTATION AND EXPERIMENTAL
RESULTS

This section describes the pilot implementation of the
adaptive resource allocation mechanism and the experimental
results in a benchmark performed. The experiments are
performed in three phases: the first is used to determine the
monitoring baselines and monitoring system stability in
regards to the upper layer application. The second phase
focuses on validating the adaptive behaviour of the smart
resource allocation mechanism. Finally, the third phase is
focusing on testing the behaviour and characteristics of the
genetic algorithm for optimal resource allocation.

5.1 Private Cloud environment and benchmark application

The cloud hardware considered for the experimental tests of
the scheduling algorithm is based on an IBM CloudBurst
System. The IBM Cloud Burst (IBM, 2010) system is an
offering based on IBM Blade Center. It adds virtualization

30 CONTROL ENGINEERING AND APPLIED INFORMATICS

using the VMware ESX hypervisor, and enhanced
administration capability by leveraging the Tivoli Service
Management Stack, as illustrated in Fig. 8 (IBM, 2012).The
virtualization platform is powered by 14 blade servers with
two Intel processors with 6 cores each at 2.8 GHz and 12 Mb
L3 cache. The installed memory is 72GB for each blade. The
estimated capacity is in the area of 400 concurrent virtual
machines, considering an optimum scheduling with mixed
CPU/IO profiles. From an integration perspective, the
algorithm proposed in this paper was implemented in Java
1.6 and generates the schedule that will be provisioned to the
IBM CloudBurst 2.1 solution.

Fig. 8. IBM Cloud Burst general architecture.

The benchmark application used for testing the solution is the
classic DayTrader, (Apache, 2005), application. DayTrader is
a benchmark application designed to simulate an online stock
trading system. The application was originally developed by
IBM for WebSphere and was known as the Trade
Performance Benchmark Sample. In 2005 the DayTrader
application was donated by IBM to the Apache Geronimo
community. The most important feature of DayTrader is that
the application is easy to scale in a cluster environment by
adding multiple application server nodes. The response time
of the application is linear in regards to multi node scaling.
This aspect is key to the test environment setup, as is
important to have a clear relation between HTTP response
time and the number of nodes, in order to validate the
adaptive resource allocation.

The functionality implemented in the DayTrader application
consists in user authentication, management of portfolio,
stock quotes lookups, stock operations (buy or sell). Using
load generation tools like Apache JMeter, (Halili, 2008) or
HP Load Runner (Jinyuan, 2012), the workload provided by
DayTrader can be used to evaluate the performance of Java
Enterprise Edition (Java EE) application servers.
Additionally, the application is designed to offer a set of
primitives for functional and performance testing of various
Java EE components in the J2EE platform and as well some
common design patterns. These characteristics make
DayTrader the perfect benchmark application to evaluate the
capabilities of the adaptive system described in this paper.

5.2 Experimental results

The experimental environment is configured initially on a
single blade server, running a single virtual machine,
installed with Linux CentOS 6.4 x86-64, with two cores
assigned and 16GB RAM. The application server used is
WildFly 8.0.0.Beta1 (former JBoss Application Server),
configured with 4GB heap size, running on Java JDK 7u45
64bit. The application was exposed to constant load from HP
LoadRunner during a normal day, to validate the setup
stability and establish a baseline for configuring the adaptive
rules for dynamic scalability.

The first step of the experiment is represented by the
validation of baseline monitoring application. For visualizing
the data collected by the monitoring agents in real time,
Munin was used as a frontend application to graphically show
the data. Fig. 9 shows a set of collected metrics during a
daylong test with constant load of the application. The
metrics are collected from the guest operating system and
from the application layer (the HTTP load time by day).
Along with these metrics, Java heap details are collected in
real time by automatic analysis of garbage collector log file.
Based on these metrics, complex rules are defined for
scalability. These rules create a binding between the trigger
of the event, the targeted workload and the defined scaling
action. The rules have a general format as defined below:

If <condition1> and/or <condition2> ... then
 Perform <action 1>
 Perform <action 2>
EndIf

For example, such a rule would be: if the CPU usage %
exceeds 40% and memory usage exceeds 70%, then: allocate
another virtual CPU and 1GB RAM to the virtual machine,
and then configure the application server with the additional
heap size. This approach represents scaling by allocating
more resources to a given workload. The other approach
supported is to provision another workload, which would
mean scaling by clustering. The experimental setup used was
configured to illustrate both approaches, defining the
following rules:

If <HTTP Response Time > 60ms> then
 Perform <provision another cluster node>
EndIf
If <CPU_TH% > 40%> then
 Perform <provision another cluster node>
 Perform <add VCPU to VM>
EndIf
If <CPU_TH% < 30%> then
 Perform <remove a cluster node>
EndIf
If <CPU_TH% < 20%> then
 Perform <remove a cluster node and remove VCPUx2
from VM>
EndIf

CONTROL ENGINEERING AND APPLIED INFORMATICS 31

Fig. 9. Monitoring data for baseline load during a day.

The load data used is captured using Google Analytics
(Clifton, 2012) on a real-life online booking application,
targeted to a regional US audience, during Cyber Monday
sales. This data is shown in Fig 10. As it can be seen, the load
starts with less than 1000 concurrent users and peaks to
38.000 users in the early morning hours. The load fluctuates
during the day and drops back to around 2000 users by the
end of the day. The data was recorded from the real life
application, was played with LoadRunner application against
the adaptive system described in this paper and the results
shown in Fig. 11 were obtained. In order to compare the
traditional threshold based approach (illustrated in light green
and red events) with the adaptive approach (illustrated in
strong green and blue events), both were plotted on the same
graph. For clarity, only the “scaling by clustering” or in other
words, by provisioning additional nodes or workloads, is
illustrated in Fig. 11.

The graph shows the 24 hours time-span while feeding the
real data to the DayTrader application. The graph shows a
slight shift with respect to the concurrent users. This is
explained by the fact that initially the system utilization is
low. The first events are triggered only after a relevant set of
concurrent users are established. The experiment shows that
the scale up is more accurate with the rule based adaptive
provisioning, while the scale down is more aggressive on the
threshold approach.

This experiment, obtained using the live data presented on
DayTrader application, produced an improvement of 12% in
resource utilization, by exploiting the adaptive approach,
compared to the simple factor threshold approach supported
by most solutions for automatic scaling. This has been
achieved while maintaining the HTTP response time to the
same levels. A second experiment was set up to validate the
optimum allocation of workloads on blades using the genetic
algorithm proposed in this paper.

32 CONTROL ENGINEERING AND APPLIED INFORMATICS

Fig. 10. Google Analytics real load during Cyber Monday.

Fig. 11. Adaptive system behaviour for Cyber Monday data.

The environment consisted in random allocation of 100
workloads with mixed CPU/IO profiles using both Windows
and Linux operating systems. The allocation statistics on the
tracked blades were focusing on the collocations achieved
with respect to the workload profiles.

Fig. 12 illustrates an almost ideal combination of workload
profiles for each blade, combining CPU intensive workloads
with IO intensive workloads.

The test used a uniform distribution of Windows/Linux guest
operating systems. The GA allocation shows (as illustrated in
Fig. 13) a tendency to collocate the similar OS workloads to
favour memory over-commitment.

Fig. 12. CPU intensive (in blue)/IO intensive (in red).

CONTROL ENGINEERING AND APPLIED INFORMATICS 33

Fig. 13. Windows OS (in blue)/Linux OS (in red).

The genetic algorithm was also simulated in NetLogo (Tisue,
2004) platform in order to validate the evolutionary
characteristics. Fig. 14 shows the typical fitness evolution in
the population over the algorithm execution. The tests show
that it takes between approximately 100 and 250 generations
for the fitness function to reach the acceptable threshold, and
thus, a semi-optimal solution to be selected. Fig. 15 illustrates
the population diversity over the 136 generations generated in
this test run.

Fig. 14. Genetic algorithm fitness per generation.

Fig. 15. Genetic algorithm diversity evolution per generation.

5.3 Limitations of the solution

One of the most important problems identified with this
approach is represented by the scaling delay. The
provisioning/de-provisioning of the workloads can take (in
our tests) up to 5 minutes, while the start-up and
configuration phase takes some additional time depending on
the application.

The adaptive rules mechanism presented in this paper cannot
work in real time, as the provisioning decisions will not affect
the higher layer metrics immediately; the HTTP response
time will be affected only after a new node is provisioned,
started, configured and the load balancer configuration is
changed to include this new node. In practice there are other
aspects that affect this time, like cache coordination between
nodes, session replication and so on. The key to resolve this
problem is the Event Manager (Fig. 1), which has the role to
sequence the events, and even drop duplicate events that are
caused by this delay. It is essential that the BPEL process is
given only unique events, at a rate that is capable to react at.

Another limitation is related to the dynamic nature of the
target application running on top of the private cloud
platform. The application load must not have a large variation
in small amounts of time, otherwise the events will overlap.
Specifically, in the pilot implementation it was established
that the DayTrader application has a scaling time of around 7
minutes for provisioning an additional node, including the
configuration of the clustering bindings. This has been
measured with virtual machines running Linux CentOS 6.4
x86-64 with 16GB RAM. The adaptive solution is more
effective for applications that scale up and down more
quickly, specifically under 1 minute. These workloads are
generally applications that relay on a networked file system
and are used mostly for processing. In practice this means
that the scaling is more effective at the application server tier,
rather than at the database tier.

6. CONCLUSIONS

This paper presents a novel mechanism for adaptive resource
allocation in private clouds. The mechanism is constructed as
a SOA BPEL process and uses a real time monitoring
solution to gather multi-factor data about the application
running in the private cloud. The data collected is used to
trigger re-configuration events that are handled by the BPEL
process and, using a genetic algorithm, decide the optimum
way to scale up and down the resources allocated.

Conceptually the mechanism supports two types of scaling:
allocating more/less resources to a given workload or
provisioning/de-provisioning additional workloads. This
scaling decision is based on a set of flexible IF/Then/Action
rules that define the trigger and link with the action to be
performed. The experimental results illustrate the second
approach, for clarity. The results show that the adaptive
mechanism performs better (approximately 12%
improvement) than a simple threshold mechanism in our test
environment, based on real life usage data. However, the
potential for optimizing special purpose applications where
usage patterns are available is much higher, as it allows
definition of complex scaling rules that can take advantage of
these. Compared to other approaches for adaptive resource
allocation, the solution presented in this paper is superior in
two regards: the multi-factor monitoring of guest operating
system and application metrics, and the optimum resource
allocation based on the genetic algorithm proposed. The
multi-factor monitoring allows generating complex events
that provide insight information on what needs to be scaled

34 CONTROL ENGINEERING AND APPLIED INFORMATICS

and when this should be done. The genetic algorithm assures
the optimum scaling in this context.

Future work will extend the genetic algorithm design to
consider additional resource allocation optimization criteria,
including virtual network optimization and disk allocation,
according to the capabilities of the private cloud.

REFERENCES

Ahmad, I., Gulati, A., Mashtizadeh, A. and M. Austruy
(2012). Improving Performance with Interrupt Coalescing
for Virtual Machine Disk IO in VMware ESX Server
VMware Inc., Palo Alto, CA 94304.

Apache DayTrader Benchmark (2005).
http://cwiki.apache.org/GMOxDOC20/daytrader.html,
The Apache Software Foundation.

Banerjee, I., Moltmann, P., Tati, K. and R.
Venkatasubramanian (2013). ESX Memory Resource
Management: Transparent Page Sharing, White paper
WP-2013-01E, available online.

Calheiros, R. N., Ranjan, R. and R. Buyya (2011). Virtual
machine provisioning based on analytical performance
and qos in cloud computing environments, In IEEE
International Conference on Parallel Processing (ICPP),
295-304.

Clifton, B. (2012). Advanced web metrics with Google
Analytics, Wiley.com.

*** Cloud Computing Use Cases (2010). A white paper
produced by the Cloud Computing Use Case Discussion
Group, Version 4.0, 2 July 2010.

Galante, G. and L. C. Bona (2012). A survey on cloud
computing elasticity, In 5th IEEE International
Conference on Utility and Cloud Computing (UCC), 263-
270.

Ghanbari, H., Simmons, B., Litoiu, M. and G. Iszlai (2012).
Feedback-based optimization of a private cloud, Future
Generation Computer Systems, 28(1), 104-111.

Halili, E. H. (2008). Apache JMeter: A Practical Beginner's
Guide to Automated Testing and Performance
Measurement for your Websites, Packt Publishing Ltd.

Huber, N., Von Quast, M., Hauck, M. and S. Kounev (2011).
Evaluating and Modeling Virtualization Performance
Overhead for Cloud Environments, In Proceedings of the
1st International Conference on Cloud Computing and
Services Science (CLOSER 2011), Noordwijkerhout, May
7-9, 2011, The Netherlands, SciTePress, 563 – 573.

IBM (2010). IBM STG & Tivoli Technical White Paper, IBM
Customer Guide for CloudBurst 2.1, IBM Research
Triangle Park, NC.

IBM (2012). IBM CloudBurst on System X, IBM RedBook.
Iqbal, W., Dailey, M. N., Carrera, D., and P. Janecek (2011).

Adaptive resource provisioning for read intensive multi-
tier applications in the cloud. Future Generation
Computer Systems, 27(6), 871-879.

Jinyuan, C. (2012). The Application of Load Runner in
Software Performance Test, Computer Development &
Applications, 5, 014.

Li, J., Wang, Q., Jayasinghe, D., Park, J., Zhu, T. and C. Pu
(2013). Performance Overhead Among three Hypervisors:
An Experimental Study using Hadoop Benchmarks, In

IEEE International Congress on Big Data (BigData
Congress), 9-16.

Morariu, O. (2012). Resource Monitoring in Cloud Platforms
with Tivoli Service Automation Management,
Proceedings of the IFAC Symposium Information Control
Problems in Manufacturing (INCOM’12), IFAC
PapersOnLine, Vol. 14, part 1, 1862-1868.

Morariu, O., Morariu, C. and Th. Borangiu (2013).
Transparent Real Time Monitoring for Multi-tenant J2EE
Applications. Journal of Control Engineering and
Applied Informatics, 15(4), 37-46.

Morariu, O., Morariu, C. and Th. Borangiu (2012). A genetic
algorithm for workload scheduling in cloud based e-
learning, In Proceedings of the 2nd International
Workshop on Cloud Computing Platforms, ACM, p. 5.

Noorshams, Q., Kounev, S. and R. Reussner (2013).
Experimental evaluation of the performance-influencing
factors of virtualized storage systems, In Computer
Performance Engineering, Springer Berlin Heidelberg,
63-79.

Padala, P., Shin, K. G., Zhu, X., Uysal, M., Wang, Z.,
Singhal, S., Merchant, A. and K. Salem (2007). Adaptive
control of virtualized resources in utility computing
environments, in: EuroSys '07: Proceedings of the ACM
European Conference on Computer Systems SIGOPS /
EuroSys 2007, ACM, N.Y., 289-302.

Patel, P., Ranabahu, A. and A. Sheth (2009). Service Level
Agreement in cloud computing. Cloud Workshops at
OOPSLA, 2009.

Riungu, L. M., Taipale, O. and K. Smolander (2010).
Research issues for software testing in the cloud, In 2nd
IEEE International Conference on Cloud Computing
Technology and Science (CloudCom), 557-564.

Sharma, U., Shenoy, P., Sahu, S. and A. Shaikh (2011). A
cost-aware elasticity provisioning system for the cloud, In
31st IEEE International Conference on Distributed
Computing Systems (ICDCS’11), 559-570.

Tisue, S. and U. Wilensky (2004). NetLogo: A simple
environment for modeling complexity. In International
Conference on Complex Systems, 2004, 16-21.

Ullman, J. D. (1975). NP-complete scheduling problems.
Journal of Computer and System Sciences, 384-393,
1975.

Wang, Z., Zhu, X., Padala, P. and S. Singhal (2007).
Capacity and performance overhead in dynamic resource
allocation to virtual containers, in: Proceedings of the 10th
IEEE International Symposium on Integrated Network
Management, IM’07, Dublin, Ireland, 149-158.

WMware, VMware Distributed Resource Scheduler DRS
(2013). Online, http://www.vmware.com/products/drs/

VMware, Understanding Memory Resource Management in
VMware® ESX™ Server, VMWare White Paper, 2011.

Mitchell, M. (1998). An introduction to genetic algorithms, A
Bradford Book, 3rd printing edition, Feb. 6, 1998, ISBN-
13: 978-0262631853

Zhu, X., Wang, Z. and S. Singhal (2006). Utility-driven
workload management using nested control design, in:
ACC '06: American Control Conference, Minneapolis,
Minnesota, USA.

http://cwiki.apache.org/GMOxDOC20/daytrader.html
http://www.vmware.com/products/drs/

