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Abstract: This paper presents the adaptive control for linear systems modelled by δ -models. The 
process is identified by regression (ARX) model using the recursive least-squares method with LD 
decomposition and applied directional forgetting. Controller synthesis is designed on the basis of 
a practical criterion for digital PID control loops. 
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1. INTRODUCTION 
 

The widely use of digital process computer as 
control unit of the control loop in automatic 
systems had imposed the improvement of the 
discrete-time model identification. Using the 
computer as controller, impose to utilize sampler 
and holder in combination with analogue-digital 
and digital analogue converters as interface 
between the differently operating dynamic 
systems. The sampler samples the continuous 
signal in k-multiples of sampling periods to 
produce an output signal as an impulse sequence 
in discrete time tk=kTS, where TS is the sampling 
period. The height of impulses is equal to the 
value of the input signal over the sampling 
period. For technological process control the 
zero-order holder is used almost exclusively to 
hold the impulse constant over the entire 
sampling period. We must therefore use suitable 
mathematical description to express the dynamic 
behavior of the thus discretized members of the 
control loop. One such description is an 
expression using the Z-transformation. If G(s) is 
the transfer function of a continual dynamic 
system, then the following expression for the 
discrete transfer function with the zero-holder is 
valid: 
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This step transfer function (1) is a rational 
polynomial function with variable z. The simple 
model structure identification by using 
measurable data, being most good suitable for 
the synthesis of the discrete control loop and for 
the description and expression of different types 
of stochastic processes including disturbance 
modeling, are the main advantages of the Z-
transformation (1).  

The step z-transform function has some 
disadvantages when sampling period decrease:  

- the Z-transformation parameters do not 
converge as the sampling period decreases to 
the Laplace – transformation continuous 
parameters from which the are derived; 

- very small sampling periods yield very 
small numbers from the transfer function 
numerator; 

- the poles transfer function approaches 
the unstable domain as the sampling period 
decreases. 

These disadvantages can be avoided by 
introducing a more suitable discrete model ([1], 
[2]), a half-way between discrete models and 
continuous models. 
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2. DELTA-MODELS 
 

For this purpose the δ - model is the most 
suitable, where parameter δ  converges with 
decreased sampling period TS to a continuous 
operator s  

s
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It is possible to prove that equality  
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holds for interval 10 ≤≤ α . By substituting α  
into equation (3) we obtain an infinite number of 
new δ -models. The most widely know and used 
δ -models in practice are: 
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forward δ -model  
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Tustin δ -model 
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backward δ -model. 

In this paper we will use only the forward δ -
model (4). The δ -models will be used of 
process modeling adaptive control based on self-
tuning controller. The main idea of the self-
tuning controller is based on a recursive 
identification procedure and a selected control 
synthesis. For this reason it is necessary to apply 
suitable recursive identification algorithm to this 
model.  
 
 
3. PROCESS IDENTIFICATION 

 
For parameter estimation of the δ -model, the 
recursive least-squares method with LD 
decomposition and with directional forgetting is 
applied [3]. 
A useful model to apply this method of 
identification is the regression (ARX) model 
which is often expressed in its compact form: 

)()1()()( knkkky T +−= ϕθ                        (7) 
where 
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is the parameter vector and 
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is the regression vector (y(k) is the process 
output variable, u(k) is the controller output 
variable). The non-measurable random 

component n(k) is assumed to have zero mean 
value E[n(k)]=0 and constant covariance 
(dispersion) R=E[n2(k)]. 

We use for the system a δ -second-
order model with transfer function: 
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which can be rearranged into the form: 
)()()()()( 2121

2 δδδδδδδδ ububyayay ++−−=   (11) 

By substituting δ from relation (4) and 
multiplying by z-2 we obtain the equation: 
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where Y(z) and U(z) are the Z-transforms 
process output y(k) and controller output u(k) 
variables, respectively.  
The stochastic discrete model for δ parameter 
estimates is then in the form: 
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From equation (13) and (14) it is obvious that 
the parameter vector has the same form as (8), 

[ ]2121 ,,,)1( bbaakT =−δθ                     (15) 
and the regression vector is 
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One obtain the following model for the 
regression algorithm (ARX): 

)()1()()( knkkky T +−= δδδ ϕθ        (17) 
Directional forgetting supports the recursive 
least-squares method is utilized for calculating 
the parameter estimates and adaptation. The 
value of the directional forgetting factor )(kγ  
depends on the level of conformity achieved 
between the model and the real behavior of the 
system. In this case, it is a minimized criterion: 
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where k0 is the identification start and  
)1()()( −−= iiyie T

δδδδ ϕθ                     (19) 

The algorithm of the recursive least-squares 
method with directional forgetting consists of 
the following steps in each sampling period: 
1. Choosing the initial vector of parameter 
estimates )0(δθ  the main diagonal of the 
covariance matrix Cii(0), directional forgetting 
factor ),0(),0(),0( νλγ  and ρ . 
2. Calculating the prediction error from the 
following expression:  

                   (20) )1()()( −−= kkyke T
δδδδ γθ

3. Calculating auxiliary variables from the 
following relations: 
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4. Calculating the directional forgetting factor 
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5. Calculating the auxiliary variable  
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6. If 0)1( >−kξ the covariance matrix is 
actualized using the expression: 

)1()(
)1()1()1()1()1()( 1 −+

−−−−
−−= − kk

kCkkkCkCkC
T

ξε
ϕϕ δδ  

      (24) 
else, if  
              0)1( =−kξ ,  
         then  
              C(k)=C(k-1). 
7. The actualization of the parameter estimates 
the vector: 
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The start-up conditions are chosen according to 
a priori information. 
 
 
 
 

4. ADAPTIVE FEEDBACK REGULATION 
 

4.1. Critical proportional gain 
 

Let the system be described by the single input - 
single output (SISO) δ -model in the form of the 
discrete equation  
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which is controlled by the proportional 
controller  

Hr(s)=KP
The command is:  
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Substituting equation (27) into equation (26) we 
obtain the closed control loop equation 
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One obtain the following transfer function of the 
closed control loop 
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and by substituting 

bKba P =+ 11 cKba P =+ 22  
one obtain the transfer function in the form 
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The denominator of the transfer function (31) is 
the characteristic polynomial 

cbD ++= δδδ 2)(             (32) 
whose poles determine the behavior of the 
closed control loop. 

There are three possibilities for pole placement 
of the characteristic polynomial on the circle: 
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Fig.1 Pole placement of the characteristic polynomial 

on the circle 
 
One obtain two equation: 
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One obtain two equation: 
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One obtain two equation: 
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4.2. Critical period of oscillation 

 
The denominator can be expressed in the 
following form : 

2
2 )cos1(2)cos1(2

S

S

S

S

T
T

T
TD ωδωδ −

+
−

+=        (37) 

where  

c
T

Tb
T

T

S

S

S

S =
−

=
−

2

)cos1(2,)cos1(2 ωω                (38) 

We can derive the relation to calculate the 
critical frequency from the first or second 
equation (38). By substituting b and c into (38) 
one obtain the following expressions: 
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and for the critical period of oscillations Tc 
holds 
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4.3. Adaptive scheme 
 
 For practical use the recurrent control 
algorithms which compute the actual value of 
the controller output u(k) from the previous 
value  u(k-1) and from compensation increment 
seem to be suitable: 

u(k)=u(k-1)+b0e(k)+ b1e(k-1)+ b2e(k-2) 
where controller parameters are:  

b0, b1, b2=f(KP, Td, Ti, T). 
 

The PID controller designed by Takashi et al. 
has been modified because the amplitude 
changes of the controller output u(k) are further 
reduced if the reference variable v(k) is only 
present in the integration form. The change of 
the process output variable y(k) on the reference 
value is then mainly controlled through the 
integral component 
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In the following figure is presented the 
adaptation scheme: 
 

G(s) 

Parameter 
identification 

Tc, ωc 

Parameter 
update law 

Controller u(t) y(t) 

Fig. 2 Adaptation scheme 
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5. SIMULATION EXAMPLE 
 

     As examples of verification by computer 
simulation, two proportional second-order 
systems were used: 

23
1)(
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sH  and     
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ss
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     The following figures show the simulation 
results: 
 
 

 
Fig. 3 Convergence of parameter estimates for H1(s) 

 

 
Fig. 4 Step response for H1(s) 

 

 

 

 
Fig. 5 Convergence of parameter estimates for H2(s) 

 

 
Fig. 4 Step response for H2(s) 
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