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Abstract: This paper presents a methodology to compute all stabilizing robust PI and PID controllers for 

multiple time delay systems with parametric uncertainty structure. The method is based on the 

computation of the stability regions in a parameter space of the PI and PID controllers. Analytical 

expressions are derived to construct the boundaries of the stability region. All values of the controller 

parameters in the proposed stability region guarantee the robust stability of multiple time delay systems. 

A case study illustrates the effectiveness of the proposed method. 
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1. INTRODUCTION 

Time delay is unavoidable in practice with real control 

systems due to measurement lags, analysis times or 

computation lags as well as a number of other factors 

(Fridman et al., 2010). Control system designers may 

sometimes neglect relatively small delays in which the 

systems still satisfy design requirements. But time delay may 
cause instability in real applications, and its effects cannot be 

underestimated. Therefore, the stability problems of the time 

delay systems have been main topic of study for many 

researchers over the last few decades (Debeljković, 2010). 

Several studies on different kind of time delay structure have 

been proposed in literature due to its importance in control 

applications. It is reported that the multiple time delay 

structure is one of the important kind of time delay in the 

literature (Sipahi and Olgac, 2006). Thus, the results on 

multiple time delay systems will contribute researches in this 

direction.  

Although the stability problems of the control systems with 

only one single delay have been studied extensively, limited 

research has been done analyzing the stability of multiple 

time delay systems, which are more complex to solve (Sipahi 

and Olgac, 2006). Multiple time delay system exhibit hyper-

chaos and have more complicated dynamics than in single 

delay systems (Debeljković, 2010). In recent studies, these 

systems have become a topic of interest due to their potential 

applications in various fields. Many such studies on multiple 

time delay systems can be found in (Lua et al., 2005; Wang et 

al., 2009; He et al., 2011; Ma et al., 2010; Fridman and 

Shaked, 2002) and the references therein.  

On the other hand, parameter uncertainty, which also disturb 

the stability of the control process, is one of the main topics 

for real systems. These uncertainties may be due to additive 

unknown internal or external noises, environmental 

influences, external disturbances, and parameter perturbations 

(Ma et al., 2010). Not only the problem of controlling time 

delay systems has become an important subject over the last 

few decades, but also controlling time delay systems in the 

presence of uncertainty has become a challenging task for 

researchers (Hien and Phat, 2009). Consequently, 

investigation of the methods for uncertain multiple time delay 

systems’ stability problems will be important. 

Several controller tuning methods have been proposed for 

stability problems of control systems. Controller tuning for a 

control system is a process of obtaining the controller 

parameters required to meet given performance 
specifications. The most common controllers in industrial 

applications are the proportional (P), proportional-integral 

(PI), proportional derivative (PD) and proportional integral 

derivative (PID) controllers due to their simplicity and 

reliability (Xue et al., 2007). There have been a significant 

amount of researches on PI, PD and PID controllers in the 

literature. Stability regions of these controller parameters 

have been investigated during the last decade and many 

important results have been reported on the computation of 

all stabilizing P, PI and PID controllers after the publication 

of a study by Ho et al. (Ho et al., 1996; Ho et al., 1997). This 
approach has shown that for a fixed proportional gain, the set 

of stabilizing integral and derivative gains lie in a convex set. 

Stabilizing controllers have been the focus of several studies 

over the last decade due to the importance of the stability 

region in controllers. Several such studies have been 

previously discussed for the integer order and fractional order 

systems with time delays in (Tan et al., 2006; Hamamci, 

2007; Hamamci, 2008; Tan, 2003) and the references therein.  

Since the stability of multiple time delay systems is 

challenging research area, stability analysis of multiple time-

delay systems with applications are extensively studied 

(Delice, 2011) and these systems become one of the active 
areas of control research. Thus, multiple time delay systems 

with parametric uncertainty warrant attention regarding their 

stabilizing controllers due to their importance in various real 

processes. The novel contribution of this paper lies in 

computing all stabilizing PI and PID controllers in ( , )p ik k  

and ( , , )p i dk k k  parameter space respectively that guarantee 

the robust stability of the multiple time delay systems with 

parametric uncertainty under all parameter perturbations.  



CONTROL ENGINEERING AND APPLIED INFORMATICS      21 

 

 

In this paper, the expressions for the PI and PID controller 

parameters pk , ik  and dk  are derived. The complex root 

boundary of a system in the parameter space is obtained 

using the expressions for the parameters pk , ik  and dk . The 

real root boundary and the infinite root boundary of a system 

are calculated using the closed loop characteristic polynomial 

of an uncertain multiple time delay system that is controlled 

with PI or PID controller. Then, all stabilizing parameters of 

the robust PI and PID controllers are calculated for the 

system under all parameter perturbations. The proposed 

methodology can also be extended to the various types of the 

multiple time delay system that is separated into even and 
odd parts. One can obtain expressions for the controller 

parameters pk , ik  and dk  using even and odd parts of the 

plant. Then, stability boundary can be computed for the 

desired plant.  

Rest of the paper is organized as follows: The problem 

statement and preliminaries are introduced in Section II. In 

Section III, a method is proposed for calculating robust 

stabilizing controllers. A case study is presented in Section 

IV. Finally, Section V presents the conclusions. 

2. PROBLEM STATEMENT AND PRELIMINARIES 

The state space representation is a mathematical model of a 

physical system as a set of input, output and state variables 

related to first-order differential equations. The task of 
modeling state space representation of a system is to obtain 

the elements of the matrices and to write the system model in 

the following form (He et al., 2011), 

x Ax Bu

y Cx Du

 

 
                                                                      (1) 

The matrices A and B are properties of the system that are 

determined by the system’s structure and elements. The 

output equation matrices C and D are determined by the 

particular choice of output variables. A linear continuous-

time system with multiple time delays can be represented as 

(He et al., 2011; He et al., 2006),  

0

1

( ) ( ) ( ) ( )

( ) ( ) ( )

m

j j

j

x t A x t A x t Bu t

y t Cx t Du t





   


  


                       (2)  

where  0A  and ( 1,2, )jA j m  are ( )n n  dimensional 

state matrices,  B is the input matrix of ( )n p  

dimensional, C  is the output matrix of ( )q n  

dimensional, D  is the direct transmission matrix of 

( )q p  dimensional,  ( ) nx t R  is the system state vector, 

( ) pu t R  is the system input vector, ( ) qy t R  is the 

system output vector and 0 ( 1,2, )j j m    are constant 

state delays in the system. Therefore the transfer function of 

this system can be obtained as follows, 

1

0

1

( )
( )

( )

j

m
s

j

j

N s
G s C sI A A e B D

D s







 
     

 
         (3) 

The stability analysis of time delay systems with or without 

uncertainties has been an active research area for the past 

decades (Cao et al., 2003). Time delays and uncertainties 

may frequently cause instability in real control applications. 

Consequently, the stability analysis of linear continuous-time 

multiple state delayed uncertain systems has attracted the 
attention of the researchers. The compensator design in 

classical control engineering is based on plants with fixed 

parameters. In the real world, however, most practical system 

models are not precisely known, meaning that systems 

contain uncertainties (Cao et al., 2003). Much recent work on 

systems with uncertain parameters has been based on 

Kharitonov’s findings (Kharitonov, 1979) on the stability of 

interval polynomials. Using the Kharitonov theorem, there 

have been many developments in the field of parametric 

robust control related to the stability and performance 

analysis of uncertain control systems, which are represented 

as interval plants (Bhattacharyya et al., 1995).  

In classical control, the transfer function of a system with 

parametric uncertainty can be defined as follows, 

1

1 0

1

1 0

( )
( )

( )

m m

m m

n n

n n

q s q s qN s
G s

D s p s p s p









  
 

  
                        (4) 

where [ , ] , 1,2,i i iq q q i m   and [ , ]j j jp p p , 

1,2,j n . The parameters iq  and jp  represent the lower 

limits, and 
iq  and jp  represents the upper limits of the 

uncertain parameters 
iq  and jp , respectively. Similarly, the 

state space representation of a system may also be defined at 

a certain interval due to the tolerance values of the system’s 

parameters. In that case, the ( )n n  dimensional state 

matrix of a system with parametric uncertainty can be given 

as follows, 

(1,1) (1,1) (1, ) (1, )

(2,1) (2,1) (2, ) (2, )

( ,1) ( ,1) ( , ) ( , )

[ ] [ ]

[ ] [ ]

[ ] [ ]

( 0, 1, 2, )

j j j n j n

j j j n j n

j

j n j n j n n j n n

a a a a

a a a a

A

a a a a

j m

 
 
 
 
 
 
 
 
 
 



           (5)           

where (1,1) (1,2) ( , ), ,j j j n na a a   represent the lower 

limits of the parameters of the coefficient matrices while 

(1,1) (1,2) ( , ), ,j j j n na a a  represent the upper limits. The 

transfer function of the state space representation of multiple 

time delay systems with parametric uncertainty is required to 

compute all stabilizing controllers for these types of systems. 

Interval representation of the transfer function is obtained by 

substituting (5) in (3) for this case.  

http://en.wikipedia.org/wiki/Differential_equation
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3. COMPUTATION OF ROBUST STABILIZING PID 

CONTROLLERS 

Stabilization problem are widely studied due to importance in 

control applications (Sarjaš et al., 2011) and robust controller 

design (Chowdhury et al., 2011). Thus, stabilizing controllers 

for different kind of systems are promising subject. New 

studies fill some gaps in stabilizing controller researches. 

Such as, an approach of stabilization and control of time 

invariant systems of arbitrary order, which include several 

time delays in the form of 
1

( ) ( ) i
N s

ii
G s G s e




 , was 

recently proposed by (Karoui et al. 2013). However, the 

robust stabilizing controllers design for multiple time delay 

systems with parametric uncertainty still needs investigation. 

In this section, we extended the stabilizing controller design 

problem, which is discussed in (Tan et al., 2006; Hamamci, 

2007; Hamamci, 2008; Tan, 2003) and the references therein, 

to multiple time delay systems with parametric uncertainty. 

The proposed stabilizing controllers satisfy the robust 

performance of the uncertain system. Consider the closed 
loop control system in Fig. 1. Let the transfer function of the 

plant be multiple time delay system with parametric 

uncertainty and let the controller be PID type. The stability of 

this system can be investigated for all stabilizing values of 

PID controllers.  

 

 

 

 

Fig. 1. Negative unity feedback control system. 

Consider the plant in Fig. 1  ( ) ( ) ( )G s N s D s  and the PID 

controller ( )C s  of the following form, 

( ) i
p d

k
C s k k s

s
                                                             (6) 

The characteristic equation of the system is  

( ) ( , , , ) 1 ( ) ( ) 0p i ds s k k k C s G s                         (7) 

The closed loop characteristic polynomial ( )s  of the 

system in Fig. 1 can be obtained as, 

2( ) ( ) ( ) ( )d p is sD s k s k s k N s                               (8) 

The closed loop system is said to be bounded input bounded 

output stable if the quasipolynomial ( , , , )p i ds k k k  has no 

roots in the open right half of the s-plane.  In other words, all 

roots of the quasipolynomial ( , , , )p i ds k k k  lie in the 

closed left half of the s-plane for the stability domain in the 

parameter space of pk , ik  and dk . Therefore, it is 

important to determine the stability domain for the controller 

design to control the multiple time delay system with 

parametric uncertainty. The stability boundary in the 

parameter space of the PI or PID controller can be

determined by real root, complex root and infinite root 

boundaries of the system. Then, the stability region can be 

easily computed to satisfy stability conditions using these 

stability boundaries of the system.  

The stability boundaries can be defined as (Hamamci, 

2007; Tan, 2003): 

Definition 1: Real Root Boundary (RRB): A real root crosses 

over the imaginary axis at 0s  . Consequently, the real root 

boundary is obtained by substituting 0s   in the 

characteristic polynomial of a closed loop system.  

Definition 2: Complex Root Boundary (CRB): A pair of 

complex roots crosses over the imaginary axis at s j . 

Therefore, the real and imaginary parts of characteristic 

polynomial of the closed loop system simultaneously become 

zero.  

Definition 3: Infinite Root Boundary (IRB): A real root 

crosses over the imaginary axis at s   . Thus, the infinite 

root boundary can be characterized by equating the higher 

order term of the characteristic polynomial to zero.  

The transfer function and the characteristic polynomial of a 

closed loop system will be calculated to obtain the RRB, 

CRB and IRB. Consider the transfer functions of the 

controller and plant. Substituting s j , the numerator and 

denominator of the ( )C s  and ( )G s  can be written as follows 

(Ho et al., 1996, Tan, 2003), 

2

2 2

2 2

( )

( ) ( )
( )

( ) ( )

d p i

e o

e o

k j k k
C j

j

N j N
G j

D j D

 




  


  

  


  


  

                                        (9)                              

where 
2( )eN   and 

2( )oN   are the even and odd parts of 

the ( )N s , similarly 
2( )eD   and 

2( )oD   are the even and 

odd parts of the ( )D s , respectively. One can easily 

decompose the transfer function of the system to its real and 

imaginary parts. Similarly, the characteristic polynomial of 

the closed loop system ( ) 1 ( ) ( ) 0j C j G j       can 

be separated into real and imaginary parts as 

( ) 0s R jI     . For simplicity 
2( )  will be 

dropped in the following equations. Thus the following 

equations can be written for real and imaginary parts of the 

characteristic equation as, 

2 2 2( ) 0e i o p e d oR N k N k N k D                 (10) 

3( ) ( ) 0e p o i o d ejI j N k N k N k D                   (11) 

Solving (10) and (11), one can obtain the expressions for pk  

and dk  as follows,  

2

2 2 2
o o e e

p

e o

N D N D
k

N N





 



                                                (12) 

C(s) G(s) 
+ 

_ 

U(s) Y(s) 
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2 2 2 2

2 2 2 2

( ) ( )

( )

e o i o e e o
d

e o

N N k N D N D
k

N N

 

 

  



                      (13) 

Equations (12) and (13) are depended to parameter ik . 

Namely, a stabilizing region in ( , )p dk k  parameter space 

can be obtained for different values of ik . Similarly, the 

expressions for ik  can also be obtained as,  

2 2 2 2 2

2 2 2

( ) ( )e o d e o o e
i

e o

N N k N D N D
k

N N

  



  



                  (14) 

In this case, the (14) depends to the parameter dk .  Thus, a 

stabilizing region in ( , )p ik k  parameter space can be 

obtained for different values of dk . Consequently, the CRB 

can be computed in the parameter space of the 

quasipolynomial ( , , , )p i ds k k k    using (12)-(14).  

In this section, we will discuss a second order state space 

system. The method presented in this paper, can be applied to 

the higher order systems in a similar manner. Now, consider 

the second order state space system in the form of (2) as 

follows, 

0 1 1 2 2( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

x t A x t A x t A x t Bu t

y t Cx t Du t

      

 
          (15) 

where, 

0(1,1) 0(1,2)

0
0(2,1) 0(2,2)

a a
A

a a

 
  
  

, 
1(1,1) 1(1,2)

1
1(2,1) 1(2,2)

a a
A

a a

 
  
  

, 

2(1,1) 2(1,2)

2
2(2,1) 2(2,2)

a a
A

a a

 
  
  

,
0

1
B

 
  
 

,  0 1C  and 0D   

The transfer function of the system can be obtained in 

controllable and observable form using the values of the A, B, 

C and D matrices. Using the given matrices in (15), the 

transfer function of the system in the form of (3) can be 

written as follows, 

( ) ( ) ( )G s N s D s

                                                           

(16)

            

where  1 2

0(1,1) 1(1,1) 2(1,1)( )
s s

N s s a a e a e
  

      and  

1 2

1

2
0(1,1) 0(2,2) 0(1,1) 0(2,2) 0(1,2) 0(2,1)
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Then the characteristic equation of the closed loop system 

( ) ( )C s G s  in Fig. 1 can be calculated as, 
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       (17) 

The even and odd parts of the numerator and denominator of 

the transfer function in (16) can be calculated in the form of 

(9) as follows, 

0(1,1) 1(1,1) 1 2(1,1) 2cos( ) cos( )eN a a a                   (18) 
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( )
sin(( ) )

)
si

oD a a a a

a a a a

a a a a

a a a a

a a

 

 


 


  




    

  


  


  
 


 2n(2 ) 

            (21) 

The CRB can be computed in the ( , , )p i dk k k  parameter 

space using Definition 2 and substituting (18)-(21) in (12)-

(14). Using the Definition 1 and substituting 0s   in the 

characteristic polynomial of the system in (17), one can 

obtain the following, 
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1 2

0(1,1) 1(1,1) 2(1,1)( ) 0
s s

ik a a e a e
  

                            (22) 

Thus, the RRB can be calculated from (22). Similarly, in 
order to compute the IRB, one can obtain the following 

equation using Definition 3 and the characteristic equation of 

the system in (17), 

3(1 ) 0dk s                                                                      (23) 

The stability regions for the controller can be computed using 

the RRB, IRB and CRB boundaries. The method gives the 
explicit formulae corresponding to these boundaries. If one 

considers that the parameters of the plant include uncertainty, 

the parameters can be defined within the certain interval as 

follows, 

 

0(1,1) 0(1,1) 0(1,1) 0(1,2) 0(1,2) 0(1,2)

0(2,1) 0(2,1) 0(2,1) 0(2,2) 0(2,2) 0(2,2)

1(1,1) 1(1,1) 1(1,1) 1(1,2) 1(1,2) 1(1,2)

1(2,1) 1(2,1) 1(2,1) 1(2,2) 1(2,2) 1(2

[ , ], [ , ]

[ , ], [ , ]

[ , ], [ , ]

[ , ], [ ,

a a a a a a

a a a a a a

a a a a a a

a a a a a a

 

 

 

  ,2)

2(1,1) 2(1,1) 2(1,1) 2(1,2) 2(1,2) 2(1,2)

2(2,1) 2(2,1) 2(2,1) 2(2,2) 2(2,2) 2(2,2)

]

[ , ], [ , ]

[ , ], [ , ]

a a a a a a

a a a a a a

 

 

                  (24)  

If the parameters of the coefficient matrices of transfer 

function of the plant in (15) includes uncertainty in the form 

of (24), then all stabilizing controllers obtained from the 

stabilizing region of the parameter space will satisfy the 

robust stability of the given interval plant. Thus, a complete 

set of robust stabilizing controllers for a multiple time delay 

system with parametric uncertainty can be obtained.  

Computation steps of all stabilizing values of the PI and 

PID controllers:  

Step 1: Obtain the transfer function of the multiple time delay 

system with parametric uncertainty. 

Step 2: Calculate the characteristic polynomial of the closed 

loop system in the form of (8). 

Step 3: Determine the RRB and IRB lines using (22) and 

(23), respectively. 

Step 4: Obtain the expressions for pk , dk  and ik  using 

(18)-(21) in (12)-(14) and compute CRB. 

Step 5: Using IRB, RRB and CRB, compute all stabilizing 

regions in the ( , )p ik k  parameter space for a fixed value of 

dk  and compute all stabilizing regions in the ( , )p dk k  

parameter space for a fixed value of ik . 

Step 6: Identify the interval of dk  using the ( , )p dk k  

parameter space, in which the system still satisfies stability.  

Step 7: Draw the IRB, RRB and CRB in the ( , , )p i dk k k  

parameter space while the value of dk  is changing in an 

identified interval.   

Step 8: Investigate the stability regions in the ( , , )p i dk k k  

parameter space and compute all stabilizing PID controllers. 

Step 9: In order to meet the robust performance specifications 

of the multiple time delay system with parameter uncertainty 

structure, draw the CRB planes for all parameter 

perturbations of the interval plant.  

Step 10: Compute IRB-RRB plane using the IRB and RRB 

lines, obtained from (22) and (23), for the values of dk  in an 

identified interval. 

Step 11: Compute the stability boundaries in the ( , , )p i dk k k  

parameter space using the IRB-RRB plane and CRB planes.  

Step 12: Investigate the stability regions in the ( , , )p i dk k k   

parameter space and compute all robust stabilizing PID 

controllers in the form of (6), which will make the system 

robustly stable under all parameter perturbations. 

Step 13: If only stabilizing values of the PI controller is 

desired, then repeat the computation steps for 0dk   and 

compute stability region in ( , )p ik k  parameter space. 

4. CASE STUDY 

In this case study, following state space representation of a 

multiple time delay system is considered, 

 

2 0 1 0.6
( ) ( ) ( 5)

0 0.9 0.4 1

0 0.6 0
( 1) ( )

0.6 0 1

( ) 0 1 ( )

x t x t x t

x t u t

y t x t

    
          

   
        



                (25) 

In this case study, in order to present the advantages of the 

proposed method, the plant parameters are selected in the 
unstable region that was previously studied in (Wang et al., 

2009; He et al., 2006). The stability area of the plant has been 

improved in (He et al., 2006). The stability domain of the 

same system has been further enlarged in (Wang et al., 2009). 

The purpose of this study is to find all stabilizing values of 

the PID controllers that will make the unstable system 

robustly stable.  

The transfer function of the plant in (25) can be obtained 

using Section III as follows,   

5

1 2 5 5

10 2 6

2
( )

2.9 1.8 2 2.9

1.24 0.36 0.12

s

s s

s s s

s e
G s

s s se e

e e e



 

  

 


   

  

                    (26) 

Similarly the characteristic polynomial of a closed loop 

system can be obtained as follows, 

3 2

2 5

5 10 2

6 5

( ) (1 ) (2 2.9)

(2 1.8) 2 ( 2)

( 2.9) 1.24 0.36

0.12

d d p

s
p i i d

s s s
p

s s
i

s k s k k s

k k s k k s e

k se se se

se k e



  

 

     

     

   

 

                    (27) 

Even and odd parts of the transfer function of the system can 

be calculated using (18)-(21). One can derive the expressions 
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for pk , dk  and ik  using the even and odd parts of the 

transfer function in (12)-(14). Using (12) and (14), the 

( , )p ik k  parameter space can be obtained for a fixed value of  

dk  and the RRB line can be computed using (22), (see Fig. 

2). Similarly the ( , )p dk k  parameter space can be obtained 

for a fixed value of ik  using (12) and (13), and the IRB line 

can be computed using (23), (see Fig. 3). The RRB and IRB 

lines are computed respectively as 0ik    and 1dk   . 

One can obtain the stability regions for PI and PD controllers 

using the ( , )p ik k  and ( , )p dk k  parameter spaces given in 

Figs. 2 and 3 respectively. 

 

Fig. 2. Stability region in the ( , )p ik k  parameter space for 

0dk  . 

 
Fig. 3. Stability region in the ( , )p dk k parameter space for 

the values 0ik  . 

Any point on the CRB lines in Figs. 2 and 3 will show 
oscillatory responses. For example, let the PI and PD 

controllers obtained from the stability region of the Figs. 2 

and 3 be ( )PIC s  and ( )PDC s , respectively. The step 

response of the closed loop system 1( ) ( )PIC s G s  shows the 

oscillatory responses for the values of 0.06778pk   and 

3.952ik  , which are selected on the CRB line in Fig. 2. 

Similarly, using Fig. 3 the values of 0.1307pk   and 

0.3281dk    can be selected on the CRB line. The step 

responses of the 1( ) ( )PDC s G s  system show oscillatory 

response for these values of PD controller. The step 
responses of the system for these values of the PI and PD 

controllers are given in Figs. 4 and 5, respectively.  

 

Fig. 4. Step response of the system for the values 

0.06778pk  , 3.952ik   and 0dk  . 

 

Fig. 5. Step response of the system for the values 

0.1307pk  , 0ik   and 0.3281dk   . 

One can conclude from the results of Figs. 2-5 that the right 

hand side of the CRB lines, namely the shaded region in Figs. 

2 and 3, is the stability area for the values of  pk , dk  and ik  

while left hand side of the CRB lines remains unstable.  

Thus, one can find all stabilizing PI and PD controller 

parameters for the plant in (25) using Figs. 2 and 3, 

respectively. On the other hand, all stabilizing values of the 

PID controllers used to control the plant in (25) can be 

computed in the ( , , )p i dk k k  parameters space, which is 

0 20 40 60 80 100
0

0.5

1

1.5
Step Respose

time(sec.)

y
(t

)

0 20 40 60 80 100
-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16
Step Respose

time(sec.)

y
(t

)



26                                                                                                                    CONTROL ENGINEERING AND APPLIED INFORMATICS 

 

obtained using the expressions of pk  and ik  for the values 

of dk  within a certain interval. The data range of the dk  can 

be identified from the results of Fig. 3. One can conclude 

from Fig. 3 that the CRB line starts at the point 4.8dk   

and decreases as the value of   increases. The IRB is 

calculated from (23) as 1dk   , which limits the stability 

region. Consequently, the value of dk  can be taken in 

between 1 4.8dk    in which the system still satisfies the 

stability. Thus, the CRB planes in the ( , , )p i dk k k  parameter 

space can be computed using (12) and (14) for the values of 

dk  in between 1 4.8dk   . The IRB and the RRB 

boundaries constitute the IRB-RRB plane in the ( , , )p i dk k k  

parameter space. The IRB line can be drawn using 

[ , ] [ , 1]p d pk k k   and the RRB line can be drawn using 

[ , ] [ ,0]p i pk k k . Thus, the IRB-RRB plane can be 

computed using [ , ] [ ,0]p i pk k k  lines for the values of dk  

between 1 4.8dk    in the ( , , )p i dk k k  parameter space, 

where the limit of the plane is [ , ] [ , 1]p d pk k k  . Thus, the 

stability boundaries in the ( , , )p i dk k k  parameter space can 

be easily computed using the IRB-RRB plane and CRB plane 
as shown in Fig. 6. One can easily investigate the stabilizing 

area for the parameters of the PID controllers using 

( , , )p i dk k k  parameter space. The CRB plane divides the 

( , , )p i dk k k  parameter space into stable and unstable regions. 

The IRB-RRB plane limits the stability region. The 

1 1( ) ( )C s G s  system shows oscillatory responses for any 

point selected on CRB plane. For example, one can compute 

the PID controller in the form of (6), in which the parameters 

are taken on the CRB plane in Fig. 6 as, 

1

12.96
( ) 0.1034 0.3C s s

s
                                          (28) 

 

Fig. 6. Stability region for the PID  controller parameters in 

the ( , , )p i dk k k  parameter space. 

 

 

The step response of the system 1 1( ) ( )C s G s  and the roots of 

the characteristic polynomial, obtained using the algorithm in 

(Vyhlídal and Zítek, 2002), are illustrated in Figs. 7 and 8, 

which shows that the 1 1( ) ( )C s G s  system is oscillatory for 

these values of the PID parameters. Consequently, any points 

in the stabilizing region of the ( , , )p i dk k k  parameter space 

in Fig. 6 satisfy the stability of the system. For example, the 

step response and the roots of the characteristic polynomial of 

system for the controller parameters 10.1034pk  , 

12.96ik   and 0.3dk  , which are selected from stability 

region of the Fig. 6, are illustrated in Figs. 9 and 10, 

respectively. One can conclude from the results of Figs. 9 and 

10 that the controller satisfies the stability of the plant in (25).  

 
Fig. 7. Step response of the system for 0.1034pk  , 

12.96ik   and 0.3dk  . 

 

Fig. 8. The roots of the characteristic polynomial for 

0.1034pk  , 12.96ik   and 0.3dk  . 
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Fig. 9. Step response of the system for 10.1034pk  , 

12.96ik   and 0.3dk  . 

 

Fig. 10. The roots of the characteristic polynomial for 

10.1034pk  , 12.96ik   and 0.3dk  .  

One can extend the above results to multiple time delay 

systems with parametric uncertainty. The plants with 

parametric uncertainty are described by a mathematical 

model containing parameters that are not precisely known, 

but the values thereof lie within given intervals. This type of 

uncertainty can arise during the control of real processes. 

Therefore, modeling of the multiple time delay system, given 

in (25), with parametric uncertainty is a realistic approach. 

Consider that the parameter matrices of the system in (25) 

include uncertainty as follows,   

 

[ 1.8 2.2] 0
( ) ( )

0 [ 0.7 1.1]

[ 0.9 1.1] [0.5 0.7]
( 5)

[ 0.3 0.5] [ 0.9 1.1]

0 [ 0.5 0.7] 0
( 1) ( )

[ 0.5 0.7] 0 1

( ) 0 1 ( )

x t x t

x t

x t u t

y t x t

  
    

  
      

    
         



           (29) 

The parameters of the plant in (29) can be defined in the form 

of (24). Thus, the transfer function of the system with 

parametric uncertainty in (29) can be obtained using 

uncertain parameter matrices of the plant as follows, 

 

2 2 2( ) ( ) ( )G s N s D s                                                       (30) 

where, 
5

2( ) [ 2.2, 1.8] [ 1.1, 0.9] sN s s e         and 

2

2

5

5

10

( ) ([ 2.2, 1.8] [ 1.1, 0.7])

([ 2.2, 1.8] [ 1.1, 0.7]) ([ 1.1, 0.9]

[ 1.1, 0.9]) ([ 1.1, 0.7] [ 1.1, 0.9]

[ 1.1, 0.9] [ 2.2, 1.8])

([ 1.1, 0.9] [ 1.1, 0.9] [0.5, 0.7] [ 0.5, 0.3])

s

s

s

D s s s

se

e

e







      

        

        

     

         

 2

6

([ 0.7, 0.5] [ 0.7, 0.5])

([0.5, 0.7] [ 0.7, 0.5] [ 0.7, 0.5] [ 0.5, 0.3])

s

s

e

e





    

         

Similarly, the characteristic polynomial of the system can be 

obtained using (17) for the uncertain parameters of the 

system. The CRB planes of the system in the parameter space 

of the controller can be computed for all parameter 

perturbations of the plant in (30). Consequently, 
83 6561 , 

CRB planes can be drawn using three values for each of the 

eight uncertain parameters of the plant in (30).  The IRB-

RRB plane, which limits the stability boundary, can also be 

computed as previously explained. Then, all stabilizing areas 

can be investigated in the parameter space. One can easily 

select the parameters of all stabilizing controllers, which will 

make the system robustly stable under all parameter 
perturbations of the plant, using the stability regions in the 

( , , )p i dk k k  parameter space.  

One can easily compute the stability boundaries, namely 

RRB and CRB lines, in the parameter space of PI controllers 

under all parameter perturbations of the plant, as shown in 

Fig. 11. Similarly, the stability boundaries, namely IRB-RRB 

plane and CRB planes, can be computed in the parameter 

space of the PID controllers as given in Fig. 12.  

 
Fig. 11. Robust stability region for a PI  controller in the 

( , )p ik k parameter space. 
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Fig. 12. Robust stability region for a PID  controller in the 

( , , )p i dk k k  parameter space. 

Consequently, all stabilizing robust PI and PID controllers 

can be obtained under all parameter perturbations of the plant 

in (30) using stabilizing regions in Figs. 11 and 12 

respectively. In other words, any values of the PI and PID 

controllers selected from any point in the robust stabilizing 

region, namely the shaded region in Figs. 11 and 12 

respectively, will stabilize the multiple time delay system 

with parametric uncertainty under all parameter perturbations 

of the plant. On the other hand, any controller selected on the 
CRB lines in Fig. 11 or CRB planes in Fig. 12 will show 

oscillatory response to related transfer functions. Let 2 ( )C s  

be controller, which parameters are selected form stability 

region of the parameter space of  the PID controller in Fig. 12 

as follows, 

2

11.38
( ) 10.17 0.4C s s

s
                                                 (31) 

Step responses of the 2 2( ) ( )C s G s  system can be computed 

under all parameter perturbations of the plant using the 

controller with the transfer functions of the plant in (30). 

Thus, 
63 729  step responses can be obtained for the 

system 2 2( ) ( )C s G s  using three values for each of the six 

uncertain parameter of the plant. The parameters 1(1,1)a  and 

1(2,2)a  have nominal values. Fig. 13 shows that the PID 

controller in (31) satisfies the robust performances of the 

system under all parameter perturbations of the plant 2 ( )G s . 

 

Fig. 13. Step responses of the system 2 2( ) ( )C s G s  for 729 

different values of the plant. 

5. CONCLUSION 

This study is dedicated to investigation of the stability region 

of the controller parameters for multiple time delay systems 

with parametric uncertainty, due to its importance in control 

applications. Stabilizing controller approach has been 

extended to compute all stabilizing PI and PID controllers. 

The key points of the proposed method are given as, 

- All stabilizing PI and PID controllers are computed 

using the parameter space, 

- The method provides a simple and effective way of 

computing stability region of the parameter space of the 
controller that guaranties the robust stability of the 

multiple time delay system with parameter uncertainty 

structure. 

The results of the paper may be discussed for different 

applications. For example: 

- Stabilizing controller design for unstable multiple time 

delay systems and large time delay systems may be a 

challenging subjects.  

- Recent researches on stabilizing controller design for 

discrete systems shows that the discrete time controllers 

may also deserve new discussions. Recently, a graphical 
technique for finding all discrete-time PID controllers 

that satisfy the robust stability constraint was proposed in 

(Emami and Hartnett, 2014). The stability boundary and 

the number of unstable poles in the integral derivative 

plane for continuous-time or discrete-time PID 

controllers were investigated in (Emami et al., 2011). A 

parameter space approach for designing digital PID 

controllers is studied in (Kiani and Bozorg, 2006). Thus, 

the study on discrete-time PID controllers that satisfy the 

robust stability constraint for multiple time delay 

systems may also be a promising study. 
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