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Abstract: The paper deals with the milling force modelling concerning average and maximum forces for 
a set of four materials. The main purpose of the work is to obtain a function of three variables (cutting 
depth, feed per toot and cutting speed) using response surface methodology (RSM), and artificial 
intelligence approach (AI). A new method based on hybrid multiple regression (HMR) using RSM, and 
also a novel algorithm are proposed. In AI, determination of the optimal neural network of fuzzy neural 
network is an important aspect when we use these models for prediction. Differential genetic algorithms 
for variable length genotype are proposed to optimize simultaneously both structure and parameters for 
AI structures. A comparative study based on performance analysis is made also. 
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1. INTRODUCTION 

The analysis of cutting forces in milling process has been a 
subject of research for decades, as shown by (Zhigang, 2005; 
Li et al., 1999; Wilson et al., 1990; Zheng et al., 1998). A 
large amount of work has been carried out in the area of force 
modelling in milling process. The measurement and 
prediction of forces in arbitrary work conditions is a 
condition for a good monitoring and optimization of the 
process. The objective optimizations conduct to planning 
operations that usually take into account the productivity, 
quality, cost and time. Also, a good model can estimate 
directly or indirectly some process parameters like tool wear 
and life, surface finish etc. 

Vibrations due to milling process can be the source of 
deterioration of the machine accuracy. Accurate modelling of 
forces can be used to determine the prediction of machine 
performance along with determination of the machining 
parameters that affect this performance. The traditional 
approach predict the cutting forces using cutting coefficients 
identified through empirical curve fit to measured average 
and minimum (maximum) milling forces. 

An extensive work is done by (Zhigang, 2005). After a 
presentation of the main methods used in high speed milling 
of titanium alloys, dynamic programming, geometric 
programming, simulated annealing and genetic algorithm, 
(Zhigang, 2005) proposes a parallel genetic simulated 
annealing (PSGA). The problem of optimization is a multi-
objective one, the minimum production time and the 
minimum production cost. The solutions with higher fitness 
are selected towards the Pareto-optimal region. Genetic 

algorithms are attractive solutions for cutting forces 
modelling during milling process as shown by (Gallova, 
2009; Wang et al., 2004; Milfelner et al., 2005). In her paper 
(Gallova, 2009) proposed an analytic fuzzy logic controller 
with fuzzy parameters optimized by genetic algorithm for 
cutting speed on total average cutting force fitness function. 
Genetic algorithm (GA) and simulated annealing (SA) have 
been applied to fitness objective, minimum production time 
being obtained by (Wang et al., 2004; Milfelner et al., 2005) 
use a new method- the genetic programming. Using 
principles of genetic programming, an analytic function for 
cutting forces has been found by (Myers and Montgomery, 
1995). Genetic programming can be efficiently but in many 
cases, the formulas that achieve a predefined fitting error can 
be very long and very complex. 

(Myers and Montgomery, 1995; Patwari et al., 2009; Noordin 
et al., 2004; Kumar et al., 2012) showed in their works that 
response surface methodology (RSM) is an attractive method 
to give solutions for prediction of cutting forces from 
experimental data. Most of the models can achieve a desired 
performance using linear models. Quadratic models are very 
rarely needed in known application of force cutting 
predictions. RSM is connected with design of experiments 
and ANOVA analysis that predicts the influence between 
parameters, as can be found in papers by (Orhan et al.,  2011; 
Fnides et al., 2011; Ginta and Amin,  2012; Rosales et al., 
2012) Taguchi’s method is a very used one in design of 
experiments. 

Some models from artificial intelligence have been proved to 
be good approximators for cutting forces in milling process. 
Neural networks (Szecsi, 1999; Radhakrishnan and Nandan, 
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2005; Raksiri and Parnichkun, 2004) and fuzzy neural 
networks that use Takagi-Sugeno inference rules (Hossain 
and Ahmad, 2005; Nandi, 2012) are good solution for 
approximation and prediction. 

In a comparative study, some of models that have been used 
in literature in order to describe the cutting forces have been 
shortly reviewed by Fang N. and Wu Q.  

2. CUTTING PROCESS AND CUTTING FORCES 

The milling investigations were carried out on a CNC 
machining centre with three axes, FIRST MCV 300. The 
measurements were made with a Kistler dynamometer fixed 
on the machine tool table; the workpiece was mounted on the 
dynamometer plate. The signals received by the 
dynamometer were transmitted through the amplifier, 
Multichannel Type 5070, to the acquisition board (PCIM-
DAS1602/16) installed on the PC and processed by the 
program used for data acquisition, DynoWare Type 2 825. 

The materials used for the experimental tests were initially 
tested in order to establish the material composition and 
hardness. Two types of tests, namely a spectrometry test for 
establishing the chemical composition, and a test of hardness 
measuring were performed. Spectrometry test was performed 
using a spark optical emission spectrometer named 
SPECTROMAXx. The tests for hardness measurements were 
performed using a Shimadzu HSV30 device. 

For achieving the cutting tests, two types of milling cutters 
were used, namely CoroMill R 365-080Q27-S15M having 

            
a 

                     
b 

Fig. 1. Cutting tools used in machining tests:  

a. R365−080Q27−S15M (image from SanvikCoromant 
catalogue and actual used in machining);  

b. 490−025C5−08M ((image from SanvikCoromant 
catalogue and actual used in machining). 

the diameter of 80 mm, and 490−025C5−08M having the 
diameter of 25 mm from SandvikCoromant (Figs. 1a and 1b, 
respectively, and Table 1). The used inserts are the following 
(Table 2): 

- for machining improved steel − R365−1505ZNE−PM 4230; 

- for machining Al 7178 −  490R-08T308M-PL 1030;  

- for machining cast iron − 490R-08T308M-KM 1020; 

- for machining Ti grade 3 − 490R-08T308M-PM 1030;  

Table 1.  Cutting tool technical data. 

R365−080Q27−S15M 490−025C5−08M 
Parameter Value Parameter Value 

Weight 1.3 Weight 0.6 
Dc 80 Dc 25 
Dc2 86.7 κr 90 
D5m 64 D5m 50 
dmm 27 l1 75 
l1 50 l3 50 

ap_max 6 ap_max 5.5 
Max_rpm 11 500 Max_rpm 28 000 

κr 65 Zn 3 
  Zc 3 

Table 2.  Cutting tool inserts technical data. 
R365-1505ZNE 

-PM 4230 
490R-08T308M 

-PL 1030 
490R-8T308M 

-KM 1020 
490R-08T308M 

-PM 1030 
 Value  Value  Value  Value 

Weight 0.014 Weight 0.002 Weight 0.002 Weight 0.002 
Size 15 Size 0.8 Size 0.8 Size 0.8 

ap_max 6 la 5.6 la 5.6 la 5.6 
iC 15 s 3.3 s 3.3 s 3.3 
la 6.4 bs 1.2 bs 0.85 bs 1.2 
s 5.66 rε 0.8 rε 1.2 rε 0.8 

bs 1.5 

Table 3.  Experimental plan (Taguchi method). 

Exp. No. Parameter 1 Parameter 2 Parameter 3 
1 1 1 1 
2 1 2 2 
3 1 3 3 
4 1 4 4 
5 2 1 2 
6 2 2 1 
7 2 3 4 
8 2 4 3 
9 3 1 3 

10 3 2 4 
11 3 3 1 
12 3 4 2 
13 4 1 4 
14 4 2 3 
15 4 3 2 
16 4 4 1 
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The experimental plan was chosen according to Taguchi 
method (Taguchi and Konishi, 1987; Yang and Tarng, 1998; 
Pawade and Joshi, 2011). Taguchi method in industrial 
practice is a method that seeks to help researchers to obtain 
faster and cheaper the best results by performing the 
experiments. This method is based on the orthogonal factorial 
plan (Fig. 2 in Appendix A.). The method consists in defining 
the process objective, or more precisely defining a target 
value which measures the process performance, determining 
the design parameters which affect the process, and 
establishing the levels of variation of these parameters. 

After setting the parameters and their levels, the suitable 
array of experiences from the orthogonal matrix can be also 
chosen, Fig. 2. In our case, the experimental matrix has three 
parameters, each parameter having 4 values, resulting 16 
tests, as shown in Table 3. 

The cutting parameters and average and maximum measured 
cutting forces for four materials (improved C 45 steel; 
aluminium alloy Al 7178; titanium grade 3; cast iron) are 
presented in Tables 4−7 (shown in Appendix A and B). 

In many cases, when Response Surface Method (RSM) is 
used to predict the cutting forces, many authors rescaled the 
forces in order to avoid too much difference of magnitude 
order among coefficients that correspond to variables. Also, 
rescaling force offer the possibility to translate the modelled 
cutting force in a range useful RSM model. 

3. RESPONSE SURFACE METHOD (RSM)  

According to Sandvik Coromant, we have three main 
parameters of machinability assessment: (1) tool life; (2) 
surface finish; and (3) cutting force. In what follows we will 
discuss the main mathematical models used in prediction of 
cutting forces (Fig. 3).  

 
Fig. 3. Mathematical model of cutting forces prediction. 

Response surface methodology (RSM) is a collection of 
mathematical techniques used for model construction. RSM 
use design of experiments (DoE) for independent input 
variables in order to optimize the response of the model 
(output variable). Most applications that use RSM involve 
more than one output. In our case we have three inputs X = 
[ap, fz, Vc] and three outputs Y = [Fx, Fy, Fz]. 

The fit quality model is measured by comparing the response 
of the model versus experimental data that is the output 
variable. Two measures are commonly used to measure this 

performance: RMSE (Root Mean Square Error) and R2 
(coefficient of determination).  

In RSM, the modelling method is an approximating model 
between response y and input independent variables ξ1, ξ2,..., 
ξn (natural variables because they are measured in natural 
units of measurement): 

εξξξ += ),,,( 21 nfy …                                                      (1) 

where ε represents the errors due to approximation of the 
model. In most RSM work, it is most convenient to deal with 
coded variables. The coded variables X1, X2,...,Xn are 
dimensionless with mean zero and the same standard 
deviation. 

),,,( 21 nXXXfh …=                                                         (2) 

Cutting force model for end milling in terms of the 
parameters can be expressed in general terms using 
generalized Taylor’s Equation. This model is used in most of 
the research papers that deal with this subject.  

3121
0

αααα czp VfaF ⋅⋅⋅=                                                         (3) 

In the equation above, the variables are ap (axial depth of cut 
[mm]), fz (feed per tooth [mm/tooth]), Vc (cutting speed 
[m/min]), F (force (Fx, Fy, Fz)), and {α0, α1, α2, α3} are the 
constants of the model that must be determined.  

If we made a logarithm for both sides of the formula (3), we 
can transform the problem in a linear regression one. The 
new variables are Xk = log(xk) and the constants of the model 
can be determined by one of the optimization method that 
minimizes the error (e.g. Least Mean Square-LMS). The 
outputs are given by hx = log(Fx), hy = log(Fy), and hz = 
log(Fz). 

The most common multiple regression models used in 
modelling are linear, quadratic and cubic. If interaction 
among variables is considered, the models are given by: 
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In some cases, the curvature in the response surface is strong 
enough that linear model is inadequate, so a model of higher 
order is required. The model with no interactions of first 
order is simple enough but models of greater order become 
more complicated. In the equation (6), if we take into account 
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the interactions among higher order of variables, we must 
append additional factors (e.g., for three input variables, we 
take into account the factors 2

21xx , 2
31xx , 2

32 xx , and so one). 
We will denote this model by cube-expanded (cube-e). The 
numbers of coefficients (parameters that must be determined 
in multiple regressions) are {4, 10, 14, and 20} according to 
model: linear, quadratic, cubic, and cubic-extended 
respectively. In the equations (4)−(6), the terms {bi, bij, 
bijj,...} are the parameters of the model that must be identified 
using one of the optimization algorithm used to minimize the 
output error in fitting the model according with experimental 
data. 

We must remark that it is not very often the case when a 
cubic order is necessary. There are not so many examples but 
they exist and must be taken into consideration. Also, the 
level of interaction among variable is a subject of discussion. 
In a practical case, if we consider all the levels of interaction 
among three variables, the linear, quadratic and cubic models 
have the following representation: 

3322110ˆ xbxbxbby +++=                                                       (7) 
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The models reflect the interaction among variable and a 
useful analysis of these interactions can be made by using an 
appropriate statistical method (e.g. ANOVA).  

The ANOVA method will give information about the 
contribution of each term to the output along with significant 
statistical values.    

Different choices model of DoE have a subsequent choice of 
assignment levels for experimental input data. The common 

choice is five level assignment {−1, − 2 , 0, + 2 , +1}, three 
level assignment {−1, 0, +1} and two level assignment {−1, 
+1}. 
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In the equation above, ξk is the measured value, Xk is the 
coded value and min/max indices represent the minimum and 
maximum value of ξk input variable. By equation (7), the 
input experimental values are mapped into [−1, +1] range. 
The classification is made using R2 factor: (i) most 
favourable case, the highest R2 value; (ii) and the most 
unfavourable case, the lowest R2 value.  

Other fitness measures as RMSE, maximum absolute error 
can be used also as performance measure. We have been 
chosen R2 values as measure of performance because of 
requirement of fitting model with experimental data. The 
error between predicted values and experimental values must 

be minimized in each point where experimental data is 
available. 

We can see from Table 8 that an acceptable performance can 
be achieved for cubic model. The linear and quadratic models 
are not acceptable because of low fitting in the most 
unfavourable case when R2 is around 0.3.  

Two algorithms have been used in order to identify the 
parameters of the multiple regression models: trust-region-
reflective algorithm and Levenberg-Marquardt algorithm. 

Table 8.  Performance measures for multiple regression 
models. 

Material 
Model 
cutting 
forces 

Most 
favourable case 

Most 
unfavourable case 

R2 RMSE R2 RMSE 
Medium-
carbon 
steel C45 

Linear 0.8400 0.1442 0.4771 0.1607 
Quadratic 0.9749 0.0572 0.6294 0.1353 
Cubic >0.9999 8.0771·10-14 >0.9999 8.0771·10-14 

Titanium 
grade 3 

Linear 0.8264 0.1143 0.2462 0.5334 
Quadratic 0.9368 0.0651 0.5018 0.3172 
Cubic >0.9999 1.2739·10-13 >0.9999 1.2739·10-13 

Al 7178 
Linear 0.5480 0.3994 0.2038 0.1912 
Quadratic 0.8557 0.2257 0.4930 0.2677 
Cubic >0.9999 3.3063·10-13 >0.9999 3.3063·10-13 

Cast iron 
Linear 0.7508 0.1558 0.1910 0.0940 
Quadratic 0.8804 0.1079 0.3637 0.0834 
Cubic >0.9999 6.7906·10-14 >0.9999 6.7906·10-14 

Table 9.  Coefficients for cubic model, average and 
maximum measured cutting forces [N] according to 

experimental plan for medium-carbon C45. 

Coeff. 
Average measured  
cutting forces [N] 

Max. measured 
cutting forces [N] 

Fx Fy Fz Fx Fy Fz 
b0 3.3711 4.7851 3.1005 5.1151 5.3742 6.4480 
b1 1.2039 -0.2361 1.6502 1.7075 -1.9625 1.4283 
b2 -0.3749 0.5459 -1.9917 2.0243 -2.8092 -0.7032 
b3 0.7552 -0.4251 0.2475 1.7734 -2.5620 -0.1185 
b12 2.5475 -0.1492 -0.7371 2.7477 -4.5888 -0.8684 
b13 0.4041 0.0997 3.1889 3.2957 -4.2785 -1.7296 
b23 -0.6279 -0.9690 1.9865 2.1009 -3.8051 2.0644 
b11 0.8753 -0.0587 1.7556 0.6683 -0.5886 -1.7534 
b22 0.5603 0.3498 1.7209 0.5458 -0.7288 -1.2510 
b33 0.1598 -0.1995 1.9664 0.7127 -0.7863 -1.4901 
b123 1.2396 -0.0933 3.9689 2.0055 -1.8776 -2.8709 
b112 0.7069 -0.1621 1.3982 1.2363 -2.0087 -1.0219 
b113 2.0375 0.2808 -0.5067 1.1868 1.6016 -0.3792 
b122 -0.8231 -0.5017 1.0514 0.8053 -1.7270 1.1841 
b133 -0.2466 -0.4862 0.5552 0.6010 -1.5356 0.8512 
b223 1.0341 0.0509 -0.8093 1.0341 -1.9362 -0.5691 
b233 -0.4061 0.3414 1.6203 1.5079 -1.4949 -0.9273 
b111 0.2938 0.7658 -1.2194 -0.6907 1.7941 -1.2916 
b222 0.7202 0.6134 -1.9880 -1.3737 2.1968 0.8471 
b333 -1.1251 0.2718 0.3434 -1.1273 1.6922 0.1622 

It is known that any finding of the global minimum 
(maximum) of one function using iterative optimization 
algorithms depends more or less on the starting point (the 
initial value of parameters). Thereupon, the initial value set 
can be a condition to find a local minimum that can be a 
global minimum for entire domain of definition. 
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Fig. 4. Latin hypercube sampling (10 points located at 
random). 

 

 
Fig. 5. Most favourable case (case A), and most unfavourable 
case (case B), model quadratic. 

We estimate the maximum possible contribution given by 
one parameter to output function (pvmax). We set the initial 
set of values in the search space in a hypercube where each 
dimension is in the range [pvmax, +pvmax]. The level of 
granulation is set in a heuristic approach based on the 
analysis of experimental data (e.g. grid with 1 000 × 1 000 
equidistant lines in 2D hypercube, a Latin hypercube (Fig. 4). 

The selection of the points can be made in many ways. We 
use Audze-Eglais and random design. With 10 000 lines on  

each dimension, the final results have no improvements, so 
we can conclude with a high degree of confidence that the 
optimal solutions in Table 9 are the global ones. 

The graphic for both (most favourable and most 
unfavourable) cases over all materials using quadric multiple 
regression are shown in Fig. 5. 

A complete formula for cubic model is given below. The 
relation using value of coefficients is given, e.g. for steel, 
average measuring cutting force, Fx predicted (log(Fx)) in 
equation (12).  
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The formulas are enough complex ones and we need for each 
force a formula with different coefficients.      

4. HYBRID MULTIPLE REGRESSION (HMR) USING 
RSM 

Multiple regressions are statistical techniques for estimating 
the relationships among several independent input variables 
and a dependent output predictor variable. In some cases, the 
model can be complex and can have many interaction terms. 
In our case, an adequate model can be a cubic one (14 terms) 
or a better model, namely cubic-extended (20 terms). Our 
approach proposes a trade-off between the complexity of the 
multiple regressions (number of terms – number of 
parameters) and desired performance of the model.  

We propose to use a hybrid method that has two levels of 
prediction. First, a multiple regression is made using a multi-
regression model. The second stage, given by a single 
regression model or a simple function of transformation 
corrects the error using an adaptive algorithm (e.g. LMS) in 
order to have an improvement of prediction of cutting forces 
(Fig. 6). The dimension of error is considered in this case R2, 
which must be very close to 1.0. 

 
Fig. 6. The schema of Hybrid Multiple Regression (HMR) 
using RSM. 
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Table 10. Performance measures for Hybrid Multiple 
Regression (HMR) using RSM. 

Material 
Model  
cutting  
forces 

Most 
favourable  
case 

Most 
unfavourable 
case 

R2 RMSE R2 RMSE 

Medium-
carbon 
steel C45 

Linear 
-HMR 0.9275 0.0970 0.9058 0.0682 

Quadratic 
-HMR 0.9510 0.0573 0.9423 0.0479 

Titanium 
grade 3 

Linear 
-HMR 0.9275 0.0970 0.9058 0.0682 

Quadratic 
-HMR 0.9510 0.0573 0.9423 0.0379 

Al 7178 

Linear 
-HMR 0.9275 0.0970 0.9058 0.0682 

Quadratic 
-HMR 0.9510 0.0573 0.9423 0.0579 

Cast iron 

Linear 
-HMR 0.9275 0.0970 0.9058 0.0682 

Quadratic 
-HMR 0.9510 0.0573 0.9423 0.0479 

 

The function of correction (FC) can have several forms in the 
SISO sense (SISO-Single Input-Single-Output). A good 
choice can be sigmoidal or polynomial one. The choice of 
sigmoidal function gives not satisfactory results, so we chose 
a polynomial one. The quadratic one seems to be most 
suitable one, because of good trade-off between complexity 
(degree of the polynomial) and a good prediction at output 
(the value of R2 close enough to value 1.0). 

2
210)( xaxaaxy ++== ϕ                                              (13) 

The performances of the model are shown in Table 10. We 
can see that a quadratic multiple regression model followed 
by a quadratic polynomial transform (13 terms) has R2 ≈ 
0.9423 (in the most unfavourable case) is better than a simple 
multiple regression (14 terms) R2 ≈ 0.7479 (cast iron, in the 
most unfavourable case).  

Moreover, if we set the acceptable R2 threshold for 
performance thperf = 0.9, the linear multiple regression 
followed by a quadratic polynomial transform (6 terms) has 
R2 ≈ 0.9058 (in the most unfavourable case for cast iron) is 
better than a simple cubic multiple regression (14 terms) R2 ≈ 
0.7479 (cast iron, in the most unfavourable case). 

In all analyzed cases, the performance of the proposed 
method (HRM) is better that simple multiple regression 
method. The graphic for both (most favourable and most 
unfavourable) cases over all materials using quadratic-HMR 
are shown in Fig. 7. 

We can see from Table 11 that if we accept a moderate level 
of error (RMSE), we can obtain a simpler model if we use a 
HRV with linear regression in its first part and a quadratic 
transformation function in the second part. The model has 
seven coefficients and the performance is better than the 
performance obtained by multiple regression using a 
quadratic model with ten coefficients. 

 

 
Fig. 7. Most favourable case (case A), and most unfavourable 
case (case B), model quadratic-HMR. 

Table 11.  Coefficients for model, average and maximum 
measured cutting forces [N] according to experimental 

plan for steel (HRM – linear and cubic predictor). 

Coeff. 
Multi 
regre-
ssion 

Average measured  
cutting forces [N] 

Max. measured  
cutting forces [N] 

Fx Fy Fz Fx Fy Fz 

b0 3.8039 4.5738 4.5740 5.2043 5.3558 4.8523 
b1 0.5962 0.5055 0.1953 0.4112 0.4263 0.2133 
b2 0.1240 0.2099 -0.0539 0.1310 0.1429 -0.0021 
b3 -0.0525 0.1333 0.0373 0.1020 0.0856  0.0052 
Coefficients Quadratic polynomial 
a0 2.1434 1.4114 2.6511 -3.5361 0.0627 0.0627 
a1 0.0819 0.6800 0.2448 2.5475 1.2247 1.2247 
a2 0.0890 0.0018 0.0380 -0.1659 -0.0441 -0.0441 

5. ARTIFICIAL INTELLIGENCE (AI) APPROACHES, 
NEURAL NETWORKS AND FUZZY NEURAL 

NETWORKS 

Neural networks (NN), fuzzy systems and fuzzy neural 
networks that belong to AI approaches proven to be universal 
approximators (Haykin, 1999; Jang et al., 1995). In 1989, 
(Cybenko, 1989) demonstrated, using a Kolmogorov’s older 
result that multilayer feed-forward network with a single 
hidden layer, which contains finite number of hidden 
neurons, is a universal approximator. The demonstration has 
been made for sigmoid activation function. In the most 
common sense, the universal approximator can approximate 
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any non-linear function with a desired precision if its 
architecture is large enough. Other NNs architectures have 
been proved to be also universal approximators: radial basis 
function (RBF) (Park and Sandberg 1991), recurrent neural 
networks (RNN) (Schäfer and Zimmermann, 2006) and 
Kohonen maps. Recurrent Neural Networks (RNN) in 
various architectures and connection among neurons are the 
subject of dynamic nonlinear modelling and prediction with 
very good results. (Pawade and Joshi, 2011) give in their 
paper a proof for the universal approximation ability of 
RNNs in state space model form. 

(Kosko, 1994) proved in his paper that fuzzy systems can be 
also universal approximators, even in some cases, the 
precision cannot however small. Other researches related to 
approximation and prediction subjects concentrated on fusion 
between neural networks and fuzzy systems, fuzzy neural 
networks (FNN) (Buckley and Hayashi, 1994; Castro et al., 
2009). FNN is a universal approximator with some precision 
using a set of rules and membership functions of various 
shapes (triangular, trapezoidal, Gaussian and bell). A known 
architecture of FNN is often referred as ANFIS inference 
system (Jang, 1993). ANFIS and its variants (MANFIS and 
CANFIS) are also used in many applications as approximator 
and predictor (Jang et al., 1995; Aytek, 2009). 

5.1 Neural network: predictor for cutting forces 

We propose to use a NN with a single hidden layer as 
predictor for output forces. The inputs layer has three neurons 
corresponding to: ap (axial depth of cut [mm]), fz (feed per 
tooth [mm/tooth]), and Vc (cutting speed [m/min]). The 
outputs layer has six neurons corresponding to average 
cutting forces and maximum measured forces (Fig. 8). 

 
Fig. 8. Multilayer Neural Network for Predictive Forces. 

The inputs and outputs are scaled to interval [−1, +1]. The 
scaling is made mainly to prevent the saturation of sigmoid 
function. Also, the scaling procedure makes comparable 
inputs and reduces too much difference of magnitude order 
among inputs. 

The output of neuron in the layer k is given by an activation 
function that takes into account all the output of neurons of 
layer k − 1, weighted and biased by neuron parameters. 
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The hidden layer has sigmoidal activation function (eq. 15) 
meanwhile the neurons from input and input layer can have 
linear or sigmoidal activation function. 

)1/(1)( bxex +−+=ϕ                        (15) 

The learning algorithms for multilayer neural networks are a 
large package of solutions. A most common one, used also by 
us is the gradient descent algorithm improved by variable 
learning coefficient. 

In Table 12 we present performance measures for multilayer 
NNs, one hidden layer and 20 neurons in the hidden layer 
(Average measured cutting forces (AMCF); Max. measured 
cutting forces (MMCF); All cutting forces (ACF), both 
AMCF and MMCF). The performance measure is considered 
overall specifies forces according to column notation. For 20 
neurons in the hidden layer, in all the cases, for all cutting 
forces R2 > 9.9916618336, a very close value to that show 
the excellent fitting performance. Moreover, if we increase 
the numbers of neurons in the hidden layer toward 30 
neurons, the difference between R2 =1.0 (exact fitting) and 
R2 for NN model is less than 10−30, a very good result. 

Table 12. Performance measures (RMSE) for multilayer 
NNs (one hidden layer). 

Material AMCF MMCF ACF 
Medium-

carbon C45 
2.6·10−14 4.0·10−14 3.4·10−8 

Titanium  
grade 3 

8.4·10−13 1.4·10−11 4.5·10−14 

Aluminium  
Al 7178 

4.1·10−12 1.8·10−14 4.9·10−13 

Cast iron 6.4·10−13 4.0·10−10 9.1·10−12 
 

 
Fig. 9. RMSE vs. number of neurons in the hidden layer (all 
cutting forces). 

The optimization of NN usually refers to a minimal NN 
architecture that accomplishes the desired requirements. The 
optimization target in our case is the variable number of 
neurons in the hidden layer (layers). A plot that shows the 
performance of the NN (RMSE) vs. number of neurons is 
presented in Fig. 9. We can see that if the number of neurons 
in the hidden layer is around 30−35, the performance is 
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excellent for all the materials (steel, titanium, aluminium and 
cast iron).  

We can use genetic algorithm (GA) or differential 
evolutionary algorithm (DEA) with variable-length genotype, 
but in our case it is clearly that heuristic approach is more 
efficient. We can try the optimum performance for 1 to 40 
neurons that is a maximum 40 cases. If we use GA or DEA, a 
minimum population of 20 is a normal approach. After n 
generations, we must run the learning algorithm for 20 + 
20*n individuals, that is for 3 generation we must have at 
least 80 runs, twice that in the case of heuristic approach.  

5.2 Fuzzy Neural network (ANFIS): predictor for cutting 
forces  

In modelling of cutting forces, we have to construct a system 
that has three inputs and predict at output six values of six 
variables. ANFIS (Jang, 1993) can have many inputs but it 
can have only one output. We are in the case of multiple-
input, multiple-output ANFIS with nonlinear fuzzy rules. 
Two solutions are proposed in (Jang, 1993): MANFIS and 
CANFIS (Figs. 10 and 11).  

 

Fig. 10. Two-output MANFIS Architecture. 

 
Fig. 11. Two-output CANFIS (Co-Active ANFIS) 
Architecture. 

In the MAFIS case, the architecture has an ANFIS for each 
output (Fig. 10). Each ANFIS has an independent set of rules. 
The common part is the input layer shared by all ANFIS 
architecture. The learning algorithm can be a gradient based 

on antecedent rules and LMS (Least Mean Squares) for 
consequent rules. 

CANFIS extend the ANFIS in order to produce multiple 
outputs. In this architecture, fuzzy rules are built with shared 
membership values. In this approach, different from 
MANFIS, a correlation between outputs is made via fuzzy 
rules. In CANFIS, two membership functions are commonly 
used: general bell and Gaussian. The fuzzy input axon in 
CANFIS applies MFs to modular network outputs. The 
learning algorithm can be a gradient based on antecedent 
rules and LMS (Least Mean Squares) for consequent rules, 
but also GA can be used to optimize the parameters: 
membership functions and coefficient for consequent rules. 

We propose to use MANFIS architecture in this stage of 
research. If we have m = 3 inputs, the implemented rules 
have the form: 
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The performance for all the materials, for different shape of 
membership functions and different number of membership 
functions are presented in Tables 13−16 (in Appendix C and 
D). We can conclude from Tables 11−14 (in Appendix C) 
that MANFIS can approximate each cutting force with a 
precision of at least 10−13 in all the cases, which represent a 
very good approximation and a very good result.  

6. CONCLUSIONS 

A set of solution for approximation of cutting forces 
generated in the milling process have been proposed to be 
used for four materials. Experimental results and comparative 
analysis are performed.   

A novel hybrid method is proposed. The method is based on 
RSM, multi-regression model and nonlinear transformation. 
The proposed method produces acceptable results with a 
simpler model in comparison with multi-regression model.  

ANOVA analysis can reveal the contribution of each factor 
and level of interaction for each term. In our case however, 
we us a simple linear model (with no interaction between 
input variables) followed by a nonlinear transform that act as 
a corrector. One of disadvantages of our proposed model is 
that in the linear regression usage the model does not reveals 
the interaction among input variables. However, an improved 
transform that uses also interaction among variables, at 
different levels using ANOVA analysis can be constructed 
and this is one of the objectives of the further research. 

Modeling of cutting forces is an important issue that is 
subject of many papers. The modeling method presented in 
these papers is focused on two directions: mathematical 
method and algorithms that give the parameters of the model. 
One of the main directions is to find a mathematical formula 
that predicts the force as function of input variables. 
(Milfelner et al., 2005) proposed genetic programming that 
gives a maximum performance for average percentage 
deviation 3.83%.  Our method is has some superiority 
because in the best case a value of 3.79% is given but in our 
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case the experimental values suggest that the model is more 
complex that in (Milfelner et al., 2005) and the usage of their 
method, after 800 restarts and 400 generations give the best 
results 7.96%. 

Moreover, if we take into account the most unfavourable case 
our method is a substantially improvement in comparison 
with power of variables form proposed in (Campatellia and 
Scippa, 2012) using the Altintas’s model (Altintas and 
Spence, 1991) that give for worst case an error of 34.12% 
meanwhile for our values are around 7%. A polynomial 
model of third order has been proposed in [x4].  Even value 
of errors are not provided numerically by authors, from 
graphics we can deduce that the maximum of error is around 
50% for z direction meanwhile our method is substantially 
better. 

RSM (Response surface methodology) is a method used in 
many papers. The various classic methods are used to 
calculate the parameters (LMS, Levenberg-Marquardt, 
multiple regression, genetic algorithms, etc.) The 
performance of this method in terms of complexity and 
performance (R2 values) has been discussed in this paper. 
Our method offers a simpler method with a comparable 
precision (Noordin et al., 2004), e.g. error is between [0.26%, 
1.78%]. The same method extended to cubic RSM applied to 
our experimental data give the error smaller than 1.2739⋅10-

13, a better result that RSM in quadratic form (Wu Baohai et 
al., 2013). The proposed second method gives an error 
between [4.6%, 9.7%]. This error is sometime acceptable if 
the experimental data are dispersed and the simplicity of 
model prevails to a high level of accuracy. 

Also, in the further research we will investigate other suitable 
transform in order to extend and improve the hybrid model. 
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APPENDIX A. FIRST APPENDIX 

  
Fig. 2. Orthogonal matrix, Taguchi method. 

Table 4. Average and maximum measured cutting forces [N] according to experimental plan for improved steel C 45. 

 
Test 

 
ap 

 
fz 

 
vc 

Average measured cutting forces [N] Max. measured cutting forces [N] 
Fx Fy Fz Fx Fy Fz 

1 0.5 0.08 150 -17.4991 -21.8793 107.604 89.6301 83.9539 125.061 
2 0.5 0.092 165 -26.5493 -72.7621 64.06962 107.208 140.259 88.1195 
3 0.5 0.105 181.5 -32.1633 -57.7599 83.2857 120.438 138.428 109.497 
4 0.5 0.121 199.65 -38.6642 -84.2418 78.94135 138.748 166.901 99.9756 
5 0.63 0.08 165 -33.92627 -70.5911 78.74032 124.146 159.073 102.539 
6 0.63 0.092 150 -37.5438 -89.3923 74.46291 144.699 182.327 108.078 
7 0.63 0.105 199.65 -13.64 -93.4657 97.43377 194.55 199.036 116.547 
8 0.63 0.121 181.5 -33.2112 -89.5799 83.90361 194.183 219.589 124.741 
9 0.78 0.08 181.5 -45.5093 -80.3299 120.2731 170.151 187.134 144.47 

10 0.78 0.092 199.65 -54.3224 -108.322 86.64886 195.282 220.505 123.688 
11 0.78 0.105 150 -52.7918 -116.676 103.8513 199.036 240.509 130.892 
12 0.78 0.121 165 -73.9527 -129.45 117.5149 234.65 279.465 149.918 
13 0.97 0.08 199.65 -60.7862 -117.021 122.0013 216.751 254.929 144.241 
14 0.97 0.092 181.5 -108.773 -226.366 153.2461 379.623 456.116 197.205 
15 0.97 0.105 165 -88.9186 -165.489 115.5525 282.852 333.298 162.094 
16 0.97 0.121 150 -72.4686 -121.55 85.3426 208.220 245.587 133.295 

Table 5. Average and maximum measured cutting forces [N] according to experimental plan for titanium, grade 3. 

 
Test 

 
ap 

 
fz 

 
vc 

Average measured cutting forces [N] Max. measured cutting forces [N] 
Fx Fy Fz Fx Fy Fz 

1 0.5 0.08 115 -27.4031 -47.5447 94.41121 57.9071 36.2091 155.136 
2 0.5 0.092 120.5 -28.3029 -69.931 96.67097 70.9534 59.967 130.829 
3 0.5 0.105 127 -20.534 -63.7054 89.18986 74.4324 61.7981 117.554 
4 0.5 0.121 133 -18.1231 -65.2335 96.84743 73.3337 43.9453 123.367 
5 0.63 0.08 120.5 -32.665 -78.5217 105.1152 58.1818 6.82068 154.678 
6 0.63 0.092 115 -31.1623 -67.9245 90.3816 73.7 58.0902 136.414 
7 0.63 0.105 133 -21.2236 -63.4835 100.8848 94.4824 94.4824 138.245 
8 0.63 0.121 127 -31.5312 -79.8318 92.8302 79.1931 83.4045 113.297 
9 0.78 0.08 127 -28.0099 -47.7201 87.49449 65.1398 43.6249 127.35 

10 0.78 0.092 133 -42.7809 -85.3557 76.24919 47.5159 8.92639 125.29 
11 0.78 0.105 115 -34.9478 -72.6504 87.9483 82.7179 81.8481 116.043 
12 0.78 0.121 120.5 -48.3246 -101.303 91.64858 88.028 81.5277 115.173 
13 0.97 0.08 133 -45.7331 -87.6667 95.56656 83.3588 81.8939 129.959 
14 0.97 0.092 127 -38.1995 -73.2111 66.90491 78.3234 83.9539 100.708 
15 0.97 0.105 120.5 -53.3428 -90.0497 95.59439 90.5914 153.58 159.805 
16 0.97 0.121 115 -46.3203 -111.365 92.59085 102.768 78.8727 126.755 
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APPENDIX B. SECOND APPENDIX 

Table 6. Average and maximum measured cutting forces [N] according to experimental plan for aluminium Al 7178. 

 
Test 

 
ap 

 
fz 

 
vc 

Average measured cutting forces [N] Max. measured cutting forces [N] 
Fx Fy Fz Fx Fy Fz 

1 0.5 0.05 420 -9.124751 -15.8437 30.90414 34.10340 22.38460 64.77360 
2 0.5 0.07 454 -8.21227 -18.0222 28.64228 26.04680 16.02170 68.84770 
3 0.5 0.09 490 -11.1745 -18.102 28.88998 37.17040 11.03210 72.32670 
4 0.5 0.12 530 -7.46612 -13.2477 27.07672 27.69470 21.78960 63.58340 
5 0.63 0.05 454 -14.3433 -21.2555 33.46762 31.17370 17.80700 70.49560 
6 0.63 0.07 420 -9.6639 -14.8163 30.32431 19.91270 9.70459 69.16810 
7 0.63 0.09 530 -8.77888 -19.4906 36.41255 19.77540 7.32422 77.08740 
8 0.63 0.12 490 -12.085 -15.1863 16.00457 13.91600 9.75037 66.51310 
9 0.78 0.05 490 -12.619 -22.5779 28.21857 23.48330 21.46910 71.31960 

10 0.78 0.07 530 -29.5003 -41.8598 34.27634 48.43140 18.26480 84.50320 
11 0.78 0.09 420 -26.7435 -45.7916 38.09099 54.10770 21.10290 100.25000 
12 0.78 0.12 454 -22.0591 -23.5341 22.65422 32.50120 26.82500 63.99540 
13 0.97 0.05 530 -17.0059 -19.5923 28.27147 26.87070 56.48800 80.33750 
14 0.97 0.07 490 -28.3457 -33.4982 27.49125 26.73340 51.36110 82.53480 
15 0.97 0.09 454 -30.0954 -56.0964 41.64632 50.85750 28.38130 101.53200 
16 0.97 0.12 420 -4.56931 -11.9227 27.7821 51.81880 53.92460 78.73540 

Table 7. Average and maximum measured cutting forces [N] according to experimental plan for cast iron. 

 
Test 

 
ap 

 
fz 

 
vc 

Average measured cutting forces [N] Max. measured cutting forces [N] 
Fx Fy Fz Fx Fy Fz 

1 0.5 0.1 220 -23.1829 -78.5693 141.7407 153.717 45.0897 184.021 
2 0.5 0.125 237 -21.1778 -107.762 123.671 202.286 42.6178 192.764 
3 0.5 0.15 256 -13.7843 -78.4635 161.8423 132.523 30.5786 234.238 
4 0.5 0.19 277 -26.3275 -89.8774 185.5072 138.565 48.3398 242.569 
5 0.63 0.1 237 -34.1529 -69.5191 201.9195 140.259 138.702 248.566 
6 0.63 0.125 220 -37.3887 -89.5351 192.1092 157.242 105.927 47.009 
7 0.63 0.15 277 -47.173 -63.763 178.4504 132.385 97.7325 332.794 
8 0.63 0.19 256 -50.34 -118.589 187.4753 150.375 25.2228 279.785 
9 0.78 0.1 256 -47.4948 -75.6719 180.4223 108.81 87.3871 243.576 

10 0.78 0.125 277 -40.8451 -61.9521 138.2238 104.416 120.3 218.674 
11 0.78 0.15 220 -42.3398 -114.598 211.379 197.617 100.708 307.297 
12 0.78 0.19 237 -47.9138 -124.825 207.469 222.336 88.2111 308.807 
13 0.97 0.1 277 -47.9736 -101.807 186.6927 87.1124 23.3002 249.344 
14 0.97 0.125 256 -40.2515 -115.853 175.6017 102.859 61.0199 296.86 
15 0.97 0.15 237 -58.9753 -141.792 194.2749 193.863 94.9402 290.131 
16 0.97 0.19 220 -58.0231 -134.662 208.5296 209.015 203.201 337.601 
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APPENDIX C. THIRD APPENDIX 

Table 13. Performance measure (RMSE) for average measured cutting forces using ANFIS, various shapes and 
number of membership function, for medium-carbon steel C45. 

MFs type Number 
of MFs 

Average measured cutting forces Max. measured cutting forces 
Fx Fy Fz Fx Fy Fz 

Triangular 2 0.0281·10-13    0.0640·10-13        0.0355·10-13    0.1465·10-13    0.2010·10-13    0.0615·10-13    
3 0.0281·10-13    0.0640·10-13        0.0355·10-13    0.1465·10-13    0.2010·10-13    0.0615·10-13    
4 0.0291·10-13    0.0647·10-13        0.0356·10-13    0.1479·10-13    0.2114·10-13    0.0617·10-13    
5 0.0298·10-13    0.0646·10-13        0.0366·10-13    0.1439·10-13    0.2014·10-13    0.0607·10-13    

Trapezoidal 2 0.0281·10-13    0.0640·10-13        0.0355·10-13    0.1465·10-13    0.2010·10-13    0.0615·10-13    
3 0.0281·10-13    0.0640·10-13        0.0355·10-13    0.1465·10-13    0.2010·10-13    0.0615·10-13    
4 0.0291·10-13    0.0647·10-13        0.0356·10-13    0.1479·10-13    0.2114·10-13    0.0617·10-13    
5 0.0298·10-13    0.0646·10-13        0.0366·10-13    0.1439·10-13    0.2014·10-13    0.0607·10-13    

Gaussian 2 0.0281·10-13    0.0640·10-13        0.0355·10-13    0.1465·10-13    0.2010·10-13    0.0615·10-13    
3 0.0281·10-13    0.0640·10-13        0.0355·10-13    0.1465·10-13    0.2010·10-13    0.0615·10-13    
4 0.0281·10-13    0.0640·10-13        0.0355·10-13    0.1465·10-13    0.2010·10-13    0.0615·10-13    
5 0.0281·10-13    0.0640·10-13        0.0355·10-13    0.1465·10-13    0.2010·10-13    0.0615·10-13    

Bell 2 0.0281·10-13    0.0640·10-13        0.0355·10-13    0.1465·10-13    0.2010·10-13    0.0615·10-13    
3 0.0281·10-13    0.0640·10-13        0.0355·10-13    0.1465·10-13    0.2010·10-13    0.0615·10-13    
4 0.0281·10-13    0.0640·10-13        0.0355·10-13    0.1465·10-13    0.2010·10-13    0.0615·10-13    
5 0.0281·10-13    0.0643·10-13        0.0355·10-13    0.1465·10-13    0.2011·10-13    0.0615·10-13    

Table 14. Performance measure (RMSE) for average measured cutting forces using ANFIS, various shapes and 
number of membership function, for titanium, grade 3. 

MFs type Number 
of MFs 

Average measured cutting forces Max. measured cutting forces 
Fx Fy Fz Fx Fy Fz 

Triangular 2 0.0366·10-13    0.0533·10-13        0.1465·10-13    <0.1·10-29     0.0366·10-13    0.0732·10-13    
3 0.0366·10-13    0.0533·10-13        0.1465·10-13    <0.1·10-29     0.0366·10-13    0.0732·10-13    
4 0.0366·10-13    0.0533·10-13        0.1465·10-13    <0.1·10-29     0.0366·10-13    0.0732·10-13    
5 0.0366·10-13    0.0533·10-13        0.1465·10-13    <0.3·10-29     0.0366·10-13    0.0732·10-13    

Trapezoidal 2 0.0366·10-13    0.0533·10-13        0.1465·10-13    <0.1·10-29     0.0366·10-13    0.0732·10-13    
3 0.0366·10-13    0.0533·10-13        0.1465·10-13    <0.1·10-29     0.0366·10-13    0.0732·10-13    
4 0.0366·10-13    0.0533·10-13        0.1465·10-13    <0.1·10-29     0.0366·10-13    0.0732·10-13    
5 0.0366·10-13    0.0533·10-13        0.1465·10-13    <0.1·10-29     0.0366·10-13    0.0732·10-13    

Gaussian 2 0.0366·10-13    0.0533·10-13        0.1465·10-13    <0.1·10-29     0.0366·10-13    0.0732·10-13    
3 0.0366·10-13    0.0533·10-13        0.1465·10-13    <0.1·10-29     0.0366·10-13    0.0732·10-13    
4 0.0366·10-13    0.0533·10-13        0.1465·10-13    <0.1·10-29     0.0366·10-13    0.0732·10-13    
5 0.0366·10-13    0.0533·10-13        0.1465·10-13    <0.1·10-29     0.0366·10-13    0.0732·10-13    

Bell 2 0.0366·10-13    0.0533·10-13        0.1465·10-13    <0.1·10-29     0.0366·10-13    0.0732·10-13    
3 0.0366·10-13    0.0533·10-13        0.1465·10-13    <0.2·10-29     0.0366·10-13    0.0732·10-13    
4 0.0366·10-13    0.0533·10-13        0.1465·10-13    <0.1·10-29     0.0366·10-13    0.0732·10-13    
5 0.0366·10-13    0.0533·10-13        0.1465·10-13    <0.1·10-29     0.0366·10-13    0.0732·10-13    
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APPENDIX D. FOURTH APPENDIX 

Table 15. Performance measure (RMSE) for average measured cutting forces using ANFIS, various shapes and 
number of membership function, for aluminium Al 7178. 

MFs type Number 
of MFs 

Average measured cutting forces Max. measured cutting forces 
Fx Fy Fz Fx Fy Fz 

Triangular 2 0.0916·10-14    0.1538·10-14        0.0888·10-14    0.222·10-14     0.2551·10-14    0.1776·10-14    
3 0.0916·10-14    0.1538·10-14        0.0888·10-14    0.222·10-14     0.2551·10-14    0.1776·10-14    
4 0.0916·10-14    0.1538·10-14        0.0888·10-14    0.222·10-14     0.2499·10-14    0.1776·10-14    
5 0.0916·10-14    0.1538·10-14        0.0888·10-14    0.222·10-14     0.2551·10-14    0.1776·10-14    

Trapezoidal 2 0.0916·10-14    0.1538·10-14        0.0888·10-14    0.222·10-14     0.2551·10-14    0.1776·10-14    
3 0.0916·10-14    0.1538·10-14        0.0888·10-14    0.222·10-14     0.2551·10-14    0.1776·10-14    
4 0.0916·10-14    0.1538·10-14        0.0888·10-14    0.222·10-14     0.2551·10-14    0.1776·10-14    
5 0.0916·10-14    0.1538·10-14        0.0888·10-14    0.222·10-14     0.2551·10-14    0.1776·10-14    

Gaussian 2 0.0916·10-14    0.1538·10-14        0.0888·10-14    0.222·10-14     0.2551·10-14    0.1776·10-14    
3 0.0916·10-14    0.1538·10-14        0.0888·10-14    0.222·10-14     0.2551·10-14    0.1776·10-14    
4 0.0916·10-14    0.1538·10-14        0.0888·10-14    0.222·10-14     0.2551·10-14    0.1776·10-14    
5 0.0916·10-14    0.1538·10-14        0.0888·10-14    0.222·10-14     0.2551·10-14    0.1776·10-14    

Bell 2 0.0916·10-14    0.1538·10-14        0.0888·10-14    0.231·10-14     0.2551·10-14    0.1776·10-14    
3 0.0906·10-14    0.1538·10-14        0.0888·10-14    0.222·10-14     0.2551·10-14    0.1776·10-14    
4 0.0916·10-14    0.1538·10-14        0.0888·10-14    0.222·10-14     0.2551·10-14    0.1776·10-14    
5 0.0916·10-14    0.1538·10-14        0.0888·10-14    0.222·10-14     0.2551·10-14    0.1776·10-14    

Table 16. Performance measure (RMSE) for average measured cutting forces using ANFIS, various shapes and 
number of membership function, for cast iron. 

MFs type Number 
of MFs 

Average measured cutting forces Max. measured cutting forces 
Fx Fy Fz Fx Fy Fz 

Triangular 2 0.2512·10-14    <0.4·10-27     0.6153·10-14    0.1776·10-14        0.3241·10-14    0.6153·10-14    
3 0.2512·10-14    <0.4·10-27     0.6153·10-14    0.1776·10-14        0.3241·10-14    0.6153·10-14    
4 0.2512·10-14    <0.4·10-27     0.6153·10-14    0.1776·10-14        0.3241·10-14    0.6153·10-14    
5 0.2512·10-14    <0.4·10-27     0.6153·10-14    0.1776·10-14        0.3241·10-14    0.6153·10-14    

Trapezoidal 2 0.2512·10-14    <0.4·10-27     0.6153·10-14    0.1776·10-14        0.3241·10-14    0.6153·10-14    
3 0.2512·10-14    <0.4·10-27     0.6153·10-14    0.1776·10-14        0.3241·10-14    0.6153·10-14    
4 0.2512·10-14    <0.4·10-27     0.6153·10-14    0.1776·10-14        0.3241·10-14    0.6153·10-14    
5 0.2512·10-14    <0.4·10-27     0.6153·10-14    0.1776·10-14        0.3241·10-14    0.6153·10-14    

Gaussian 2 0.2512·10-14    <0.4·10-27     0.6153·10-14    0.1776·10-14        0.3241·10-14    0.6153·10-14    
3 0.2512·10-14    <0.4·10-27     0.6153·10-14    0.1776·10-14        0.3241·10-14    0.6153·10-14    
4 0.2512·10-14    <0.4·10-27     0.6153·10-14    0.1776·10-14    0.3241·10-14    0.6153·10-14    
5 0.2512·10-14    <0.4·10-27     0.6153·10-14    0.1776·10-14        0.3241·10-14    0.6153·10-14    

Bell 2 0.2512·10-14    <0.4·10-27     0.6153·10-14    0.1776·10-14        0.3241·10-14    0.6153·10-14    
3 0.2512·10-14    <0.4·10-27     0.6153·10-14    0.1776·10-14        0.3241·10-14    0.6153·10-14    
4 0.2512·10-14    <0.4·10-27     0.6153·10-14    0.1776·10-14        0.3241·10-14    0.6153·10-14    
5 0.2512·10-14    <0.4·10-27     0.6153·10-14    0.1776·10-14        0.3241·10-14    0.6153·10-14    

 

 


