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Abstract.This work proposes a parallel architecture for a motion estimation algorithm. It is well 
known that image processing requires a huge amount of computation, mainly at low level 
processing where the algorithms are dealing with a great numbers of data-pixel. One of the 
solutions to estimate motions involves detection of the correspondences between two images. Due 
to its regular processing scheme, parallel implementation of correspondence problem can be an 
adequate approach to reduce the computation time. This work introduces parallel and real-time 
implementation of such low-level tasks to be carried out from the moment that the current image is 
acquired by the camera until the pairs of point-matchings are detected  
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1. INTRODUCTION 

Presently, different methods for motion 
estimation of an underwater vehicle exist, 
mainly based on acoustic sensor networks. This 
strategy is relatively expensive since 
transponders have to be deployed from a ship, 
calibrated and recovered after the mission. 
Therefore, this procedure is not adequate for low 
cost underwater vehicles. One cost-effective 
alternative can be to equip the vehicle with a 
down-looking camera, which acquires seafloor 
images while the robot is performing its 
mission. This down-looking camera provides 
rich visual information which can be used for 
vehicle motion estimation. Our work is focusing 
on low-level image processing tasks associated 
to the motion detection algorithm where a large 
amount of data has to be processed. This paper 
explores the possibility of hardware 
implementation of some tasks like interest 
points detection and matching procedure.  

Correlation algorithms have important 
properties like regularity and modularity. Thus, 
they can be decomposed in computational 
blocks that can be processed in parallel. An 
extensive literature exists about array 
architectures applied to image processing, 
especially in Block Matching Algorithms 
(BMA) for motion estimation [2,8,10]. Komarek 
et al. [8] described specific solutions for array 
architectures of full search BMA. They propose 
four different alternatives for one and two 
dimensional array architectures. In the early 
nineties, different other VLSI designs were 
proposed for decreasing BMA computation 
time [1,2]. While in full search BMA the image 
is divided in blocks and the algorithm looks for 
matches of every block in a frame, our approach 
is looking for correspondences of interest points. 
These are scene features which can be reliably 
found when the camera moves from one location 
to another and lighting conditions of the scene 
change. On the other hand, a more complex 
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error measurement criterion like normalised 
correlation [13] is applied.  

The remainder of this paper is structured as 
follows. Section 2 proposes a hardware 
implementation for motion estimation algorithm. 
Section 3 defines some specification of the 
FPGA-based hardware for motion estimation of 
an underwater robot. Finally, section 4 outlines 
the conclusions and future work.  

 

2. HARDWARE IMPLEMENTATION OF 
THE MOTION ESTIMATION 

ALGORITHM 

The goal of the algorithm is to estimate the 
motion of an underwater robot. Point 
correspondences between the current image 
acquired by the camera and a previous reference 
image have to be found in order to compute a 
motion estimation matrix. Often this means 
detecting features in one image, and matching 
them in the other one. The selection of features 
may depend on the application, although points 
are commonly used because they can be easily 
extracted and are quite robust to noise. 
Underwater images are difficult to process due 
to the medium transmission properties and non-
uniform illumination [6]. These aspects can 
provoke undesired bad correspondences 
(outliers) that can introduce errors in the motion 
estimation process. For this reason normalised 
correlation is very adequate to reduce the 
influence of non-uniform illumination [4,13].  
 

2.1. Real time feature detection  

The first step in solving the correspondence 
problem is the detection of a set of well-
contrasted points in the current image. Corner 
detector algorithms consist of computing the 
image gradient components: xI  and yI  by 
convolving the current image with the Prewitt 
masks. Benedetti et al. [2,3] proposed a 
modified Tomasi-Kanade [11] algorithm which 
reduce the computation and avoids floating-
point. In this algorithm a G  matrix is 
considered.  
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The algorithm, first calculates , ( )a i j, ( )b i j,  

and (c i j), ; then  
 

2( ) ( )( )
t t tP i j a c bλ λ λ, = − − −                (2) 

is found. Every pixel having:  
( ) 0 ( )

t tP i j and a i jλ λ, > , >             (3) 
 
is retained, where tλ  is the imposed lower 
bound for the solutions of the equation (2).  

The last step of the algorithm discards any pixel 
that is not a local maximum of ( )

t
P i jλ , .  

interest points are selected, considering the 
highest values for . In this approach the 
complexity is considerably reduced and does not 
require any floating point operation. As is 
showed above, the first step in corner detection 
is the computation of the image gradient 
components 

N

( )
t

P i jλ ,

xI  and yI  by convolving the 
current image with a set of 3  Prewitt masks. 
Benedetti et al. [3] proposed an implementation 
based on two FIFOs and two buffers used to 
delay the incoming pixel. The Data Flow Graph 
(DFG) for the image convolution with the 
Prewitt masks and summing elements inside a 

3×

3 3×  window are shown on the right side of 
Figure2. The delay introduced by the corner 
detector is important, since we are interested in 
the memory address of the N corners instead of 
their value of cornerness. Every  window 
generator introduces a latency of two lines and 
two pixels. The delay introduced by the 
computation of 

3 3×

t
Pλ  is showed in equation 4 and 

depends on the image size ( i i )M N× , pixel 
sampling time  and the time spent for one 
computational blocks from figure 1: Prewitt 

( )st

( )Pt , Sum  and Compute ( )St t
Pλ  ( .   )Ct
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tP i P ST M st t t
λ Ct= ⋅ ⋅ + ⋅ + + +           (4) 

a             b            c

Window 
Generator

Window 
Generator

Window 
Generator

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

Compute Pλt

Retain Pλt <0  and
a>λt

Ix² Ixy Iy²

Cornerness

Image

Window 
Generator

++

+ +

+ +

+ +

--

XX X

Ix² Ixy Iy²

a             b            c

Window 
Generator

Window 
Generator

Window 
Generator

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

Compute Pλt

Retain Pλt <0  and
a>λt

Ix² Ixy Iy²

Cornerness

a             b            c

Window 
Generator

Window 
Generator

Window 
Generator

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

Compute Pλt

Retain Pλt <0  and
a>λt

Ix² Ixy Iy²

Cornerness

Image

Window 
Generator

++

+ +

+ +

+ +

--

XX X

Ix² Ixy Iy²

Image

Window 
Generator

++

+ +

+ +

+ +

--

XX X

Ix² Ixy Iy²
 



CONTROL ENGINEERING AND APPLIED INFORMATICS             11

Figure 1. Corner detector DFG. a) Prewitt 
mask. b) Cornerness computation. 

In order to retain  pixels with highest value of N

t
Pλ , a pipeline of  interconnected Sort-
Processing Elements (SPE) is proposed. One 
SPE compares the input value with the one 
stored in its buffer and retains the highest 
cornerness value.  

N

 
2.2. Parallel implementation of 
correspondence problem  

Once interest points are detected in the current 
image cI , we search for correspondences in the 

reference image rI . A correlation algorithm 
provides, for each interest point ( )c cx y,  of the 
current image, its corresponding match ( )r rx y,  
in the reference image. The correlation score is 
defined as the covariance between the grey 
levels of a region defined by the correlation 
window in the current image and the same 
region defined in the reference image. The 
algorithm searches for all similar patches inside 
the correspondent search window. A normalised 
correlation criteria , which assures that the 
result is not altered in presence of nonuniform 
illumination [5], is showed in equation (5). 
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where (2 1) (2 1)α α+ × +  is the size of the 

correlation window. (c c c )I x y,  and ( )r r rI x y,  

are the average intensity and  defines the 
variance of both correlation windows. The 
correlation algorithm compares the correlation 
score of each pixel within the search window 

and selects the highest one.  

2 ( )σ ⋅

We propose a breaking down of criteria  for 
its parallelization. We can observe that there are 
five sums to be computed in equation (5): , 

, ,  and . 

C
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Then, equation (5) becomes:  
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This breaking down leads to an easy parallel 
implementation, while each Processing Element 
(PE) of the architecture executes in parallel the 
computation of these five sums. Furthermore, 
the Post Processing Element (PPE) performs the 

remaining computation.  

When mapping an algorithm into an array of 
processors, the problem is to access multiple 
data to feed all the PEs at the same time. Yang 
et al. [10,12] proposed a solution that consists of 
local data exchange between PEs. Adopting this 
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approach to our design, two parallel memory 
accesses  are used for the same reference 
image and one for the current image ( , see 
Figure 3. Once read from memory, the data are 
broadcasted to every PE. Buffers are used to 
delay data and multiplexers to switch between 
data. For higher utilisation efficiency of the 
architecture, the size of the search window must 
be defined according to the size of the 
correlation window by the equation

1 2(r r, )
)c

2p a= . The 
number of PEs also depends on the size of the 
correlation window and is equal to (2 1)α + . 
One PE is in charge of the parallel computation 
of the five sums defined in equation (6). Two 
accumulations (Acc) and three multiplication-
accumulations (M_Acc) are executed in parallel.  

The results from the array of PEs are pipelined 
into the Post Processing Element (PPE) (see 
figure 2). The PPE computes the correlation 
criteria defined in the equation (7). It can be 

observed that, seven multiplications, three 
substraction, one square root and one division 
have to be implemented in hardware. Parallel 
implementation of these operations is 
performed [7]. The square root implementation 
is based on the non-restoring algorithm 
proposed by Li [9]. The advantage of this 
method is the reduced space occupied on the 
FPGA device and generates an exact result 
value. The last step of the algorithm compares 
all the error measurements corresponding to 
every candidate match. The result of the 
algorithm is the coordinates of the pixel with the 
biggest value for the correlation score. For  
given interest points, the delay introduced by the 
parallel implementation of the correlation 
criteria from equation (7) is given by:  

N

2[2 [(2 1) [(2 1) 2 ] 2 ] ]C PT pα α α PEt N= ⋅ + ⋅ + − + + ⋅ (8) 
where PPEt  is the time delay introduces by PPE. 
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Figure 2. Array of Processing Elements and Post Processing Element.

3. VISION BASED SYSTEM  

Based on the hardware implementation of the 
motion estimation algorithm presented above we 
propose a vision system based on an FPGA 
device for the PC/104+ standard. This system is 
in charge of the acquisition and processing of 
the image, and communication with the control 
system running on a PC/104+ computer. 
Nevertheless, FPGA devices offer the possibility 

of parallel implementation of image processing 
tasks such as: corner detection, solving the 
correspondence problem, etc. Thus, frame-rate 
performance can be achieved. Our previous 
experiments showed that the execution of a 
matching algorithm from sub-section 1 can run 

 times faster in an FPGA-based architecture 
than in a Pentium based PC/104+ computer.  
50

The heart of the proposed system is an Altera 
Stratix EP1S25F672 FPGA device. A balance 
between price and performance was considered 
when choosing the device. Parallel processing of 
computer vision tasks like the one mentioned 
above requires multiple memory accesses. Thus, 
the smart frame grabber is provided with four 
external memories like in the figure 3. One 
solution to obtain real time is to store the 

incoming image in a memory while the previous 
one is being read and processed from another 
memory. The FPGA internal memory is 
reserved for intermediary storage (FIFOs and 
buffers). Computation associated with computer 
vision tasks requires a large area on the FPGA 
device. A commercial PCI controller chip is 
used for FPGA interfacing with the control 
system, so that the FPGA designs need only to 
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interface to a simple synchronous local bus. Figure 3 shows a block 

schema for the FPGA hardware architecture.
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Figure 3. FPGA hardware architecture.

 

 

 
 

 

4.CONCLUSIONS  

This paper has described a parallel 
implementation of the correspondence problem 
for a motion estimation algorithm in order to 
obtain frame-rate performance. This 
implementation defines the constraints for the 
development of a powerful vision system based 
on reconfigurable devices with the goal to be 
integrated in the architecture of an underwater 
robot. The only size and communication 
restrictions of this system are set up by the 
PC/104+ standard. In this way, this board can be 
integrated in any similar system. Due to its 
reconfigurable characteristics, the proposed 
system can be used to solve correspondence 
problem in situations other than motion 
estimation. For instance, when an autonomous 
robot carries a stereo vision system, two boards 
connected together may detect correspondences 
between left and right images in real time. 
Indeed, commercial alternatives to this system 
exist in the market: frame-grabbers, FPGA 
boards for PC/104+, etc. But, input/output 
throughput, memory and computation 

requirements of the computer vision algorithm 
applied to robotics overcome the possibilities of 
these commercial systems. Our system based on 
reconfigurable devices technology, permits real 
time performance, complex design integration, 
high parallelism and flexibility.  
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