
CEAI, Vol. 8, No. 4, pp. 52-57, 2006 Printed in Romania

FPGA-BASED SYSTEM FOR NETWORK FLOW IDENTIFICATION

Z. Baruch, A. Peculea, M. Suciu, Z. Majo

Computer Science Department, Technical University of Cluj-Napoca,
26-28, Bariţiu St., 400027 Cluj-Napoca, Romania

 E-mail: Zoltan.Baruch@cs.utcluj.ro, Adrian.Peculea@cs.utcluj.ro

Abstract: This paper presents the design and implementation of an FPGA-based system for real-
time network flow identification. The system identifies data flows based on packet inspection. The
main advantage of this system is that it reduces significantly the processing time required for the
flow identification. For the hardware implementation, a Xilinx Virtex-II Pro FPGA device and the
Xilinx Embedded Development Kit (EDK) software are used. This embedded system represents the
first step for designing a reconfigurable router with QoS (Quality of Service) support.

Keywords: FPGA, computer networks, flow identification, QoS, embedded systems

1. INTRODUCTION

A network flow represents a data stream carry-
ing information between a server and a client.
Network flow identification is essential to sup-
port Quality of Service (QoS) implementation.
For instance, it helps identifying the applications
that present certain QoS constraints. Also, it al-
lows determining the traffic characteristics in
order to evaluate the required QoS policies and
it helps network traffic monitoring to examine
its changing tendencies. Since the number of
flows forwarded by a router is very large, the
flow identification and processing presents real-
time constraints. These constraints can be com-
pletely met by means of hardware implementa-
tion.

In this paper we describe the design and imple-
mentation of an FPGA-based system for net-
work flow identification. This system identifies
flows based on five fields in the packet headers.
The implemented system represents the first step
for designing a reconfigurable router with QoS
support. Prior to the hardware implementation,
we developed a software application to test sev-
eral network flow identification methods.

This paper is organized as follows. Section 2
provides background information regarding flow
identification. Related works are described in
Section 3. Section 4 describes the software ap-
plication for network flow identification. Sec-
tion 5 presents the design and implementation of
the FPGA-based system for network flow identi-
fication, and Section 6 concludes the paper.

CONTROL ENGINEERING AND APPLIED INFORMATICS 53

2. BACKGROUND

Network flow identification can be used for sev-
eral goals, such as determining the packet proc-
essing method and traffic distribution. QoS
technologies treat differently packets that belong
to different flows. Therefore, it is important to
identify various types of packets by inspecting
their contents. In case of integrated services,
traffic identification consists of traffic flow
identification based on the headers’ contents.
Typically, the following information is used:
source IP address, destination IP address, proto-
col identifier, source port number, and destina-
tion port number. In case of differentiated ser-
vices, traffic identification represents the proc-
ess of packet identification based on a set of
specified rules.

There are several categories of flow identifica-
tion algorithms. Linear search algorithms use a
list of rules stored in descending priority order.
A packet is compared sequentially to each rule
until a rule that complies with all the fields of
the packet is found. The hierarchical tries algo-
rithm is based on several multidimensional hier-
archical search trees. The set-pruning tries, grid-
of-tries, AQT and FIS algorithms are also based
on search trees. The hierarchical intelligent cut-
tings algorithm [4] uses a search tree that con-
tains a small number of rules in the leaves.
These rules can be compared sequentially. The
tuple-space search algorithm [10] divides the
classification into an exact number of steps. The
set of rules mapped to the same field is stored in
a hash table. The bitmap intersection method [6]
is based on the fact that the set of rules used for
packet identification represents the intersection
of a number of rules associated to each dimen-
sion.

The CAM method uses a ternary associative
memory that stores the rules in descending pri-
ority order and performs the comparisons in par-
allel. As opposed to random-access memories
(RAMs), in which the stored data are identified
by means of a unique address assigned to each
data word, CAM words are identified by their
content. CAMs are very useful in applications
where intensive search operations are to be per-
formed [2]. Based on the values they can store,
there are two types of CAMs: binary and ternary
[8]. Binary CAMs can only store binary digits
('0', '1'), while ternary CAMs can store binary
digits as well as “don’t care” values ('X'). Ter-
nary CAMs may have a global mask as well,

which allows the search pattern to also contain
“don’t care” values. This is useful when the
width of the search pattern is small, so that two
or more entries can be stored in the same CAM
location. Several networking applications have
been identified for using CAMs, including
Ethernet address lookup, address filtering, rout-
ing, security, or information encryption on for
high-performance data switches, firewalls,
bridges, and routers [1].

The main technologies used for QoS are Inte-
grated Services, Differentiated Services, Multi-
protocol Label Switching, and traffic engineer-
ing. For integrated services, the following flow
identification algorithms are used: CAM-based
search, hashing-based schemes and binary
search. Hashing-based schemes involve calcula-
tion of a hash function and further comparisons
if there is collision. For differentiated services,
three types of packet identification algorithms
are used: caching, geometrical, and tries. The
caching method uses a cache memory to store
the information that defines the last flows. The
geometrical method involves localization of a
point in a multidimensional space. The tries
method is based on a binary tree with each
branch labeled with 0 or 1 [11]. For traffic dis-
tribution, two types of algorithms are used: di-
rect hashing and table-based hashing. In case of
direct hashing, a hash function is applied that
may include as information used for flow identi-
fication at least two of the five fields that iden-
tify a flow. The main drawback of direct hashing
is that the traffic is distributed evenly. Table-
based hashing eliminates this drawback, allow-
ing traffic distribution in ratios defined by the
user. This method first divides the traffic and
then it maps it to the output links based on an
allocation table. The allocation table determines
the percentage of traffic that will be sent to an
interface.

3. RELATED WORK

To our knowledge, there is no hardware system
designed specifically for network flow identifi-
cation described in the literature. However, sev-
eral research topics use FPGA devices and con-
tent-addressable memories (CAMs) for network
processing applications. One type of such appli-
cation is packet classification, where the packets
are compared against a set of filters. For in-
stance, packets may be classified based on the
header fields and some strings in the packet con-

54 CONTROL ENGINEERING AND APPLIED INFORMATICS

tent. Song and Lockwood [9] proposed a packet
classification architecture called BV-TCAM (Bit
Vector Ternary CAM), which combines the BV
algorithm and a TCAM. The hardware imple-
mentation of the BV algorithm performs source
and destination port lookup, while the other
fields are checked for matching by a TCAM.
Ditmar [3] uses fixed-length and variable-length
CAMs for IP characterization, which is closely
related to packet classification. Another type of
networking application is represented by deep
packet inspection, which examines the entire
packet content and not just the header. Yu [15]
proposed a TCAM-based architecture for deep
packet inspection that uses multi-match classifi-
cation. In this type of classification, packets are
compared against a set of filters and each result
is reported. CAMs are also suitable for network
flow analysis and monitoring. Luk et al. [7] pro-
posed a combined hardware-software architec-
ture for network flow analysis, which allows for
processing multiple flows in parallel.

4. NETWORK FLOW IDENTIFICATION
APPLICATION

In order to test the network traffic identification
algorithms, we implemented a software applica-
tion for traffic flow identification. The flow
identification is performed based on five fields
contained in the packet header. These fields are
the following: source IP address, destination IP
address, protocol identifier, source port number,
and destination port number. The values of these
five fields from a packet are compared against
the values of the same fields that define the pre-
viously identified flows to determine whether
the packet belongs to a flow that is already
stored or it belongs to a new flow.

The main design problem of a real-time traffic
flow identification application is the comparison
of the captured packet information against the
information stored about the already identified
flows. At the router level, the number of flows is
very high and the processing time must be ex-
tremely low.

For real-time flow retrieval, a method based on
hash function has been used. For this method, an
optimized algorithm has been implemented,
which allows to reduce the time required for
flow retrieval due to the small number of itera-
tions.

The application identifies the flows, stores them,
and elaborates statistics about the characteristics
of these flows. In order to capture the packets
from the entire subnet, the application should
run on the router. However, since the router is
usually a dedicated equipment, a hub or switch
may be used, as presented in Fig. 1.

Fig. 1. Network configuration for testing the software

application.

A hub transmits each received packet to all the
other ports. A switch must be configured to
transmit the packets from all the other ports to
the port connected to the computer that runs the
application.

In order to capture all the packets transferred in
the subnet, the network interface card is set to
promiscuous mode. Each packet is inspected and
the fields that identify the flow to which the
packet belongs are extracted from its headers.
The next step is to compare the identified flow
against the existing flows that are stored in a
table. If the flow is new, it is inserted into the
table. If the packet belongs to an existing flow,
the statistic data of the flow are updated.

The graphical interface of the application dis-
plays the flow number as it was identified and
the values of the fields used for flow identifica-
tion. Other information displayed is the maxi-
mum length, average length, minimum length of
the packets, and the total number of packets be-
longing to each flow. The information required
to evaluate the performance of the flow identifi-
cation algorithm, represented by the number of
iterations required to retrieve the flow, is also
displayed, as shown in Fig. 2.

The application has been developed for the
.NET platform in the C# language. It allows
visualizing the network flows, their characteris-
tics, and the performance of retrieval methods.
The application also allows testing various algo-
rithms and optimization techniques that allow
for real-time processing of data flows in com-
puter networks in order to support QoS imple-
mentation.

CONTROL ENGINEERING AND APPLIED INFORMATICS 55

Fig. 2. Statistics data that characterize the flows.

5. FPGA-BASED SYSTEM FOR

NETWORK FLOW IDENTIFICATION

For the implementation of the network flow
identification system, we used a Xilinx
XC2VP30 FPGA device from the Virtex-II Pro
family. This device contains an array of 80x46
configurable logic blocks and integrates two
PowerPC 405 processors.

As hardware development platform, we used a
Xilinx XUP Virtex-II Pro board [14], which al-
lows implementing complex hardware systems,
containing one or more central processing units
(CPUs), configurable logic and a large number
of peripheral devices that communicate with the
CPUs. The main components available are the
following: a high-speed Ethernet interface, three
serial ATA ports, two RS-232 serial ports, two
PS/2 ports, a DDR SDRAM of 256 MB, a serial
EEPROM to store the FPGA device configura-
tion, an XSGA video interface, a USB 2.0 inter-
face, and a serial port for debugging.

For the implementation we chose a combined
hardware/software solution, which allows ex-
ploiting the advantages of both solutions: the
flexibility of the software solution and the high
performance of the hardware solution. The time-
critical operations are implemented in hardware,
while the operations that are less demanding are
implemented in software.

As software development system, we used the
Xilinx Embedded Development Kit (EDK), ver-
sion 7.1i [13], which allows to implement com-
plex systems containing both hardware and
software modules, and provides tools for testing
and debugging the designed system. The EDK
also requires the corresponding version of the
Xilinx ISE design package to generate the con-
figuration bitstream for the FPGA device.

The block diagram of the network flow identifi-
cation system is illustrated in Fig. 3. The main
components of the system are the MicroBlaze
processor, the dual-port BRAM (Block RAM),
the BRAM controllers, the EMAC (Ethernet
Media Access Controller), the INTC interrupt
controller, the UART controller for the serial
interface, the CAM, and the MDM (Microproc-
essor Debug Module).

Fig. 3. Block diagram of the network flow

identification system.

The MicroBlaze is a 32-bit soft processor core
provided by Xilinx EDK. The on-chip dual-port
BRAM is connected to the processor using an
Instruction-side Local Memory Bus (ILMB) and
a Data-side Local Memory Bus (DLMB). These
buses use a simple synchronous protocol to pro-
vide single-cycle access to the on-chip BRAM.
The peripheral modules are connected to the
processor using an On-chip Peripheral Bus
(OPB). These buses are part of the CoreConnect
architecture standard specified by IBM [5].

The CAM performs the comparison between the
fields of data packets that uniquely identify a
certain flow between two computers. The com-
parison is performed in parallel for all the words
in the CAM, which allows obtaining the result
of the comparison in a single clock cycle. An
extra clock cycle is required to write the con-
tents of the packet fields into the argument reg-
isters. The CAM word size is 104 bits: 2×32 bits
for the source and destination IP addresses,
2×16 bits for the source and destination ports,
and 8 bits for the protocol identifier. For testing,
we used a 16-word CAM in order to reduce the
synthesis time. After testing and debugging, the
size of the CAM has been extended to 512
words. Above this size, the synthesis time and
the memory requirements increase significantly.

Fig. 4 illustrates the block diagram of the CAM.
The processor accesses the CAM through five
32-bit software-addressable registers, Reg0 to

56 CONTROL ENGINEERING AND APPLIED INFORMATICS

Reg4. The first four registers can only be used
for writing. Before the search operation, the
source IP address is written into Reg0, the desti-
nation IP address is written into Reg1, the
source and destination port numbers are written
into Reg2, and the protocol ID is written into
Reg3. For a write operation, the write address is
written into Reg3 and the WE bit of this register
is set. Reg4 contains the result of the search and
it can only be used for reading. Bit 31 of this
register represents the match bit. If this bit is set,
bits 8..0 of Reg4 contain the match address.

Fig. 4. Block diagram of the CAM.

The CAM is connected to the on-chip peripheral
bus through an interface called OPB IPIF (OPB
Intellectual Property Interface), as illustrated in
Fig. 5. Part of this interface, the OPB IPIC (OPB
Intellectual Property Interconnect) is generated
automatically by the Core Generator module
from the Xilinx ISE software. The other part of
the interface has been written in VHDL.

Fig. 5. The interface between the CAM and the OPB.

Table 1: Synthesis Results for the Network Flow
Identification System
Resource
Type

Used Total Percentage

Slice regis-
ters

3,533 27,392 12%

Occupied
slices

4,197 13,696 30%

Block RAMs 48 136 35%
4-Input
LUTs

6,048 27,392 22%

Table 1 contains some results from the reports
generated by the synthesis tools used to imple-
ment the embedded system in the Xilinx
XC2VP30 FPGA device.

For the CAM, a software driver has been devel-
oped, which has been written in C. The main
functions that can be performed with this driver
are the following: searching an argument word
in the CAM, reading from the CAM and writing
into the CAM.

The MicroBlaze processor executes a program
that initializes and controls the hardware mod-
ules. In order to be able to detect all the packets
that travel in the network, the program sets the
EMAC into promiscuous mode. To initialize the
interrupt system, the program uses the EMAC
module’s driver to register the callback func-
tions required to service the interrupts. When a
frame is sent or received, or when an error oc-
curs, the corresponding interrupt function is
called. In the main loop, the program extracts
the required fields from the data packets, stores
them into the argument registers, and sends the
command to the CAM. The program also per-
forms the required operations for managing the
data flows and displaying the statistics about the
identified flows.

For testing the hardware system, we connected
the development board to a hub and monitored
the traffic between a server and a PC connected
to the same hub. This connection allows moni-
toring all the packets that travel between the
server and the PC.

6. CONCLUSIONS

In this paper, we presented the design and im-
plementation of an FPGA-based system for net-
work flow identification. The flows are identi-
fied based on five fields contained in each
packet header. For the implementation, we used
a Xilinx Virtex-II Pro FPGA device. The hard-
ware system contains a CAM that performs the
comparison between the five fields of incoming
packets and the previously stored information
about the identified flows. Only two clock cy-
cles are required to write the contents of the
packet fields into the argument registers and to
retrieve the result of the comparison. The main
advantage of the hardware implementation is
that it reduces significantly the time required for
flow identification. This implementation, how-

CONTROL ENGINEERING AND APPLIED INFORMATICS 57

ever, does not represent a pure hardware system,
but rather a combined hardware/software design.
Only the time-critical operations are imple-
mented in hardware, while other operations are
implemented in software. The advantage of this
combined solution for this real-time flow identi-
fication system is that flexibility is increased and
the hardware resources required are reduced.

The hardware implementation of the network
flow identification system represents the first
step for designing a reconfigurable router with
QoS support. The next step would be the design
of an embedded system that determines the net-
work traffic characteristics, and the last step
would be the design of the reconfigurable router
that performs the constraint-based routing.

REFERENCES

[1] Azgomi, S., “Using content-addressable

memory for networking applications”,
http://www.commsdesign.com/main/1999/
11/9911feat3.htm, accessed February 2006.

[2] Baruch, Z., Structure of Computer Sys-

tems, U.T. PRES, Cluj-Napoca, Romania,
pp. 174-185, 2002.

[3] Ditmar, J. M., A Dynamically Reconfigur-

able FPGA-based Content Addressable
Memory for IP Characterization, Master
Thesis ELE/ESK/2000-3, Kungliga Tek-
niska Högskolan, Stockholm, 2000.

[4] Gupta, P., and McKeown, N., “Packet clas-

sification using hierarchical intelligent cut-
tings”, in Proc. Hot Interconnects VII,
Stanford, 1999.

[5] IBM Corp., On-Chip Peripheral Bus, Ar-

chitecture Specifications, Version 2.1,
2001.

[6] Lakshman, T. V., and Stiliadis, D., “High-
speed policy-based packet forwarding us-
ing efficient multidimensional range
matching”, in Proceedings of ACM
SIGCOMM, pp. 191-202, 1998.

[7] Luk, W., Yusuf, S., Sloman, M., Brown, A.
W., Lupu, E. C., and Dulay, N., “Com-
bined Hardware-Software Architecture for
Network Flow Analysis”, in Proceedings of
Int. Conference on Engineering of Recon-
figurable Systems and Algorithms (ERSA),
pp. 149-155, Las Vegas, 2005.

[8] Pagiamtzis, K., “Content-Addressable

memory introduction”, http://www.eecg.
toronto.edu/~pagiamt/cam/camintro.html,
February 2006.

[9] Song, H., Lockwood, J. W., “Efficient

Packet Classification for Network Intrusion
Detection Using FPGA”, in Proceedings of
International Symposium on Field-
Programmable Gate Arrays (FPGA ’05),
pp. 238-245, Monterey, 2005.

[10] Srinivasan, V., Suri, S., and Varghese, G.,

“Packet classification using tuple space
search”, in Proceedings of ACM
SIGCOMM, pp. 135-146, 1999.

[11] Srinivasan, V., and Varghese, G., “Fast

address lookups using controlled prefix ex-
pansion”, in ACM Transactions on Com-
puter Systems, Vol. 17, No. 1, pp. 1-40,
1999.

[12] Wang, Z., Internet QoS: Architectures and

Mechanisms for Quality of Service, Mor-
gan Kaufmann, San Francisco, 2001.

[13] Xilinx Inc., Embedded System Tools Ref-

erence Manual, Embedded Development
Kit 7.1i, UG111 (v4.2), 2005.

[14] Xilinx Inc., Xilinx University Program

Virtex-II Pro Development System, Hard-
ware Reference Manual, UG069 (v1.0),
2005.

[15] Yu, F., High Speed Deep Packet Inspection

with Hardware Support, Technical Report
No. UCB/EECS-2006-156, University of
California at Berkeley, 2006.

