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Abstract: A Voltage-Control Oscillator (VCO) based on Colpitts oscillator is analyzed from a chaos 
theory viewpoint. Sensitivity to initial conditions is studied by considering a nonlinear model of the 
system, and also a new chaos analysis methodology based on the energy distribution using the Discrete 
Wavelet Transform (DWT) is presented, Then using Advance Designs System (ADS) software, 
implementation of chaotic VCO based on Colpitts oscillator using RF-CMOS 0.18 m  technology is 
considered. Simulation results are provided to show the main points of the paper. 
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1. INTRODUCTION 

Chaos is widely available in engineering and the natural 
systems. Chaos phenomenon is completely deterministic and 
specific to nonlinear systems. In fact, chaos theory is a 
branch of mathematics and physics related to systems that 
their dynamic represents a very sensitive behavior to changes 
in the initial values so that their future behavior is not 
predictable. Nowadays, there are examples of potential 
benefits of the chaotic behavior that make a lot of engineers 
and researchers attend it. For instance, it can be referred to 
the application of chaos in communication systems, 
information coding, etc. (Kennedy, 1994; Lie and Yuan, 
2000; Knop and Huseh, 2001; Shi and Tong, 2010); however, 
in some systems, chaos is considered as a nuisance factor, 
and if possible, in designing, it is removed from the system. 
This is why, in this system, the first step is to identify chaos. 
Chaotic dynamics occur based on certain rules that are 
seemingly random. In contrast, for dynamics random made 
that process no structure other than its probability distribution 
cannot be achieved. From the observation of time series 
obtained from a process, detecting a non-linear and chaotic 
nature is almost impossible. The study on nonlinear dynamic 
systems is an important topic for research scholars. Behavior 
of complex systems, clearly this phenomenon is chaos.  

In recent years, many researchers have attempted analyzing 
the chaotic behavior of electronic circuits because a simple 
electronic component can be easily implemented on the 
circuits, also in this circuit, the control guidelines are easily 
accessible by physical guidelines such as voltage, current, 
resistance occurs. The second reasons, according to the 
researchers, these circuits are very much applicable in 
practicable engineering systems such as electronic 
communication systems. One of these electronic circuits 
occurs in that chaos is sinusoidal oscillator circuits. Oscillator 
circuits have many applications in systems such as swing 
transceiver circuits, communication systems, so they can be 
considered one important component of electronic systems.  
Colpitts oscillator is used to produce a periodic sinusoids 

signal under some specific conditions in microwave  

Frequency. In recent years, many researchers have attempted 
analyzing the chaotic behavior of chaotic oscillator namely: 
Kennedy showed the chaos in the Colpitts oscillator, he 
proposed its applications in the encryption and modulation 
methods applied to the communication systems (Kennedy, 
1994). Lie et al. showed the existence of bi-stable behavior 
and chaotic regions in dependence on the driving frequency 
(Lie and Yuan, 2000). Knop et al. provided the bifurcation 
diagrams, fixed-pointed diagrams and phase diagrams for two 
damping constants and found the typical period-doubling 
route to chaos (Knop and Huseh, 2001). Shi et al. proposed 
the stability analysis and a necessary condition to generate 
chaos in 3D chaotic oscillator (Shi and Tong, 2010). A. Tama 
proposed a simple 4D hyper chaotic oscillator (Tama et al., 
1996).  Kengne et al. worked on the dynamical properties and 
the chaos synchronization of the improved Colpitts 
oscillators as well (Kengne et al., 2011). 

Effa et al. proposed a smooth mathematical model to 
investigate the dynamics and synchronization behavior of the 
improved Colpitts oscillator (Effa et al., 2009; Effa et al., 
2009). Trueba, et al. propose that the effect of nonlinear 
dissipation on certain nonlinear oscillators (Zhu et al., 2011). 
(Volkovskii, et al., 2005) proposes a new spread spectrum 
communication system utilizing chaotic frequency 
modulation of sinusoidal signals. They study the dynamics of 
the synchronization process, stability of the PLL system, and 
evaluate the bit-error-rate performance of this chaos-based 
communication system. 

In this paper, an integrated voltage control and the chaos 
phenomenon is analyzed accurately in this circuit considering 
a nonlinear model of the transistor. The numerical simulation 
has been done by Advanced Design System (ADS) and 
MATLAB. The electronic control of the oscillator is 
considered as a very efficient tool for generating many 
chaotic signals in a short settling time. The main outlined of 
this paper is as follows: Section 2 describes the chaotic 
Colpitts oscillator, section 3 describes analysis of  VCO 
based on Colpitts oscillator, section 4 proposed dynamical 
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analytical of the chaotic VCO system, including dissipativity, 
Lyapunov exponents. Section 5 proposed  the simulation 
results, section 6 proposed power density spectrum analysis 
and then a methodology based on the energy distribution is 
presented using the Discrete Wavelet Transform (DWT) for 
chaos analysis are presented in Section 7. Finally Section 8 
concludes the paper. 

2. CHAOTIC COLPITTS OSCILLATOR PRELIMINARIES   

Colpitts oscillator is another type of LC oscillator design. In 
many ways, the Colpitts oscillator is the exact opposite of the 
Hartley oscillator. Just like the Hartley oscillator, the tuned 
tank circuit consists of a LC resonance sub-circuit connected 
between the collector and the base of a single stage transistor 
amplifier producing a sinusoidal output waveform. The 
Colpitts oscillator uses a single stage bipolar transistor 
amplifier as the gain element which produces a sinusoidal 
output. The single ended chaotic Colpitts oscillator is shown 
in Figure 1. The Colpitts oscillator is a combination of a 
transistor amplifier consisting of a single bipolar junction 
transistor (BJT), and a LC circuit which has been used to 
feedback the output signal as it is shown in Figure 1. The 
fundamental oscillation frequency is given by: 
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Presence of a positive Lyapunov Exponent (LE) confirms the 
occurrence chaotic behavior in the Colpitts oscillator. 

 
Fig. 1. Circuit Layout of the single ended chaos Colpitts 
oscillator. 

Dynamic behavior of above oscillator describe by following 
equation: 
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The circuit parameters are selected as:  

2.8009, =1.7678, =0.5.g Q K  

The equilibrium point of the system (2) is: 

	ሺݔ௘ ൌ 0, ௘ݕ ൌ 0, ௘ݖ		 ൌ 0ሻ.	 

The Jacobean matrix near the equilibrium point is given by: 
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The eigenvalues of the equilibrium state can be calculated as:  
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written as:  
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Thus, an unstable saddle characterized them focus. The 
circuit performs chaotic behaviors. Chaotic behavior of 
chaotic Colpitts has been shown in Figures 2 and 3. Transient 
chaotic attractor and 3D chaotic attractor under different 
condition are shown in Figures 2 and 3.  
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Fig. 2. Chaotic attractor of Colpitts oscillator. 
 

 
 

 
 

Fig. 3. 3D. chaotic attractor of Colpitts oscillator. 

Figure 4 shows an ADS implementation of improved Colpitts 
oscillator. The difference between the standard circuit 
schematic diagram of the Colpitts oscillator and the improved 
version is the presence of inductor 5L in series with resistor

7R in the base circuit.  

 

 
Fig. 4. the schematic diagram of the improved Colpitts 
oscillator in ADS. 

Figure 5 shows the simulation results.  

 

 
Fig. 5.  Simulation results of improved Colpitts oscillator. 

3. ANALYSIS OF THE CHAOTIC VCO 

Figure 6 shows an ADS implementation of VCO. 

Using the Kirchhoff rules, the dynamic equations describing 
the circuit are as follows: 
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where: 
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Fig. 6. Circuit layout of chaotic voltage control oscillators. 

So, the dimensionless equilibrium point equations of the 
system (5) are: 
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where: 
 
௖ܸ௖ ൌ 9ܸ, ஻ܸ ൌ 1.2ܸ, ܴଶ ൌ 3.6݇Ω, ܴଷ ൌ 300Ω, ܴ௕ ൌ 1݇Ω 

 
Accordingly, the matrix (6) is analyzed to investigate the 
stability of the equilibrium points. So the system (5) about 
the equilibrium point is unstable because one of the Eigen 
values of system (5) is positive.  

4. DYNAMICAL BEHAVIORS OF THE SYSTEM 

In this section, the dynamical behaviors of the proposed 
chaotic VCO proposed with the aid of conventional dynamic 
analytical approaches, including dissipativity, Lyapunov 
exponents. 

4.1. Dissipativity 

Consider chaotic dynamical system (5), if in a system phase 
space we consider some part of level	ܵ, and if ܵሺݐሻ level 
changes into	ܵሺݐ ൅  ሻ, so the ܸ volume will change asݐ݀
follow: 
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where: 
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Then, the divergence of the vector field is negative. 
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So the system is always dissipative.  
As a result, for the V volume, we have:  
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That is, the flow contracted a volume element		 ଴ܸ into a 
volume element ܸሺݐሻ	at time	ݐ. This means that each volume 
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containing the system orbit shrinks to zero as 0t  . 
Therefore, all the trajectories of the system will be eventually 
confined to a subset that has been zeroing volume, and the 
asymptotic motion will settle onto an attractor of the system.  

4.2. Lyapunov Exponents 

One powerful tool for detecting chaos is Lyapunov exponent 
(LE). LE yield numerical criteria of the quantity of chaotic 
behavior of a system. Using the LE, sensitivity of a mapping 
to initial conditions can be considered (Tama et al., 1996).  If 
the sign of LE is positive, the system is chaotic, and if it is 
negative, it is not chaotic (Tama et al., 1996; Kengne et al., 
2011). Various ways have been proposed for calculating the 
LE so far; one of these ways is to calculate the LE using time 
series (Effa et al., 2009). However, the LE is highly sensitive 
to noise, so the use of LE in noisy environments is not a good 
criterion for detecting chaos (Effa et al., 2009; Zhu, 2011). 

In order to analyze the chaos more accurately and show 
sensitivity to the initial conditions, LE of the system is 
calculated. Before computing the LE, the time scales for the 
first two circuits are scaled to the order of seconds by: 

ൌ ටܮ
େభେమ
େభାେమ

 . The existence of a positive LE indicates chaos 

in this circuit. The LEs of the above circuit are calculated as 
follows:  
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 The LE as a function of time is shown in Figure 7. 

 

Fig. 7. Lyapunov exponents as a function of time. 

5. NUMERIC SIMULATION AND CIRCUIT 
SIMULATION 

For more explicitness and to conduct further investigations to 
verify the above analysis, a numeric simulation and a circuit 
simulation, respectively, using ADS and MATLAB is 
performed. Based on the analyses made above, that the 
system is a chaotic one. 
 

 

 

 

5.1. Numeric Simulation 

Simulation results indicate that the circuit has a chaotic 
behavior. Limit cycles for different initial conditions are 
shown in Figure 8.  

 

 
Fig. 8. Transient chaotic attractor in different initial 
conditions. 

The chaotic attractor can be obtained from system (3), as 
depicted in Figure 9. 
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Fig. 9. 3D chaotic attractor in different initial condition. 

5.2. Circuit Simulation Using ADS 

With the aid of the proposed emulator, ADS software 
simulation experiments are conducted on the present chaotic 
circuit. The simulation results, shown in Figure 10. As shown 
in Figure 8, the attractor’s figure is basically agreeable to the 
results of the numeric simulation. 

 
Fig. 10. Simulation results of projection onto ݐݑ݌ݐݑ݋ െ ௖ܸସ. 

6. POWER DENSITY SPECTRUM ANALYSIS OF THE 
CHAOTIC SYSTEM 

An effective tool in the study of chaotic behavior is the 
frequency domain periodic analysis. In periodic signals, the 
energy is focused on some special frequencies, while in the 
chaotic behavior; the energy in different frequency values is 
non-zero. Therefore chaotic signals are wideband signals. In 
deterministic systems, a spectrum having a wideband 
represents the sign of starting a chaotic behavior (Boashash, 

2003). Figure 11 shows the self-power density spectrum of 
the above circuit. 

 

Fig.11. the self-power density spectrum chart of the chaotic 
oscillator 

7. ENERGY DISTRIBUTION BASED ON THE DISCRETE 
WAVELET TRANSFORM 

The Fourier transform of continuous signal in time ( )x t is 

obtained as follows: 

  2( ) j ftX f x t e dt






                                                

(12) 

Where, t  is the time and f the frequency; the Fourier 
transform gives us the spectral content of the signal, but in 
terms of time, it only attends to the whole signal during the 
time and does not focus on the time domain. 

In order to enter time information in addition to signal 
frequency specifications, the short-time Fourier transform can 
be applied. The signal short-time Fourier transform ( )x t  

using a time window ( )w t is defined as follows:  

* 2( , ) ( ) ( )w j ft
xSTFT f x t w t e dt 






                           (13) 

where f is as a frequency variable and   as a time variable;  
in the short-time Fourier transform, we do not know exactly 
what frequency component is available in the signal; rather, 
we will have only one range (a frequency band).  

Wavelet Transform provides time-frequency information 
simultaneously that this is the advantage of Wavelet 
Transform over the short-time Fourier transform overcome 
the resolution problem of the short-time Fourier transform.  
Signal frequency bands can be achieved using Wavelet 
Transform; therefore, the DWT can be used to obtain 
additional features of the signal. In contrast, the DWT is 
much easier than continuous wavelet transform. In the DWT 
for signal analysis, filters with different cut-off frequencies 
are used in different scales. For example, the signal is passed 



CONTROL ENGINEERING AND APPLIED INFORMATICS    97 

     

  

through low-pass and high-pass filters respectively to analyse 
low and high frequencies. 

In DWT method the signal can be decomposed into different 
frequency bands. In this method two sets of coefficients are 
computed: approximation coefficients, and detail coefficients. 
The approximation coefficients are obtained by convolving 
the signal with the low-pass filter and detail coefficients are 
obtained by convolving the signal with the high-pass filter for 
detail.  

Scaling as a mathematical operator shrinks or expands the 
signal. Thus, in high scales that the signal is expanded, we 
will have details; and in low scales that the signal is shrunk, 
we will have generality (Boashash, 2003).  

It is well known that DWT is used for digitized (or sampled) 
signals to show their time-scale representation. In order to 
perform this transformation the original signal is passed 
through a band-pass filter (called by G and is named mother 
wavelet) to give a detail component for the first level. At the 
same level, convolving the signal with a low-pass filter 
(called by H) brings another component named approximate 
due to its low resolution. G and H are orthogonal vectors with 
ܰ	 ൈ 1 elements (Boashash, 2003). For the second level, the 
approximate component is down-sampled by two, i.e. its 
samples are halved, and it is then passed through G and H to 
give detail and approximate components respectively at this 
level. Continuing this procedure up to the ݆௧௛	level causes the 
original signal to be decomposed to ݆ detail components and 
an approximate one. This procedure is shown in Figure 12 up 
to three decomposition levels for on-line applications. This 
new filter is well suited for on-line 1D applications of 
wavelet transform, as the number of mathematical operations 
through its application is reduced (Volkovskii  et al., 2005; 
Qin et al., 2011). 

 
Fig. 12. Decomposition of original signal X by DWT up to 
three levels for online application. 

As shown in Figure 13, this filtering process breaks the signal 
into multiple signals in which each new signal is determined 
by its coefficients, and each one belongs to a frequency band. 
In overall, discrete wavelet transform coefficients are divided 
into two categories of approximation coefficients and detail 
coefficients. Consider the signal ( )x t , it can be decomposed 

in accordance to the discrete wavelet transform as follows: 
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where,  1jA x t is the low frequency approximation of signal 

( )x t  with a scale coefficient ( 1 ) 2 j   , ( )t  is the scale 

function and ( )t is a mother wavelet function defined as 
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Also, ,j kc  is the general signal coefficient and ,j kd  is the 

coefficient of signal details computed as follows (Qin et al., 
2011; Jiang et al., 2006). 
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where, nh  are the low-pass filter coefficients and ng  are the 

high-pass filter coefficients.  

 

Fig. 13. The block diagram of signal decomposition by DWT. 

The SWT provides efficient numerical solutions in the signal 
processing applications. It was independently developed by 
several researchers and under different names, e.g. the 
undecimated wavelet transform, the invariant wavelet 
transform and the redundant wavelet transform. 

For a p-level decomposition, the highest frequency observed 

in the approximation wavelet coefficients  jc  can be 

calculated as a function of the highest frequency observed 

sample frequency sf   as: 
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f
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The frequency content of the approximation frequency band 
௝ܿand detail frequency bands ௝݀ can be calculated as: 
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The success of certain decomposition depends strongly on the 
chosen wavelet filters, depending on the signal properties 
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(Boashash, 2003). This is not the case with the STFT. 
Furthermore it is not possible to determine a mean value of a 
signal using the WT. In order to analyze more precisely, 
details and generalities of the signal can be extracted 
considering the DWT. By extracting the coefficient of the 
signal details using the wavelet transform, energy can be 
calculated for any detail coefficients as follows:  

 
1

2
i m

i

i iE d d




   
 
(16) 

Where	݀௜	is the details coefficients of		level	݅, and the total 
energy can be calculated as follows:   

 
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(17) 

 
The growth rate of energy for each detail is calculated as 
follows:  

 
100i

i
E d

E
     

 
(18) 

The algorithm is summarized as follows. 

Step 1. Calculate of the DWT detail coefficient. 
Step 2. Calculate the energy signal using the detailed 
coefficients.  
Step 3. Determine the current state of the Energy distribution 
in different frequency level. 

To illustrate irregular energy distribution of the signal details 
in each step, entropy is applied. Entropy is the irregularity 
degree in a system with energy or data. The less is a system 
regular, the more is the entropy.  It is obvious that chaos is a 
wideband signal. In other words, it can be said that the energy 
distribution of signal details includes irregular changes in 
chaos signal (Boashash, 2003).  Figure 13 shows distribution 
of the energy of signal details in each level in chaotic signal 
under different initial conditions. 

 
Fig. 13. Energy distribution using DWT. 
 
 
 
 

7. CONCLUSIONS 

In this paper, the dynamic of the new chaotic voltage control 
oscillator has been proposed based on Colpitts oscillators. 
The main aim of this paper is to analyze the chaotic voltage 
control oscillators stability and the chaos behavior under the 
theoretical and the numerical methods. The numerical 
simulation has been conducted by using ADS and MATLAB. 
For a nonlinear analysis of the chaotic circuit, the Lyapounov 
exponent method and the energy distribution based on multi 
resolution wavelet are deployed. 
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