
CEAI, Vol.6, No.2, pp.9-14, 2004 Printed in Romania

RECONFIGURABLE ARCHITECTURE TO ESTIMATE THE MOTION
OF AN UNDERWATER VEHICLE

V. Ila, R. Garcia, J. Batlle

Institute of Informatics, Underwater Vision Lab
C/Lluis Santalo S/N, 17071, Girona, Spain

{ viorela,rafa,jbatlle}@eia.udg.es

Abstract.This work proposes a parallel architecture for a motion estimation algorithm. It is well
known that image processing requires a huge amount of computation, mainly at low level
processing where the algorithms are dealing with a great numbers of data-pixel. One of the
solutions to estimate motions involves detection of the correspondences between two images. Due
to its regular processing scheme, parallel implementation of correspondence problem can be an
adequate approach to reduce the computation time. This work introduces parallel and real-time
implementation of such low-level tasks to be carried out from the moment that the current image is
acquired by the camera until the pairs of point-matchings are detected

Keywords: Image matching, Processor arrays systems, Real-time systems, Hardware

1. INTRODUCTION

Presently, different methods for motion
estimation of an underwater vehicle exist,
mainly based on acoustic sensor networks. This
strategy is relatively expensive since
transponders have to be deployed from a ship,
calibrated and recovered after the mission.
Therefore, this procedure is not adequate for low
cost underwater vehicles. One cost-effective
alternative can be to equip the vehicle with a
down-looking camera, which acquires seafloor
images while the robot is performing its
mission. This down-looking camera provides
rich visual information which can be used for
vehicle motion estimation. Our work is focusing
on low-level image processing tasks associated
to the motion detection algorithm where a large
amount of data has to be processed. This paper
explores the possibility of hardware
implementation of some tasks like interest
points detection and matching procedure.

Correlation algorithms have important
properties like regularity and modularity. Thus,
they can be decomposed in computational
blocks that can be processed in parallel. An
extensive literature exists about array
architectures applied to image processing,
especially in Block Matching Algorithms
(BMA) for motion estimation [2,8,10]. Komarek
et al. [8] described specific solutions for array
architectures of full search BMA. They propose
four different alternatives for one and two
dimensional array architectures. In the early
nineties, different other VLSI designs were
proposed for decreasing BMA computation
time [1,2]. While in full search BMA the image
is divided in blocks and the algorithm looks for
matches of every block in a frame, our approach
is looking for correspondences of interest points.
These are scene features which can be reliably
found when the camera moves from one location
to another and lighting conditions of the scene
change. On the other hand, a more complex

CONTROL ENGINEERING AND APPLIED INFORMATICS

10

error measurement criterion like normalised
correlation [13] is applied.

The remainder of this paper is structured as
follows. Section 2 proposes a hardware
implementation for motion estimation algorithm.
Section 3 defines some specification of the
FPGA-based hardware for motion estimation of
an underwater robot. Finally, section 4 outlines
the conclusions and future work.

2. HARDWARE IMPLEMENTATION OF
THE MOTION ESTIMATION

ALGORITHM

The goal of the algorithm is to estimate the
motion of an underwater robot. Point
correspondences between the current image
acquired by the camera and a previous reference
image have to be found in order to compute a
motion estimation matrix. Often this means
detecting features in one image, and matching
them in the other one. The selection of features
may depend on the application, although points
are commonly used because they can be easily
extracted and are quite robust to noise.
Underwater images are difficult to process due
to the medium transmission properties and non-
uniform illumination [6]. These aspects can
provoke undesired bad correspondences
(outliers) that can introduce errors in the motion
estimation process. For this reason normalised
correlation is very adequate to reduce the
influence of non-uniform illumination [4,13].

2.1. Real time feature detection

The first step in solving the correspondence
problem is the detection of a set of well-
contrasted points in the current image. Corner
detector algorithms consist of computing the
image gradient components: xI and yI by
convolving the current image with the Prewitt
masks. Benedetti et al. [2,3] proposed a
modified Tomasi-Kanade [11] algorithm which
reduce the computation and avoids floating-
point. In this algorithm a G matrix is
considered.

2 2

1 1

2 2

1 1

() ()

() ()

N N
k k k
x x y

k k

N N
k k k
x y y

k k

I I I
a b

G
b cI I I

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟

= =⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟= =⎝ ⎠

⎛ ⎞
= = ⎜ ⎟

⎝ ⎠

∑ ∑

∑ ∑
(1)

The algorithm, first calculates , ()a i j, ()b i j,

and (c i j), ; then

2() ()()
t t tP i j a c bλ λ λ, = − − − (2)

is found. Every pixel having:
() 0 ()

t tP i j and a i jλ λ, > , > (3)

is retained, where tλ is the imposed lower
bound for the solutions of the equation (2).

The last step of the algorithm discards any pixel
that is not a local maximum of ()

t
P i jλ , .

interest points are selected, considering the
highest values for . In this approach the
complexity is considerably reduced and does not
require any floating point operation. As is
showed above, the first step in corner detection
is the computation of the image gradient
components

N

()
t

P i jλ ,

xI and yI by convolving the
current image with a set of 3 Prewitt masks.
Benedetti et al. [3] proposed an implementation
based on two FIFOs and two buffers used to
delay the incoming pixel. The Data Flow Graph
(DFG) for the image convolution with the
Prewitt masks and summing elements inside a

3×

3 3× window are shown on the right side of
Figure2. The delay introduced by the corner
detector is important, since we are interested in
the memory address of the N corners instead of
their value of cornerness. Every window
generator introduces a latency of two lines and
two pixels. The delay introduced by the
computation of

3 3×

t
Pλ is showed in equation 4 and

depends on the image size (i i)M N× , pixel
sampling time and the time spent for one
computational blocks from figure 1: Prewitt

()st

()Pt , Sum and Compute ()St t
Pλ (.)Ct

2 (2 1)
tP i P ST M st t t
λ Ct= ⋅ ⋅ + ⋅ + + + (4)

a b c

Window
Generator

Window
Generator

Window
Generator

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

Compute Pλt

Retain Pλt <0 and
a>λt

Ix² Ixy Iy²

Cornerness

Image

Window
Generator

++

+ +

+ +

+ +

--

XX X

Ix² Ixy Iy²

a b c

Window
Generator

Window
Generator

Window
Generator

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

Compute Pλt

Retain Pλt <0 and
a>λt

Ix² Ixy Iy²

Cornerness

a b c

Window
Generator

Window
Generator

Window
Generator

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

Compute Pλt

Retain Pλt <0 and
a>λt

Ix² Ixy Iy²

Cornerness

Image

Window
Generator

++

+ +

+ +

+ +

--

XX X

Ix² Ixy Iy²

Image

Window
Generator

++

+ +

+ +

+ +

--

XX X

Ix² Ixy Iy²

CONTROL ENGINEERING AND APPLIED INFORMATICS 11

Figure 1. Corner detector DFG. a) Prewitt
mask. b) Cornerness computation.

In order to retain pixels with highest value of N

t
Pλ , a pipeline of interconnected Sort-
Processing Elements (SPE) is proposed. One
SPE compares the input value with the one
stored in its buffer and retains the highest
cornerness value.

N

2.2. Parallel implementation of
correspondence problem

Once interest points are detected in the current
image cI , we search for correspondences in the

reference image rI . A correlation algorithm
provides, for each interest point ()c cx y, of the
current image, its corresponding match ()r rx y,
in the reference image. The correlation score is
defined as the covariance between the grey
levels of a region defined by the correlation
window in the current image and the same
region defined in the reference image. The
algorithm searches for all similar patches inside
the correspondent search window. A normalised
correlation criteria , which assures that the
result is not altered in presence of nonuniform
illumination [5], is showed in equation (5).

C

2 2 2

(() ())(() ())

(2 1) () ()

c c c c c c r r r r r r

c r

I x i y j I x y I x i y j I x y
C

I I

α α

α α

α σ σ
− −

+ , + − , + , + − ,
=

+ ⋅

∑∑
 (5)

where (2 1) (2 1)α α+ × + is the size of the

correlation window. (c c c)I x y, and ()r r rI x y,

are the average intensity and defines the
variance of both correlation windows. The
correlation algorithm compares the correlation
score of each pixel within the search window

and selects the highest one.

2 ()σ ⋅

We propose a breaking down of criteria for
its parallelization. We can observe that there are
five sums to be computed in equation (5): ,

, , and .

C

1sum

2sum 3sum 4sum 5sum

 (6)

1

2
2

3

2
4

5

()

()

() (

()

()

c c c
i j

c c c
i j

c c c r r r
i j

r r r
i j

r r r
i j

sum I x i y j

sum I x i y j

sum I x i y j I x i y j

sum I x i y j

sum I x i y j

α α

α α

α α

α α

α α

α α

α α

α α

α α

α α

=− =−

=− =−

=− =−

=− =−

=− =−

= + , +

= + , +

= + , + ⋅ + , +

= + , +

= + , +

∑ ∑

∑ ∑

∑ ∑

∑ ∑

∑ ∑

)

Then, equation (5) becomes:

2

2

1
3 1 5(2 1)

2 2 21
2 1 4(2 1)

[(2 1)] [(2 1)]

sum sum sum
C

sum sum sum sum
α

α
α α

+

+

− ⋅ ⋅
=

⋅ + ⋅ − ⋅ + ⋅ − 2
5

 (7)

This breaking down leads to an easy parallel
implementation, while each Processing Element
(PE) of the architecture executes in parallel the
computation of these five sums. Furthermore,
the Post Processing Element (PPE) performs the

remaining computation.

When mapping an algorithm into an array of
processors, the problem is to access multiple
data to feed all the PEs at the same time. Yang
et al. [10,12] proposed a solution that consists of
local data exchange between PEs. Adopting this

CONTROL ENGINEERING AND APPLIED INFORMATICS

12

approach to our design, two parallel memory
accesses are used for the same reference
image and one for the current image (, see
Figure 3. Once read from memory, the data are
broadcasted to every PE. Buffers are used to
delay data and multiplexers to switch between
data. For higher utilisation efficiency of the
architecture, the size of the search window must
be defined according to the size of the
correlation window by the equation

1 2(r r,)
)c

2p a= . The
number of PEs also depends on the size of the
correlation window and is equal to (2 1)α + .
One PE is in charge of the parallel computation
of the five sums defined in equation (6). Two
accumulations (Acc) and three multiplication-
accumulations (M_Acc) are executed in parallel.

The results from the array of PEs are pipelined
into the Post Processing Element (PPE) (see
figure 2). The PPE computes the correlation
criteria defined in the equation (7). It can be

observed that, seven multiplications, three
substraction, one square root and one division
have to be implemented in hardware. Parallel
implementation of these operations is
performed [7]. The square root implementation
is based on the non-restoring algorithm
proposed by Li [9]. The advantage of this
method is the reduced space occupied on the
FPGA device and generates an exact result
value. The last step of the algorithm compares
all the error measurements corresponding to
every candidate match. The result of the
algorithm is the coordinates of the pixel with the
biggest value for the correlation score. For
given interest points, the delay introduced by the
parallel implementation of the correlation
criteria from equation (7) is given by:

N

2[2 [(2 1) [(2 1) 2] 2]]C PT pα α α PEt N= ⋅ + ⋅ + − + + ⋅ (8)
where PPEt is the time delay introduces by PPE.

Ti
m

in
g

C
on

tro
l DFF

DFF

PE
0

PE
1

PE
2α

MUX

MUX

MUX

DFF

c
r1

r2

·
·
·

·
·
·

DFF

···

P
PE

C
om

pa
ra

to
r m

od
ul

e

M
ux

Ti
m

in
g

C
on

tro
l DFF

DFF

PE
0

PE
1

PE
2α

MUX

MUX

MUX

DFF

c
r1

r2

·
·
·

·
·
·

DFF

···

P
PE

C
om

pa
ra

to
r m

od
ul

e

M
ux

Figure 2. Array of Processing Elements and Post Processing Element.

3. VISION BASED SYSTEM

Based on the hardware implementation of the
motion estimation algorithm presented above we
propose a vision system based on an FPGA
device for the PC/104+ standard. This system is
in charge of the acquisition and processing of
the image, and communication with the control
system running on a PC/104+ computer.
Nevertheless, FPGA devices offer the possibility

of parallel implementation of image processing
tasks such as: corner detection, solving the
correspondence problem, etc. Thus, frame-rate
performance can be achieved. Our previous
experiments showed that the execution of a
matching algorithm from sub-section 1 can run

 times faster in an FPGA-based architecture
than in a Pentium based PC/104+ computer.
50

The heart of the proposed system is an Altera
Stratix EP1S25F672 FPGA device. A balance
between price and performance was considered
when choosing the device. Parallel processing of
computer vision tasks like the one mentioned
above requires multiple memory accesses. Thus,
the smart frame grabber is provided with four
external memories like in the figure 3. One
solution to obtain real time is to store the

incoming image in a memory while the previous
one is being read and processed from another
memory. The FPGA internal memory is
reserved for intermediary storage (FIFOs and
buffers). Computation associated with computer
vision tasks requires a large area on the FPGA
device. A commercial PCI controller chip is
used for FPGA interfacing with the control
system, so that the FPGA designs need only to

CONTROL ENGINEERING AND APPLIED INFORMATICS 13

interface to a simple synchronous local bus. Figure 3 shows a block

schema for the FPGA hardware architecture.

416x288
Resize Image

374x2246

SYNC_H1

SYNC_V1

Clk_pixel

SYNC_H

SYNC_V

camera
A/D

8

SYNC_H

SYNC_V

Clk
div

Clkx4
Clk x 2

Clk

SYNC_H1

SYNC_V1

Clk_pixel

SYNC_H

SYNC_V

Control

Clk
Acrl

R
ea

d
M

em
or

ie
s

R
ef

er
en

ce
Im

ag
e

Corner Memory Address

…

Bu
ffe

rs
 a

nd
M

ul
tip

le
xe

rs

Clk

Acrl

c

r2

r1

C
ur

re
nt

Im
ag

e

FPGA

CE1 CE2 CE200

…PE0 PE1 PEα

Mux

C
ur

re
nt

Im
ag

e
M

E
M

 1
R

ef
er

en
ce

Im
ag

e
M

E
M

 3

M
E

M
 2

M
E

M
 4

Store
Current
Image

Compare Element Array

Processing Element Array

Compare

PCI Controller
Interface

d

d

@

@

d

d

@

@

Delay @

Store
Reference

Image

Corner
Detector

d

@
Pair Point- Matching

D
el

ay
@

PPE

416x288
Resize Image

374x2246

SYNC_H1

SYNC_V1

Clk_pixel

SYNC_H

SYNC_V

camera
A/D

8

SYNC_H

SYNC_V

Clk
div

Clkx4
Clk x 2

Clk

SYNC_H1

SYNC_V1

Clk_pixel

SYNC_H

SYNC_V

Control

Clk
Acrl

R
ea

d
M

em
or

ie
s

R
ef

er
en

ce
Im

ag
e

Corner Memory Address

…

Bu
ffe

rs
 a

nd
M

ul
tip

le
xe

rs

Clk

Acrl

c

r2

r1

C
ur

re
nt

Im
ag

e

FPGA

CE1 CE2 CE200

…PE0 PE1 PEα

Mux

C
ur

re
nt

Im
ag

e
M

E
M

 1
R

ef
er

en
ce

Im
ag

e
M

E
M

 3

M
E

M
 2

M
E

M
 4

Store
Current
Image

Compare Element Array

Processing Element Array

Compare

PCI Controller
Interface

d

d

@

@

d

d

@

@

Delay @

Store
Reference

Image

Corner
Detector

d

@
Pair Point- Matching

D
el

ay
@

PPE

416x288
Resize Image

374x2246

SYNC_H1

SYNC_V1

Clk_pixel

SYNC_H

SYNC_V 416x288
Resize Image

374x2246

SYNC_H1

SYNC_V1

SYNC_H1

SYNC_V1

Clk_pixelClk_pixel

SYNC_H

SYNC_V

SYNC_H

SYNC_V

cameracamera
A/D

8

SYNC_H

SYNC_V

SYNC_H

SYNC_V

Clk
div

Clkx4
Clk x 2

Clk
Clk
div

Clkx4Clkx4
Clk x 2Clk x 2

ClkClk

SYNC_H1

SYNC_V1

SYNC_H1

SYNC_V1

Clk_pixel

SYNC_H

SYNC_V

Control

ClkClk
AcrlAcrl

R
ea

d
M

em
or

ie
s

R
ef

er
en

ce
Im

ag
e

Corner Memory Address

…

Bu
ffe

rs
 a

nd
M

ul
tip

le
xe

rs

ClkClk

AcrlAcrl

c

r2

r1

C
ur

re
nt

Im
ag

e

FPGA

CE1 CE2 CE200

…PE0 PE1 PEα

Mux

C
ur

re
nt

Im
ag

e
M

E
M

 1
R

ef
er

en
ce

Im
ag

e
M

E
M

 3

M
E

M
 2

M
E

M
 4

Store
Current
Image

Compare Element Array

Processing Element Array

Compare

PCI Controller
Interface

d

d

@

d

@

@@

dd

d

@

@@

Delay @

Store
Reference

Image

Corner
Detector

d

@
Pair Point- Matching

D
el

ay
@

PPE

Figure 3. FPGA hardware architecture.

4.CONCLUSIONS

This paper has described a parallel
implementation of the correspondence problem
for a motion estimation algorithm in order to
obtain frame-rate performance. This
implementation defines the constraints for the
development of a powerful vision system based
on reconfigurable devices with the goal to be
integrated in the architecture of an underwater
robot. The only size and communication
restrictions of this system are set up by the
PC/104+ standard. In this way, this board can be
integrated in any similar system. Due to its
reconfigurable characteristics, the proposed
system can be used to solve correspondence
problem in situations other than motion
estimation. For instance, when an autonomous
robot carries a stereo vision system, two boards
connected together may detect correspondences
between left and right images in real time.
Indeed, commercial alternatives to this system
exist in the market: frame-grabbers, FPGA
boards for PC/104+, etc. But, input/output
throughput, memory and computation

requirements of the computer vision algorithm
applied to robotics overcome the possibilities of
these commercial systems. Our system based on
reconfigurable devices technology, permits real
time performance, complex design integration,
high parallelism and flexibility.

5. REFERENCES

[1] P. Baglietto, M. Maresca, A. Migliaro, and
M. Migliardi. Parallel implementation of the full
search block matching algorithm for motion
estimation. In Proceedings of the International
Conference on Application Specific Array
Processors, pages 182 –192, 24-26 July 1995.
[2] A. Benedetti and P. Perona. Real-time 2-D
feature detection on a reconfigurable computer.
In IEEE Computer Society Conference on
Computer Vision and Pattern Recognition,
pages 586 –593, 23-25 June 1998.
[3] A. Benedetti, A. Prati, and N. Scarabottolo.
Image convolution on FPGAs: the
implementation of a multi-FPGA FIFO

CONTROL ENGINEERING AND APPLIED INFORMATICS

14

structure. In Proceedings on Euromicro
Conference 1998., pages 123 –130 vol.1, Aug.
1998.
[4] X. Cufí, R. Garcia, and R. Ridao. An
approach to vision-based station keeping for an
unmanned underwater vehicle. In IEEE/RSJ
International Conference on Intelligent Robots
and Systems, pages 799–804, Lausanne, 2002.
[5] R. Garcia, X. Cuf´ı, and V. Ila. Recovering
camera motion in a sequence of underwater
images through mosaicking. In First Iberian
Conference on Pattern Recognition and Image
Analysis, Lecture Notes in Computer Science ,
no. 2652, pages 255–262, 2003.
[6] R. Garcia, T. Nicosevici, and X. Cufí. On the
way to solve lighting problems in underwater
imaging. In IEEE OCEANS Conference
(OCEANS), pages 1018–1024, Mississipi, 2002.
[7] V. Ila, R. Garcia, and F. Charot. Proposal of
a parallel architecture for a motion detection
algorithm. In International Conference on
Pattern Recognition, Cambridge, Aug. 2004.
[8] T. Komarek and P. Pirsch. Array
architectures for block matching algorithms.
IEEE Transactions on Circuits and Systems,
36:1301 –1308, 10 , Oct 1989.

[9] W. Li and W. Chu. A new non-restoring
square root algorithm and its VLSI
implementations. In 1996 IEEE International
Conference on Computer Design: VLSI in
Computers and Processors, pages 538 – 544, 7-
9 Oct. 1996.
[10] M.-T. Sun and K.-M. Yang. A flexible
VLSI architecture for full-search block-
matching motion-vector estimation. In
Proceedings of the IEEE International
Symposium on Circuits and Systems, pages 179
–182 vol.1, 8-11 May 1989.
[11] C. Tomasi and T. Kanade. Detection and
tracking of point features. Cmu-cs-91-123,
Carnegie Mellon University, Apr. 1991.
[12] K.-M. Yang, M.-T. Sun, and L. Wu. A
family of VLSI designs for the motion
compensation block-matching algorithm. IEEE
Transactions on Circuits and Systems, pages
1317 –1325, Oct. 1989.
[13] Z. Zhang, R. Deriche, O. D. Faugeras, and
Q.-T. Luong. A robust technique for matching
two uncalibrated images through the recovery of
the unknown epipolar geometry. Artificial
Intelligence, 78(1-2):87–119, 1995.

