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Abstract: The number of control places for designing a simple Petri Net controller is important. So, 
many efforts have been accomplished during last decade to design a controller with small number of such 
places. But, the number after applying some of these methods is still large and some of the other methods 
are complicated. In this paper, we have attempted to develop the previous methods for obtaining a simple 
controller in a systematic way. In this method, a small number of control places are obtained by solving a 
few numbers of Integer Linear Programming Problems at which the numbers of constraints and variables 
in each problem smoothly grow with respect to the numbers of reachable states. Also, the obtained 
controller model is maximally permissive. 
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1. INTRODUCTION 

Supervisory control theory in Discrete Event Systems (DES) 
tries to prevent the system from entering the forbidden states 
by restricting its behaviour (Ramadge and Wonham, 1987, 
1989). This restriction is performed by disabling the 
controllable events in special conditions. The forbidden states 
are the ones that violate specification or are deadlock states. 
For evaluating DESs, Petri Net (PN) can be applied as a 
suitable tool to model these systems (Krogh and Holloway, 
1991). In recent years, a lot of methods based on PN models 
have been proposed for avoiding the forbidden states.  

(Ghaffari et al., 2003) have presented a method based on 
regions theory to achieve desired performance. In this 
method, some constraints are generated which some of them 
verify the authorized states and the others are for violating 
the forbidden states. Then, by solving some Integer Linear 
Programming (ILP) problems, some control places can be 
calculated that adding them to the system leads to obtaining a 
maximally permissive controller. But, the drawback of this 
method is its computational complexity. Moreover, a lot of 
control places is generated which causes a complicated 
model.  

In flexible manufacturing systems (FMS), deadlock is a 
highly undesirable situation and the system should be 
prevented from entering them (Abdallah and ElMaraghy, 
1998; Huang, 2007; Hu and Li, 2009; Piroddi et al., 2009). 
There are a lot of methods for avoiding the deadlock states. 
In these methods, control places are calculated using Siphon 
theory. But, the number of such places is large and some of 
them may be redundant. So, the redundant control places can 
be removed (Uzam et al., 2007; Li and Hu, 2009). 

Restricting the weight sum of tokens in some places can lead 
to verifying the specifications or avoiding the forbidden 
states. The restriction can be performed using some 
constraints which are called Generalized Mutual Exclusion 
Constraints (GMEC). (Giua et al., 1992) have proposed a 
method for assigning GMECs to forbidden states in safe PNs. 
This method has been developed by (Chen et al., 2011) and in 
our previous work (Zareiee et al., 2011) at which the GMECs 
can be obtained in non safe PNs. Enforcing GMECs on the 
system is performed using control places (Yamalidou et al., 
1996). However, the numbers of GMECs and control places 
are large when the number of forbidden states is large. 

(Dideban and Alla, 2005) have proposed a method for 
reducing the number of GMECs in safe and conservative 
PNs. This method simplifies the GMECs using invariant 
property. But, for this simplification, a large state space 
should be verified. This method is developed in (Dideban and 
Alla, 2008) at which some covering markings of forbidden 
states are prevented and a small number of GMECs are 
obtained. The method in (Dideban et al., 2009) develops the 
last method where verifying the small state space leads to 
simplification of the GMECs. However, all the mentioned 
methods can be applied to safe PNs. The method proposed by 
(Zareiee et al., 2014) can reduce the number of GMECs in 
non safe petri  nets but this number is still large.  

In our previous work (Zareiee and Dideban, 2011), we have 
presented a method for obtaining a GMEC for avoiding all 
the forbidden states in non safe PNs by solving an ILP 
problem. But, this method can generate an answer in small 
systems. (Chen and Li, 2011) have proposed a useful method 
for obtaining the minimal number of control places by 
solving an ILP problem. However, the problem of this 
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method is its computational complexity which makes it 
inapplicable to large scale PNs.  

In this paper, we want to develop the ideas in (Zareiee and 
Dideban, 2011; Chen and Li, 2011) and propose a new 
method for obtaining a small number of GMECs. So, a few 
ILP problems with small numbers of constraints and 
variables are solved. For this reason, at first step, some 
constraints are generated which some of them verify the 
authorized states (these constraints are called safe constraints) 
and the others violate the forbidden states (these constraints 
are called unsafe constraints). Then, by classifying the unsafe 
constraints, some ILP problems are solved which their 
solutions cause the following results: 

(a) Each one of the safe constraints is verified by all the 
solutions of the ILP problems which this leads to verifying all 
the authorized states by the obtained GMECs. 

(b) Each one of the unsafe constraints is verified by at least 
one of the solutions of the ILP problems. This leads to 
avoiding all the forbidden states. 

(c) A small number of control places are obtained by solving 
a few number of ILP problems with small numbers of 
constraints and variables. 

The rest of this paper is as follows. In section 2, the important 
definitions and basic concepts are presented. The new method 
for reducing the number of control places is proposed in 
section 3. This method is changed in section 4 where a 
controller with small numbers of control places, arcs, and 
tokens are obtained. Finally, conclusions are presented in 
section 5. 

2. BASIC CONCEPTS 

In this section, the basic concepts and definitions are 
introduced which are important for presenting the new 
methods. Also, we suppose that the reader is familiar with the 
PNs basis (David and Alla, 2005) and supervisory control 
theory (Ramadge and Wonham, 1987, 1989). 

A PN structure is represented by a quadruplet R = (P, T, W, 
M0), where P is the set of places, T is the set of transitions, W 
is the incidence matrix and M0 is the initial marking. Places 
and transitions are connected together by arcs and the relation 
between them is stated by the incidence matrix. Places can be 
marked by tokens and are divided into two types: safe places 
and non safe places. If all places in a PN model are safe, this 
PN model is called safe PN. In safe PN, the number of tokens 
in each place is one or zero. But, in non safe PN, this number 
can be more than one. The marking of a PN is a column 
vector where ith component is the marking of place pi. For the 
sake of simplicity, we write the markings in the transposed 
form as follows: 

[m1 m2 … mn]
T 

where mi is the number of tokens in place pi and n is the 
number of places. 

In a PN, the set of all reachable markings (or reachable 
states) is denoted as MR. MR is divided into two sets of 
authorized states (MA) and forbidden states (MF). The set of 
forbidden states MF is defined as follows: 

- The set of states that do not respect the specification 
which is denoted as Mb. 

- Deadlock states or the set of states from which the 
system reaches the deadlock states inevitably and 
are shown by Md.  

- The set of states from which the system can 
uncontrollably reach the marking set MbMd. 

The set of reachable states without MF corresponds to the set 
of authorized states.  

In the set of forbidden states, there is an important subset 
which is called the set of border forbidden states and is 
defined in Definition 1. 

Definition 1: MB is the set of border forbidden states and is 
defined as follows: 

MB ={Mi  MF |  if  Mj  MA, Mj  it
 Mi     ti Tc} 

where Tc is the set of controllable transitions.                                         

The border forbidden states are the ones that preventing them 
leads to preventing all the forbidden states. So, for obtaining 
the maximally permissive controller, it is enough to forbid 
these states. The whole explanations about the border 
forbidden states are explained by (Kumar and Holloway, 
1996). 

2.1 GMECs and enforcing them on the system using control 
places 

GMECs are the constraints that limit the weight sum of 
tokens in some places. Enforcing GMECs on the system may 
comply the specification or prevent the system from entering 
the forbidden states. In safe PNs, these constraints can be 
constructed easily. However, in non safe PNs, constructing 
GMECs is difficult. The GMECs in safe PNs can be 
constructed as the following form: 

In a safe PN, suppose that when the places pi1, pi2, …, pin are 
marked, there is a forbidden state. So, the GMEC related to 
this state is constructed as follows: 

1

1
n

ik
i

m n


 
 

where mik is the number of tokens in place pik and n is the 
number of marked places (Giua et al., 1992). 

The method for constructing GMECs in non safe PNs is 
described in Algorithm 1. 
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Algorithm 1 (Zareiee et al., 2011): 

Input: The set of authorized states MA={[z11 z12 … z1n], …, 
[zr1 zr2 … zrn]} and a forbidden state M1= [zB1 zB2 … zBn], 
where r is the number of authorized states and n is the 
number of places. 

Output: A GMEC related to M1. 

Step 1. Consider a generic constraint as follows: 

k1m1+k2m2+…+knmn ≤ x (1) 

where x and ki for i=1, 2 ,…, n are non negative integers and 
mi is the number of tokens in place pi. 

Step 2. Substitute the markings of all the authorized states in 
the constraint (1) and construct the following constraints: 

[z11 z12 … z1n] → k1z11+k2z12+…+knz1n ≤ x    (2-1) 

                                   . 

                                   . 

                                   . 

. 

. 

. 

[zr1 zr2 … zrn] → k1zr1+k2zr2+…+knzrn ≤ x    (2-r) 

Step 3. Substitute the marking of M1 in the constraint (1) and 
convert the smaller equal sign to greater sign as follows: 

[zB1 zB2 … zBn] → k1zB1+k2zB2+…+knzBn > x 
    
(3) 

Step 4. Solve the set of the relations (2-1) to (2-r) and (3) 
which is an ILP problem and obtain the minimum values of x 
and ki for i=1, 2, …, n. (in this problem the objective function 
is: minimum(k1+k2+…+kn+x) where x>0 and ki ≥ 0 for 
i=1,2,…,n). 

Step 5. Substitute x and ki (for i = 1, 2, …, n) obtained from 
step 4, in the constraint (1). The resultant constraint is a 
GMEC for the forbidden state M1=[zB1 zB2 … zBn].                                                                                                                                         

By using Algorithm 1, constructing GMECs for forbidden 
states is possible. GMECs can be enforced on the system 
using control places (Yamalidou et al., 1996). In this case, for 
each GMEC, a control place is added to the system. For 
obtaining such places, suppose that the set of GMECs is 
shown as follows: 

L.MP
T ≤ b 

where MP is the marking vector (MP=[m1 m2 … mn]), L is a  
nc×n matrix, b is a nc×1 vector, nc is the number of GMECs 
and n is the number of places. The elements in L and b are 
non negative integers. As it was mentioned, for a GMEC, a 
control place is connected to the PN model. So, for each 
GMEC, a row is added to the incidence matrix of the system. 
These rows are calculated as follows: 

Wc=-L.WP 

where WP is the incidence matrix of system before 
connecting the control places. Therefore, the incidence matrix 
of the system after connecting the control places is as 
follows: 

P

c

W
W

W

 
  
   

The initial marking vector of the control places is calculated 
as the following form: 

Mc0
T=b-L.MP0

T 

where MP0 is the initial marking of the system before 
connecting the control places. The initial marking vector of 
the system after connecting the control places is: 

0
0

0

T
PT

T
c

M
M

M

 
  
  

 

2.2 Reducing the space of states that should be verified or 
forbidden by the controller 

The set of places in a PN model of an FMS is classified into 
three groups: Idle, Operation and Resource places. To 
calculate the set of control places for preventing the system 
from entering the deadlock states, the markings of operation 
places are only considered (Uzam and Zhou, 2006). So, the 
number of states that should be verified and the ones that 
should be forbidden by the controller are reduced (Chen et 
al., 2011). To explain this concept, the over-state and 
covering state concepts are defined as follows: 
Definition 2: Suppose that M1 and M2 are two marking 
vectors in a PN model where M1≤M2. In this case, M1 is an 
over-state of M2 and also M2 is a covering state of M1.          
By using this definition, two theorems are introduced to see 
how it is possible to reduce the numbers of states which 
should be authorized or forbidden.  
Theorem 1 (Dideban and Alla, 2008): Suppose that M1 and 
M2 are two forbidden states where M1≤M2. If M1 is forbidden 
by a GMEC, M2 is forbidden by this GMEC.                         
Theorem 2 (Chen et al., 2011): Suppose that M1 and M2 are 
two authorized states where M1≤M2. If M2 is not forbidden by 
a GMEC, M1 is not forbidden by this GMEC.                        

As it was mentioned, the markings of operation places should 
be only considered to calculate the control places of an FMS. 
So, the markings of idle and resource places can be 
eliminated from the set of reachable markings. After this 
elimination, in the set of forbidden states, some states may be 
the over-states of the other ones. In this case, according to 
Theorem 1, it is enough to prevent the over-states for 
avoiding all the forbidden states. Therefore, the set of states 
that should be forbidden is reduced. The set of these over-
states is shown with MO-F. Moreover, some authorized states 
may be covering states of the other authorized states. 
According to Theorem 2, for verifying all the authorized 
states by the controller, it is enough to verify the covering 
states of authorized states. Thus, the number of states that 
should be verified is reduced. The set of covering states of 
authorized states is shown with MC-A. So, the calculation for 
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obtaining GMECs becomes simpler by finding the sets of  
MO-F and MC-A.  

3. A NEW METHOD FOR OBTAINING A SMALL 
NUMBER OF CONTROL PLACES 

Algorithm 1 is a helpful way for assigning a GMEC to each 
forbidden state. However, when the number of these states is 
large, a large number of GMECs are generated which lead to 
connecting a large number of control places. We have 
somewhat solved this problem in our previous work (Zareiee 
and Dideban, 2011) at which by solving an ILP problem, one 
GMEC is obtained. In this method, we consider all the 
forbidden states in step 3 of Algorithm 1. It means that all 
their markings are substituted in constraint (1) and the 
smaller equal signs are converted to greater signs. Then, an 
ILP problem composed of the constraints in steps 2 and 3 is 
solved. However, this method is only applicable to small 
systems and cannot generate any answer for large systems. 
(Chen and Li, 2011) have proposed an effective method for 
obtaining a small number of GMECs by solving an ILP 
problem. The main drawback of this method is its 
computational complexity which makes it inapplicable to 
large scale PN models. In this section, we want to develop the 
methods in (Zareiee and Dideban, 2011; Chen and Li, 2011) 
and propose an effective method for obtaining a small 
number of control places by solving a few number of ILP 
problems. Moreover, the numbers of variables and constraints 
in each ILP problem are small. This new method is 
introduced in Algorithm 2. 

Algorithm 2: 

Input: The set of authorized states MA ={[z11 z12 … z1n], …,    
[zr1 zr2 … zrn]} and the set of border forbidden states 
MB={[B11 B12 … B1n], …, [Bt1 Bt2 … Byn]}. 

Output: A small number of GMECs. 

Default: t = 0, Rt = , Wt = , Wt
t = , Rt

t
 =  

Step 1. Consider a generic constraint as follows: 

k1m1+k2m2+…+kn ≤ x (4) 

where mi is the number of tokens in place pi. 

Step 2. Substitute the markings of the authorized states in the 
constraint (4) and consider the obtained constraints as 
follows: 

,
1

. 1,2,...,
n

j i i
i

z k x j r


   (5) 

which are called safe constraints.  

Step 3. Substitute the markings of the border forbidden states 
in the constraint (4) and convert the smaller equal sign to 
greater sign and consider the obtained constraints as the 
following form: 

,
1

. 1,2,...,
n

l i i
i

B k x l y


   (6) 

which are called unsafe constraints. The set of unsafe 
constraints is denoted as SSg. 

Step 4. t = t+1 

Step 5. Solve the first ILP problem in section 3.1 (the 
relations (7) to (10)), and obtain the constants x and ki (for i= 
1, …, n) which verify all the safe constraints and the largest 
number of unsafe constraints (this step is described in 
subsection 3.1). 

Step 6. Save the obtained constants in the set Wt and then 
remove the verified unsafe constraints from the set of unsafe 
constraints (SSg) and substitute them in the set Rt. 

Step 7. If SSg is not empty, go to step 4. 

Step 8. For q = 2, 3, …, t, perform the following operations: 

- Rq  (the set of safe constraints) = Vq 

- (R1R2….Rq-1) = Zq 

- Solve the second ILP problem in section 3.1 (the 
relations (11) to (15)), and obtain the constants x and 
ki (for i=1, …, n) which verify all the constraints in 
the set Vq and the largest number of constraints in 
the set Zq (this step is described in section 3.1). 

- Substitute the obtained constants in the set Wq
q and 

then consider the verified constraints of Zq in the set 
Rq

q. Add the constraints of Rq to Rq
q. 

Step 9. Choose the smallest number of the sets of constants x 
and ki (for i=1, …,  n) among the sets Wq and Wq

q(for q = 1, 
2, …, t) which in sum verify all the unsafe constraints in step 
3 (this step is described in subsection 3.2). 

Step 10. Substitute the final sets of constants in the constraint 
(4). These constraints are the small number of GMECs which 
enforcing them on the system leads to obtaining a maximally 
permissive controller).                                                          

By using Algorithm 2, a small number of control places can 
be obtained where connecting them to the system, leads to a 
maximally permissive controller. Moreover, some ILP 
problems are solved and the numbers of constraints and 
variables in each problem are small with respect to size of 
model. 

3.1 Finding the constants x and ki (for i=1, …, Ni) for 
verifying the largest number of unsafe constraints 

In this section, we want to introduce a method for finding the 
constants x and ki which verify all safe constraints and the 
largest number of unsafe constraints (step 5 of algorithm 2). 
To do this, an ILP problem is considered as follows: 
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min
SSg

l
l N

F f


 
 

(7) 

,
1

. 0 1,2,...,
n

j i i
i

z k x j r


    
(8) 

,
1

. |
n

l i i l SSg
i

B k x Q f l l N


     
 

(9) 

{0,1}lf  (10) 

where Q is a positive constant which should be considered 

large enough and NSSg denotes
,

1

{ | ( . ) }
n

l i i g
i

l B k x SS


  . In the 

above ILP problem, fl is related to lth unsafe constraint. So,       
fl = 0 means that lth unsafe constraint is verified by the 
obtained constants x and ki, and fl=1 means that lth unsafe 
constraint is not verified by these constants. Solving this ILP 
problem generates the constants x and ki verifying the largest 
number of the unsafe constraints and all the safe constraints.  

Now, to find the constants x and ki for verifying all the 
constraints in Vq and the largest number of constraints in Zq, 
we consider the following ILP problem (step 8 of Algorithm 
2): 

1 2 1( ... )

min
q

R R R

l
l N N N

F f
   

 
 

(11) 

,
1

. 0 1,2,...,
n

j i i
i

z k x j r


  
 

(12) 

,
1

. 0
n

q
l i i R

i

B k x l N


     
(13) 

1 2 1
,

1

. ( ... )
n

q
l i i l R R R

i

B k x Q f l N N N 



        
 

(14) 

{0,1}lf   (15) 

where NR
q denotes 

,
1

{ | ( . ) }
n

l i i q
i

l B k x R


  . 

By solving this ILP problem, some unsafe constraints which 
were eliminated from SSg (and exist in the sets of Rd for d<q) 
are added to the set Rq. 

3.2 Final selection in the sets of the obtained constants x and 
ki (for i=1, …, n) 

In the sets of the obtained constants x and ki (for i=1, …, n), 
there may be a set which verifies some unsafe constraints or 
there may be the same unsafe constraint which is verified by 
some sets of constants (it means that there may be an unsafe 
constraint which is common between the sets of Rt (for t = 1, 
2, …)). The method for selecting the final sets of the 
constants is similar to the final selection in Quine-McCluskey 
method for simplifying logical expressions (Morris Mano, 

2001). This final selection can be performed as the following 
form: 

If there is an unsafe constraint which is only verified by one 
set of constants, this set should be selected. Then, all the 
unsafe constraints which are verified by this set should be 
eliminated. Then, in the set of residual unsafe constraints, if 
an unsafe constraint is verified by two or several sets of 
constants, it is necessary to choose the set which verifies the 
most numbers of non-selected unsafe constraints. In the case 
of equality, the simplest set should be selected. 

Now, after introducing this method, an example is considered 
to show the capability of Algorithm 2.  

Example 1. Consider the Resource Allocation System (RAS) 
taken from (Reveliotis and Choi, 2006). The PN model of 
this system is illustrated in Fig. 1. This model consists of 
three resource types, R1, R2 and R3 and two processes. The 
first and the second processes are modelled by the paths 
"t10P11t11P12t12P13t13" and "t20P21t21P22t22P23t23", respectively. 
The places P10 and P20 are characterized as the idle places for 
the first and second processes respectively. The initial 
marking of each one of these places establishes the upper 
bound to the number of instances of each processes that can 
be simultaneously loaded into the system. In this system, all 
the transitions are controllable and the system should be 
prevented from entering the deadlock states. 

 

Fig. 1. The resource allocation system taken from (Reveliotis 
and Choi, 2006). 

In this system, there are 47 states at which 42 ones are 
authorized and 5 ones are forbidden. The forbidden states 
(which are also border forbidden states) are the ones that 
preventing them leads to preventing the system from entering 
the deadlock states. In this example, the numbers of states in 
MC-A and MO-F are 6 and 3, respectively. 

By using Algorithm 2, two solutions are obtained. So, the 
first solution is as follows: 

k11 = k22 = 2, k12 = k21 =1, k13 = k23= 0, x = 5. 

Therefore, the GMEC related to this solution is: 
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2m11+m12+m21+2m22 ≤ 5   (16) 

And the second solution is as the following form: 

k12 = k21 =1, k13 = k23= k11 = k22=0, x = 2. 

The GMEC related to this solution is: 

m12+m21 ≤ 2   (17) 

The incidence matrix related to these two GMECs is as 
follows: 

2 1 1 0 1 1 2 0

0 1 1 0 1 1 0 0cW
   

    
 

 

  (18) 

And the initial marking vector of the control places is: 

0

5

2cM
 

  
 

  

  (19) 

Connecting the two control places to the system leads to 
obtaining a maximally permissive controller.  

4. A NEW METHOD FOR OBTAINING A SIMPLE 
CONTROLLER WITH SMALL NUMBERS OF CONTROL 

PLACES, ARCS AND TOKENS 

The proposed method in Algorithm 2 is very good for 
obtaining a small number of control places. But, the numbers 
of generated arcs and tokens may not be the least numbers. 
So, in this section, by considering some changes in 
Algorithm 2, another method is introduced to obtain a small 
numbers of control places, arcs and tokens. To see this 
concept, Example 2 is considered. 

Example 2. Consider the FMS in Fig. 2 taken from (Uzam, 
2002). The sets of idle, resource and operation places are 
P0={p1, p8}, PR={p14, ..., p19} and PA={p2, ..., p7, p9, ..., p13}, 
respectively. It has 282 reachable states at which 205 ones are 
authorized and 77 ones are forbidden states. The numbers of 
states in MC-A and MO-F are 26 and 8, respectively. 

By applying Algorithm 2, two GMECs are obtained as 
follows: 

m2+2m3+m4+2m5+2m6+3m9+3m10 ≤ 9   (20) 

4m2+8m3+4m4+5m5+m9+m10+8m11+7m12 ≤ 14   (21) 

So, the incidence matrix and the initial markings are as the 
following form: 

1 1 0 1 0 0 2 0 3 0 3 0 0 0

4 4 0 1 3 5 0 0 1 0 7 1 7 0cW
    

       

 
  (22) 

0

9

14cM
 

  
 

    

   (23) 

 

 

Fig. 2. A Felexible manufacturing system with 282 reachable states. 

As it is obvious, by using Algorithm 2, two control places are 
obtained that enforcing them on the system leads to obtaining 
a maximally permissive controller. But, the numbers of arcs 
and tokens can be reduced. For instance, if we add the 
constraint x ≤ 13 to the ILP problems in Algorithm 2, the 
following GMECs can be obtained:  

m2+2m3+m4+2m5+2m6+3m9+3m10 ≤ 9   (24) 

m2+2m3+m4+2m11+2m12 ≤ 3   (25) 

where their incidence matrix and initial tokens are calculated 
as follows: 

1 1 0 1 0 0 2 0 3 0 3 0 0 0

1 1 0 1 2 0 0 0 0 0 2 0 2 0cW
    

     

 
  (26) 

0

9

3cM
 

  
 

   

   (27) 

So, by adding the constraint x ≤ 13 to the ILP problems in 
Algorithm 2, the numbers of arcs and tokens are reduced. 
Now, we explain how it is possible to add such constraints to 
the ILP problems. For this reason, we can firstly apply 
Algorithm 2 and save the obtained solutions. Then, we 
should consider the biggest x among the answers as xg and 
apply Algorithm 2 again by adding the constraint x<xg to the 
ILP problems in Section 3.1. After that, we save the obtained 
solutions. Again, we consider the biggest x among the 
solutions in this step as xg and apply Algorithm 2 by 
considering x<xg and save the obtained solutions. We perform 
this until xg is one or Algorithm 2 does not produce a 
solution. At the end, a set of GMECs is obtained. So, in this 
set, the smallest number of GMECs should be selected as the 
ones that enforcing them on the system leads to obtaining a 
maximally permissive controller. In the case of equality, the 
GMEC with smallest x should be selected. This method is 
described in Algorithm 3. 
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Algorithm 3: 

Input: The set of authorized states MA ={[z11 z12 … z1n], …,    
[zr1 zr2 … zrn]} and the set of border forbidden states 
MB={[B11 B12 … B1n], …, [Bt1 Bt2 … Byn]}. 

Output: A small number of GMECs. 

Default: t = 0, Rt =Rt
t= , Wt =Wt

t= , Vq=, Zq= SSg=, 
SSse=, UG= 

Step1. Apply Algorithm 2 and substitute the obtained 
GMECs from Algorithm 2 in the set UG. 

Step2. Select the biggest x (x is the number in the right side 
of each GMEC) among all the GMECs in UG and consider it 
as xg, and t = 0. 

Step 3. Consider a generic constraint as follows: 

k1m1+k2m2+…+kn ≤ x (28) 

where mi is the number of tokens in place pi. 

Step 4. Substitute the markings of the authorized states in the 
constraint (28) and consider the obtained constraints as 
follows: 

,
1

. 1,2,...,
n

j i i
i

z k x j r


   (29) 

which are called safe constraints. Substitute them in the set 
Sse. 

Step 5. Substitute the markings of the forbidden states in 
constraint (28) and convert the smaller equal sign to greater 

sign and consider the obtained constraints as the following 
form: 

,
1

. 1,2,...,
n

l i i
i

B k x l y


   (30) 

which are called unsafe constraints. Substitute them in the set 
Sg. 

Step 6. If xg is not greater than 1, go to Step 19. 

Step 7. SSg=Sg and SSse=Sse  

Step 8. t = t+1 

Step 9. Add the constraint x≤xg to the first ILP problem in 
section 3.1 (the relations (7) to (10)). Solve the ILP problem 
and obtain the constants x and ki (for i= 1, …, n) which verify 
all the safe constraints in the set SSse and the largest number 
of unsafe constraints in SSg (this step is described in 
subsection 3.1. But, we should add the constraint x<xg to the 
ILP problems in this subsection). 

Step 10. If f1=f2= … =1, t > 1 

Then 

substitute the constants of the sets W1, W2, …, Wt-1 in the 
constraint (28) and add the obtained GMECs to the set UG. 

go to Step 19, 

Else,  

If f1=f2= … =1, t=1

 

go to step 19 

Else, 

save the obtained constants in the set Wt and then 
remove the verified unsafe constraints from the set SSg 
and substitute them in the set Rt. 

Step 11. If the set SSg is not empty, go to step 8. 

Step 12. For q = 2, 3, …, t, perform the following operations: 

- Rq  (the set of safe constraints) = Vq 

- (R1R2….Rq-1) = Zq 

- Add the constraint x≤xg to the second ILP problem 
in section 3.1 (the relations (11) to (15)). Solve the 
ILP problem and obtain the constants x and ki (for 
i=1, …, n) which verify all the constraints in the set 
Vq and the largest number of constraints in the set Zq 
(this step is described in subsection 3.1. But we 
should add the constraint x<xg to the ILP problems 
in this subsection). 

- If there is a solution (it means if at least one of fis is 
equal to zero), substitute the obtained constants in 

the set Wq
q and then add the verified constraints of 

Zq to the set Rq
q. Add the constraints of Rq to Rq

q. 

Step 13. Choose the smallest number of the sets of constants 
x and ki (for i=1, …,  n) among the sets Wq and Wq

q (for q = 1, 
2, …, t) which in sum verify all the unsafe constraints (this 
step is described in subsection 3.2).  

Step 14. Substitute the final sets of constants in the constraint 
(28). 

Step 15. Select the biggest x among the obtained x in Step 13 
and consider it as xg. 

Step 16. Add the obtained GMECs to the Set UG. 

Step 17. W1= W2= …= Wt= R1= R2= …Rt =  and  

W1
1= W2

2= …= Wt
t= R1

1= R2
2= …Rt

t =  and t = 0 

Step 18. Go to Step 6. 

Step 19. Choose the smallest number of GMECs from the set 
UG which are violated by all the border forbidden states 

(similar to the method which is described in section 3.2. 
More information about this selection is described in 
(Dideban and Alla, 2008; Dideban et al., 2009).  

Step 20. End.                                                                                           
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                             Table 1. Performance comparison of the new methods with a conventional method 

Examples → Example 1 Example 2 
Methods ↓ NC-A NO-F Ncp Narc NILP Nc Nv NC-A NO-F Ncp Narc NILP Nc Nv 

Algorithm 2 6 3 2 10 3 9, 7 10, 8 26 8 2 15 3 
 

34, 30 
 

20, 16 

Algorithm 3 6 3 2 10 9 
7, 8, 
9, 10 

8, 9, 
10 

26 8 2 12 25 
27, 28, 29, 
30, 31, 34, 

35 

13, 14, 15, 
16, 17, 20 

Chen and Li 
(2011) 

6 3 2 10 1 33 27 26 8 2 12 1 
 

328 
 

152 

By applying Algorithm 3 to Example 2, two GMECs are 
obtained the same as relations (24) and (25) where their 
incidence matrix and initial tokens are in (26) and (27), 
respectively. As it is obvious from (24) and (25), the numbers 
of arcs and initial tokens have reduced compared to applying 
Algorithm 2. Algorithm 3 introduces a good method for 
obtaining a small numbers of control places, arcs and tokens. 
But it should solve some ILP problems more than Algorithm 
2, and Algorithm 2 is simpler.  

5. DISCUSSION 

In this paper, two methods in algorithms 2 and 3 are proposed 
where using them, a small number of control places can be 
obtained. These two methods can obtain the same number of 
control places. But, their difference is related to the number 
of their arcs and also the computational complexity. 
Algorithm 2 is a useful method that can obtain an acceptable 
solution by solving a small number of ILP problems. Also, 
the numbers of constraints and variables in each ILP problem 
are small. However, the number of arcs is not the least 
number. Without considering the number of arcs, the method 
in Algorithm 2 is very good; otherwise, Algorithm 3 can 
generate a small numbers of control places and arcs. 
Compared to Algorithm 2, Algorithm 3 should solve more 
ILP problems. There is a trade off between Algorithms 2 and 
3. So, by considering the numbers of arcs, Algorithm 3 is 
better than Algorithm 2 and by considering computational 
complexity, Algorithm 2 is better. The computational 
complexity of Algorithm 3 is more than Algorithm 2 and we 
use Algorithm 3 when the number of arcs is important 
otherwise Algorithm 2 is more efficient than Algorithm 3. 

By considering Examples 1 and 2 in Table 1, the new 
methods are compared to the proposed method by Chen and 
Li (2011). In this table, NC-A, NO-F, Ncp, Narc, NILP, Nc and Nv 
are the numbers of covering states of authorized states, over-
states of forbidden states, control places, arcs, ILP problems 
that should be solved, constraints and variables, respectively. 
As it is obvious from Table 1, after applying the proposed 
method by (Chen and Li, 2011), the numbers of constraints 
and variables exponentially grow with respect to the size of 
model (NC-A and NO-F) which this concept makes it 
inapplicable to large scale PNs. By using Algorithms 2 and 3, 
the numbers of constraints and variables smoothly grow with 
respect to the size of model. In these algorithms, more ILP 
problems should be solved, but, the numbers of constraints 
and variables in each problem are small. In fact, instead of 
using an ILP problem with large numbers of constraints and  

variables, some ILP problems with small numbers of 
constrains and variables are solved. 

6. CONCLUSIONS 

This paper presents two methods for avoiding the forbidden 
states and designing a maximally permissive controller with 
small number of control places. So, some integer linear 
programming problems should be solved. The problem of the 
proposed methods is the computational complexity for 
generation of reachable markings. The number of reachable 
markings increases exponentially with respect to the size of 
model. However, the numbers of constraints and variables in 
the integer linear programming problems are not polynomial 
with respect to the numbers of elements in the set of 
authorized states and forbidden states which is an advantage 
of the proposed methods. 
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