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Abstract: This paper presents the design and implementation of an FPGA-based system for real-
time network flow identification. The system identifies data flows based on packet inspection. The 
main advantage of this system is that it reduces significantly the processing time required for the 
flow identification. For the hardware implementation, a Xilinx Virtex-II Pro FPGA device and the 
Xilinx Embedded Development Kit (EDK) software are used. This embedded system represents the 
first step for designing a reconfigurable router with QoS (Quality of Service) support. 
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1. INTRODUCTION 

 
A network flow represents a data stream carry-
ing information between a server and a client. 
Network flow identification is essential to sup-
port Quality of Service (QoS) implementation. 
For instance, it helps identifying the applications 
that present certain QoS constraints. Also, it al-
lows determining the traffic characteristics in 
order to evaluate the required QoS policies and 
it helps network traffic monitoring to examine 
its changing tendencies. Since the number of 
flows forwarded by a router is very large, the 
flow identification and processing presents real-
time constraints. These constraints can be com-
pletely met by means of hardware implementa-
tion. 
 
 

In this paper we describe the design and imple-
mentation of an FPGA-based system for net-
work flow identification. This system identifies 
flows based on five fields in the packet headers. 
The implemented system represents the first step 
for designing a reconfigurable router with QoS 
support. Prior to the hardware implementation, 
we developed a software application to test sev-
eral network flow identification methods. 
 
This paper is organized as follows. Section 2 
provides background information regarding flow 
identification. Related works are described in 
Section 3. Section 4 describes the software ap-
plication for network flow identification. Sec-
tion 5 presents the design and implementation of 
the FPGA-based system for network flow identi-
fication, and Section 6 concludes the paper. 
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2. BACKGROUND 
 
Network flow identification can be used for sev-
eral goals, such as determining the packet proc-
essing method and traffic distribution. QoS 
technologies treat differently packets that belong 
to different flows. Therefore, it is important to 
identify various types of packets by inspecting 
their contents. In case of integrated services, 
traffic identification consists of traffic flow 
identification based on the headers’ contents. 
Typically, the following information is used: 
source IP address, destination IP address, proto-
col identifier, source port number, and destina-
tion port number. In case of differentiated ser-
vices, traffic identification represents the proc-
ess of packet identification based on a set of 
specified rules. 
 
There are several categories of flow identifica-
tion algorithms. Linear search algorithms use a 
list of rules stored in descending priority order. 
A packet is compared sequentially to each rule 
until a rule that complies with all the fields of 
the packet is found. The hierarchical tries algo-
rithm is based on several multidimensional hier-
archical search trees. The set-pruning tries, grid-
of-tries, AQT and FIS algorithms are also based 
on search trees. The hierarchical intelligent cut-
tings algorithm [4] uses a search tree that con-
tains a small number of rules in the leaves. 
These rules can be compared sequentially. The 
tuple-space search algorithm [10] divides the 
classification into an exact number of steps. The 
set of rules mapped to the same field is stored in 
a hash table. The bitmap intersection method [6] 
is based on the fact that the set of rules used for 
packet identification represents the intersection 
of a number of rules associated to each dimen-
sion. 
 
The CAM method uses a ternary associative 
memory that stores the rules in descending pri-
ority order and performs the comparisons in par-
allel. As opposed to random-access memories 
(RAMs), in which the stored data are identified 
by means of a unique address assigned to each 
data word, CAM words are identified by their 
content. CAMs are very useful in applications 
where intensive search operations are to be per-
formed [2]. Based on the values they can store, 
there are two types of CAMs: binary and ternary 
[8]. Binary CAMs can only store binary digits 
('0', '1'), while ternary CAMs can store binary 
digits as well as “don’t care” values ('X'). Ter-
nary CAMs may have a global mask as well, 

which allows the search pattern to also contain 
“don’t care” values. This is useful when the 
width of the search pattern is small, so that two 
or more entries can be stored in the same CAM 
location. Several networking applications have 
been identified for using CAMs, including 
Ethernet address lookup, address filtering, rout-
ing, security, or information encryption on for 
high-performance data switches, firewalls, 
bridges, and routers [1]. 
 
The main technologies used for QoS are Inte-
grated Services, Differentiated Services, Multi-
protocol Label Switching, and traffic engineer-
ing. For integrated services, the following flow 
identification algorithms are used: CAM-based 
search, hashing-based schemes and binary 
search. Hashing-based schemes involve calcula-
tion of a hash function and further comparisons 
if there is collision. For differentiated services, 
three types of packet identification algorithms 
are used: caching, geometrical, and tries. The 
caching method uses a cache memory to store 
the information that defines the last flows. The 
geometrical method involves localization of a 
point in a multidimensional space. The tries 
method is based on a binary tree with each 
branch labeled with 0 or 1 [11]. For traffic dis-
tribution, two types of algorithms are used: di-
rect hashing and table-based hashing. In case of 
direct hashing, a hash function is applied that 
may include as information used for flow identi-
fication at least two of the five fields that iden-
tify a flow. The main drawback of direct hashing 
is that the traffic is distributed evenly. Table-
based hashing eliminates this drawback, allow-
ing traffic distribution in ratios defined by the 
user. This method first divides the traffic and 
then it maps it to the output links based on an 
allocation table. The allocation table determines 
the percentage of traffic that will be sent to an 
interface. 
 
 

3. RELATED WORK 
 
To our knowledge, there is no hardware system 
designed specifically for network flow identifi-
cation described in the literature. However, sev-
eral research topics use FPGA devices and con-
tent-addressable memories (CAMs) for network 
processing applications. One type of such appli-
cation is packet classification, where the packets 
are compared against a set of filters. For in-
stance, packets may be classified based on the 
header fields and some strings in the packet con-
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tent. Song and Lockwood [9] proposed a packet 
classification architecture called BV-TCAM (Bit 
Vector Ternary CAM), which combines the BV 
algorithm and a TCAM. The hardware imple-
mentation of the BV algorithm performs source 
and destination port lookup, while the other 
fields are checked for matching by a TCAM. 
Ditmar [3] uses fixed-length and variable-length 
CAMs for IP characterization, which is closely 
related to packet classification. Another type of 
networking application is represented by deep 
packet inspection, which examines the entire 
packet content and not just the header. Yu [15] 
proposed a TCAM-based architecture for deep 
packet inspection that uses multi-match classifi-
cation. In this type of classification, packets are 
compared against a set of filters and each result 
is reported. CAMs are also suitable for network 
flow analysis and monitoring. Luk et al. [7] pro-
posed a combined hardware-software architec-
ture for network flow analysis, which allows for 
processing multiple flows in parallel. 
 
 

4. NETWORK FLOW IDENTIFICATION 
APPLICATION 

 
In order to test the network traffic identification 
algorithms, we implemented a software applica-
tion for traffic flow identification. The flow 
identification is performed based on five fields 
contained in the packet header. These fields are 
the following: source IP address, destination IP 
address, protocol identifier, source port number, 
and destination port number. The values of these 
five fields from a packet are compared against 
the values of the same fields that define the pre-
viously identified flows to determine whether 
the packet belongs to a flow that is already 
stored or it belongs to a new flow. 
 
The main design problem of a real-time traffic 
flow identification application is the comparison 
of the captured packet information against the 
information stored about the already identified 
flows. At the router level, the number of flows is 
very high and the processing time must be ex-
tremely low. 
 
For real-time flow retrieval, a method based on 
hash function has been used. For this method, an 
optimized algorithm has been implemented, 
which allows to reduce the time required for 
flow retrieval due to the small number of itera-
tions. 
 

The application identifies the flows, stores them, 
and elaborates statistics about the characteristics 
of these flows. In order to capture the packets 
from the entire subnet, the application should 
run on the router. However, since the router is 
usually a dedicated equipment, a hub or switch 
may be used, as presented in Fig. 1. 
 

 
Fig. 1. Network configuration for testing the software 

application. 
 
A hub transmits each received packet to all the 
other ports. A switch must be configured to 
transmit the packets from all the other ports to 
the port connected to the computer that runs the 
application.  
 
In order to capture all the packets transferred in 
the subnet, the network interface card is set to 
promiscuous mode. Each packet is inspected and 
the fields that identify the flow to which the 
packet belongs are extracted from its headers. 
The next step is to compare the identified flow 
against the existing flows that are stored in a 
table. If the flow is new, it is inserted into the 
table. If the packet belongs to an existing flow, 
the statistic data of the flow are updated. 
 
The graphical interface of the application dis-
plays the flow number as it was identified and 
the values of the fields used for flow identifica-
tion. Other information displayed is the maxi-
mum length, average length, minimum length of 
the packets, and the total number of packets be-
longing to each flow. The information required 
to evaluate the performance of the flow identifi-
cation algorithm, represented by the number of 
iterations required to retrieve the flow, is also 
displayed, as shown in Fig. 2. 
 
The application has been developed for the 
.NET platform in the C# language. It allows 
visualizing the network flows, their characteris-
tics, and the performance of retrieval methods.  
The application also allows testing various algo-
rithms and optimization techniques that allow 
for real-time processing of data flows in com-
puter networks in order to support QoS imple-
mentation. 
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Fig. 2. Statistics data that characterize the flows. 

 
5. FPGA-BASED SYSTEM FOR 

NETWORK FLOW IDENTIFICATION 
 
For the implementation of the network flow 
identification system, we used a Xilinx 
XC2VP30 FPGA device from the Virtex-II Pro 
family. This device contains an array of 80x46 
configurable logic blocks and integrates two 
PowerPC 405 processors. 
 
As hardware development platform, we used a 
Xilinx XUP Virtex-II Pro board [14], which al-
lows implementing complex hardware systems, 
containing one or more central processing units 
(CPUs), configurable logic and a large number 
of peripheral devices that communicate with the 
CPUs. The main components available are the 
following: a high-speed Ethernet interface, three 
serial ATA ports, two RS-232 serial ports, two 
PS/2 ports, a DDR SDRAM of 256 MB, a serial 
EEPROM to store the FPGA device configura-
tion, an XSGA video interface, a USB 2.0 inter-
face, and a serial port for debugging. 
 
For the implementation we chose a combined 
hardware/software solution, which allows ex-
ploiting the advantages of both solutions: the 
flexibility of the software solution and the high 
performance of the hardware solution. The time-
critical operations are implemented in hardware, 
while the operations that are less demanding are 
implemented in software. 
 
As software development system, we used the 
Xilinx Embedded Development Kit (EDK), ver-
sion 7.1i [13], which allows to implement com-
plex systems containing both hardware and 
software modules, and provides tools for testing 
and debugging the designed system. The EDK 
also requires the corresponding version of the 
Xilinx ISE design package to generate the con-
figuration bitstream for the FPGA device. 

The block diagram of the network flow identifi-
cation system is illustrated in Fig. 3. The main 
components of the system are the MicroBlaze 
processor, the dual-port BRAM (Block RAM), 
the BRAM controllers, the EMAC (Ethernet 
Media Access Controller), the INTC interrupt 
controller, the UART controller for the serial 
interface, the CAM, and the MDM (Microproc-
essor Debug Module). 

 
Fig. 3. Block diagram of the network flow 

identification system. 

The MicroBlaze is a 32-bit soft processor core 
provided by Xilinx EDK. The on-chip dual-port 
BRAM is connected to the processor using an 
Instruction-side Local Memory Bus (ILMB) and 
a Data-side Local Memory Bus (DLMB). These 
buses use a simple synchronous protocol to pro-
vide single-cycle access to the on-chip BRAM. 
The peripheral modules are connected to the 
processor using an On-chip Peripheral Bus 
(OPB). These buses are part of the CoreConnect 
architecture standard specified by IBM [5]. 
 
The CAM performs the comparison between the 
fields of data packets that uniquely identify a 
certain flow between two computers. The com-
parison is performed in parallel for all the words 
in the CAM, which allows obtaining the result 
of the comparison in a single clock cycle. An 
extra clock cycle is required to write the con-
tents of the packet fields into the argument reg-
isters. The CAM word size is 104 bits: 2×32 bits 
for the source and destination IP addresses, 
2×16 bits for the source and destination ports, 
and 8 bits for the protocol identifier. For testing, 
we used a 16-word CAM in order to reduce the 
synthesis time. After testing and debugging, the 
size of the CAM has been extended to 512 
words. Above this size, the synthesis time and 
the memory requirements increase significantly. 
 
Fig. 4 illustrates the block diagram of the CAM. 
The processor accesses the CAM through five 
32-bit software-addressable registers, Reg0 to 
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Reg4. The first four registers can only be used 
for writing. Before the search operation, the 
source IP address is written into Reg0, the desti-
nation IP address is written into Reg1, the 
source and destination port numbers are written 
into Reg2, and the protocol ID is written into 
Reg3. For a write operation, the write address is 
written into Reg3 and the WE bit of this register 
is set. Reg4 contains the result of the search and 
it can only be used for reading. Bit 31 of this 
register represents the match bit. If this bit is set, 
bits 8..0 of Reg4 contain the match address. 

Fig. 4. Block diagram of the CAM. 

 
The CAM is connected to the on-chip peripheral 
bus through an interface called OPB IPIF (OPB 
Intellectual Property Interface), as illustrated in 
Fig. 5. Part of this interface, the OPB IPIC (OPB 
Intellectual Property Interconnect) is generated 
automatically by the Core Generator module 
from the Xilinx ISE software. The other part of 
the interface has been written in VHDL. 

 
Fig. 5. The interface between the CAM and the OPB. 
 
Table 1: Synthesis Results for the Network Flow 
Identification System 
Resource 
Type 

Used Total Percentage

Slice regis-
ters 

3,533 27,392 12% 

Occupied 
slices 

4,197 13,696 30% 

Block RAMs 48 136 35% 
4-Input 
LUTs 

6,048 27,392 22% 

Table 1 contains some results from the reports 
generated by the synthesis tools used to imple-
ment the embedded system in the Xilinx 
XC2VP30 FPGA device. 
 
For the CAM, a software driver has been devel-
oped, which has been written in C. The main 
functions that can be performed with this driver 
are the following: searching an argument word 
in the CAM, reading from the CAM and writing 
into the CAM. 
 
The MicroBlaze processor executes a program 
that initializes and controls the hardware mod-
ules. In order to be able to detect all the packets 
that travel in the network, the program sets the 
EMAC into promiscuous mode. To initialize the 
interrupt system, the program uses the EMAC 
module’s driver to register the callback func-
tions required to service the interrupts. When a 
frame is sent or received, or when an error oc-
curs, the corresponding interrupt function is 
called. In the main loop, the program extracts 
the required fields from the data packets, stores 
them into the argument registers, and sends the 
command to the CAM. The program also per-
forms the required operations for managing the 
data flows and displaying the statistics about the 
identified flows. 
 
For testing the hardware system, we connected 
the development board to a hub and monitored 
the traffic between a server and a PC connected 
to the same hub. This connection allows moni-
toring all the packets that travel between the 
server and the PC. 
 

 
6. CONCLUSIONS 

 
In this paper, we presented the design and im-
plementation of an FPGA-based system for net-
work flow identification. The flows are identi-
fied based on five fields contained in each 
packet header. For the implementation, we used 
a Xilinx Virtex-II Pro FPGA device. The hard-
ware system contains a CAM that performs the 
comparison between the five fields of incoming 
packets and the previously stored information 
about the identified flows. Only two clock cy-
cles are required to write the contents of the 
packet fields into the argument registers and to 
retrieve the result of the comparison. The main 
advantage of the hardware implementation is 
that it reduces significantly the time required for 
flow identification. This implementation, how-
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ever, does not represent a pure hardware system, 
but rather a combined hardware/software design. 
Only the time-critical operations are imple-
mented in hardware, while other operations are 
implemented in software. The advantage of this 
combined solution for this real-time flow identi-
fication system is that flexibility is increased and 
the hardware resources required are reduced. 
 
The hardware implementation of the network 
flow identification system represents the first 
step for designing a reconfigurable router with 
QoS support. The next step would be the design 
of an embedded system that determines the net-
work traffic characteristics, and the last step 
would be the design of the reconfigurable router 
that performs the constraint-based routing. 
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