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Abstract: In this article, I developed a practical combination strategy for two evolutionary algorithms; a 
firefly algorithm and Ant Colony Optimization (FFA- ACO) which inherited the superiority of the two 
algorithms for solving the economic power dispatch (EPD) problem. ACO has strong and easy to 
combine with other methods in optimization and the FFA algorithm has a very great ability to search 
solutions with a fast speed to converge, contrary to the most meta-heuristic algorithms. The hybrid 
approach involves two level of optimization, namely global search by the ACO and local search by the 
FFA, which cooperates in a global process of optimization. It can provide more robust convergence. This 
method was tested on the modified IEEE 30 bus test system. The outcomes are compared with many 
other methods like swarm optimization (PSO), Tabu Search (TS), improved evolutionary programming 
(IEP), differential evolution (DE), evolutionary programming (EP) and non-linear programming (NLP). 
The proposed method is found to be computationally faster, robust and superior.  
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
1. INTRODUCTION 

To cope with the increasing demand for electric power, the 
electric power industry has witnessed significant changes i.e. 
deregulated electricity markets. These competitive markets 
reduce costs. The increased penetration of non-dispatchable 
renewable sources, such as wind and solar, adds another 
degree of complexity to the scheduling of economic power 
dispatch. It becomes even more complex when more than one 
objective function is considered with various types of 
practical generators constraints. All these factors contribute 
to the increasing need for fast and reliable optimization 
methods, tools and software that can address both security 
and economic issues simultaneously in support of power 
system operation and control.  

The economic power dispatch (EPD) problem has been one 
of the most widely studied subjects in the power system 
community since Carpentier first published the concept in 
1962 (Carpentier, 1962). the EPD problem is a large-scale 
highly constrained nonlinear non-convex optimization 
problem (Vanderbei et al., 1999). To solve it, a number of 
conventional optimization techniques such as nonlinear 
programming (NLP) (Bottero et al., 1982), quadratic 
programming (QP) (Reid et al., 1973), linear programming  
(LP) (Stott et al., 1978), and interior point methods (Momoh 
et al., 1999), Newton-based method (Sun et al., 1984; Santos 
et al., 998), mixed integer programming (Bahiense et al., 
2001), dynamic programming (Dusonchet et al., 1973), 
branch and bound (Haffner et al., 2000) have been applied. 
All of these mathematical methods are fundamentally based 
on the convexity of objective function to find the global 
minimum. However, the EPD problem has the characteristics  

 

of high nonlinearity and non-convexivity. 

Applications of conventional optimisation techniques such as 
the gradient-based algorithms are not good enough to solve 
this problem because it depends on the existence of the first 
and the second derivatives of the objective function, and on 
the computing of these derivatives in large search space.  

The conventional methods based on mathematical technique 
cannot give a guarantee to find the global optimum. In 
addition, the performance of these traditional approaches also 
depends on the starting points and is likely to converge to 
local minimum or even diverge.  

Recently, many attempts to overcome the limitations of the 
mathematical programming approaches have been 
investigated such as meta-heuristic optimization methods, for 
example  tabu search(TS) (Glover et al., 1986; Abido  et al., 
2002), simulated annealing (SA) (Kirkpatrick et al., 1983), 
genetic algorithms ( Lai et al., 1997; Petridis et al., 1998; 
Younes et al., 2007), Evolutionary Programming (EP) 
(Yuryevich  et al., 1999; Younes et al., 2006; Sayah et al., 
2008),  artificial neural networks (Maghrajabi  et al., 1998), 
particle swarm (Abido et al., 2002; Immanuel et al., 2007; 
Eslami  et al., 2010; Younes et al., 2011), Ant Colony 
optimization (ACO) (Song et al., 1999, Sum-im  et al., 2003; 
Younes et al., 2009), harmony search algorithm (Fesanghary 
et al., 2008; Younes et al., 2012),  and hybrid artificial 
intelligent techniques ( Younes et al., 2007).  

Their applications to global optimization problems become 
attractive because they have better global search abilities over 
conventional optimization algorithms. The  Meta-heuristic 
techniques seem to be promising and evolving  and have 
come to be the most widely used tools for solving EPD. 
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These minimization problems of meta-heuristic methods 
allow solutions to be found closer to the optimum but with 
high cost in time.  

In this regards to solving this problem i.e to improve results 
and convergence time, I developed a practical combination 
strategy for two evolutionary algorithms (FFA- ACO) based 
on the ant colony algorithm (ACO), This was developed by 
Dorigo M in the early 1990, firefly algorithm which was 
developed by Xin-She Yang at Cambridge University in 
2008.  

ACO has robustness and is easy to combine with other 
methods in optimization but it converges to the optimal 
solution slowly and has the shortcomings of stagnation that 
limit the wide application to the various areas. Contrary to the 
most meta-heuristic algorithms, the FFA algorithm has a very 
great ability to search solutions with a fast speed to converge.  

The investigation using this approach has been made with 
consideration to the IEEE 30-bus system. 

The rest of this paper is organized as follows. Section 2 
considers an Economic power dispatch (EPD) formulation 
and the optimization under equality and inequality 
constraints. Section 3 discusses an explanation of the Firefly 
Algorithm (FFA). The Particle Swarm Optimization method 
is explained in Section 4. Section 5 discusses Ant Colony 
Optimization algorithm. The approach FFA-ACO is 
presented in section 6. Simulation results and discussions are 
given in Section 7. The paper ends with conclusions in 
Section 8. 

2. ECONOMIC POWER DISPATCH (EPD) 

The goal of conventional EPD problem is to solve an optimal 
allocation of generating powers in a power system (Younes et 
al., 2012). 

The power balance constraint and the generating power 
constraints for all units should be satisfied. In other words, 
the EPD problem is to find the optimal combination of power 
generations which minimize the total fuel cost while 
satisfying the power balance equality constraint and several 
inequality constraints on the system (Younes et al., 2006). 

The total fuel cost function is formulated as follows: 
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where )( GPf , is the total production cost in $/hr; 

)( Gii Pf is the fuel cost function of unit i in $/hr;  

ai, bi, ci are the fuel cost coefficients of unit i;  

GiP is the real power output of unit i in MW;  

In minimizing total fuel cost (see Figure. 1) the following 
constraints should be satisfied (Younes.M et al., 2007). 

2.1  Active Power Balance equation 

For power balance an equality constraint should be satisfied. 
The generated power should be the same as total load 
demand added to the total line losses. It is represented as 
follows: 
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DjP is the total system demand; 
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GiP is the total system production; 

LP is the total transmission loss of the system in MW;  

NG is the number of generator units in the system;  

ND is number of loads. 

2.2 Active Power Generation limits 

Generation power of each generator should be laid between 
maximum and minimum limits. There are following 
inequality constraints for each generator 

maxmin
GiGiGi PPP              (4) 

min
GiP , max

GiP are the minimum and maximum generation limits 

of the real power of unit i. 

 
Fig. 1. Fuel cost curve of thermal generator. 

The exact value of the system losses can be determined by 
means of a power flow solution. The most popular approach 
for finding an approximate value of the losses is by way of 
Kron’s loss formula as given in (5), which represents the 
losses as a function of the output level of the system 
generators. 
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Where ijB is the transmission loss coefficient, GiP , GjP the 

power generation of ith and jth units. 

3. FIREFLY ALGORITHM 

Firefly algorithm is a novel meta-heuristic optimization 
algorithm which was first developed by Xin-She Yang at 
Cambridge University in 2008. The Firefly Algorithm is a 
metaheuristic, nature-inspired optimization algorithm which 
is based on the social flashing behavior of fireflies. It is based 
on the swarm behavior such as fish, insects or bird schooling 
in nature. Although the firefly algorithm has many 
similarities with other algorithms which are based on the so-
called swarm intelligence, such as the famous Particle Swarm 
Optimization (PSO) and  Artificial Bee Colony optimization 
(ABC) , it is indeed much simpler both in concept and 
implementation. Its main advantage is that it uses mainly real 
random numbers, and it is based on the global 
communication among the swarming particles called as 
fireflies.  it has been successfully applied to many 
engineering optimization problems. Optimization for IIR 
System Identification (Mehrnoosh et al., 2012), Economic 
Load Dispatch (Sudhakara et al., 2012), Economic Emissions 
Load Dispatch Problem (Apostolopoulos et al., 2011), 
Antenna Design (Basu et al., 2011), Digital Image 
Compression and Image Processing (Noor et al., 2011).   

It uses the following three idealized rules: 

3.1 Attractiveness 

In the firefly algorithm there are two important issues: the 
variation of light intensity and the formulation of the 
attractiveness. For simplicity, we can always assume that the 
attractiveness of a firefly is determined by its brightness 
which in turn is associated with the encoded objective 
function (Apostolopoulos et al., 2011). 

In the simplest case for maximum optimization problems, the 
brightness I of a firefly at a particular location x can be 
chosen as I(x) corresponding tof(x). However, the 
attractiveness β is relative; it should be seen in the eyes of the 
beholder or judged by the other fireflies (Yang .X.S, 2010). 
Thus, it will vary with the distance rij between firefly i and 
firefly j. In addition, light intensity decreases with the 
distance from its source and light is also absorbed in the 
media so we should allow the attractiveness to vary with the 
degree of absorption. In the simplest form, the light intensity 
I(r) varies according to the inverse square law 

  2/rIrI s where sI is the intensity at the source. For a 

given medium with a fixed light absorption coefficient, the 
light intensity I varies with the distance r (Yang .X.S, 2009). 

That is 
reII  0 , where I0 is the original light intensity. In  

 

order to avoid the singularity at  

r = 0 in the expression   2/rIrI s  the combined effect of 

both the inverse square law and absorption can be 
approximated using the following Gaussian form: 
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Sometimes we may need a function which decreases 
monotonically at a slower rate. In this case we can use the 
following approximation: 
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At a shorter distance, the above two forms are essentially the 
same. This is because the series expansions about r = 0 have 
the form: 
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and are equivalent to each other up to the order of 0(r3). 

Since a firefly’s attractiveness is proportional to the light 
intensity seen by adjacent fireflies, we can now define the 
attractiveness β of a firefly by: 
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whereβ0 is the attractiveness at r = 0. As it is often faster to 
calculate 1/ (1 + r2) than an exponential function, the above 
expression, if necessary, can conveniently be replaced by 
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from 0 to 
1

0
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In the implementation, the actual form of attractiveness 

function  r can be any monotonically decreasing function 

such as the following generalized form: 

  mrer   0 with 1m                                              (10) 

For a fixed , the characteristic length becomes 

11   m as m . 

Conversely, for a given length scale   in an optimization 
problem, the parameter  can be used as a typical initial 

value. That is  m


1  .   
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3.2 Distance and Movement 

The distance between any two fireflies iand j at ix and jx is 

the Cartesian distance given by (Sayadi M. et al., 2010) as 
follows: 

2
,, )( 

d
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Where ikx is the k-th component of the spatial coordinate ix   

of i-th firefly as shown in fig.2 the movement of a firefly iis 
attracted to another more attractive firefly j is determined by   
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Where the first term is the current position of a firefly, the 
second term is used for considering a firefly’s attractiveness 
to light intensity seen by adjacent fireflies and the third term 
is used for the random movement of a firefly in case there are 
not any brighter ones. 

The coefficient α is a randomization parameter determined by 
the problem of interest, while rand is a random number 
generator uniformly distributed in the space [0, 1]. As we will 
see in this implementation of the algorithm, we will use β0 
=0.1, α Є [0, 1] and the attractiveness or absorption 
coefficient γ= 1.0 which guarantees a quick convergence of 
the algorithm to the optimal solution (Chai-ead et al, 2011). 

 

Fig. 2. Displacement of fireflies. 

4. PARTICLE SWARM OPTIMIZATION METHOD 

The particle swarm optimization works by adjusting 
trajectories through manipulation of each coordinate of a 
particle. Let ix and iv denote the positions and the 

corresponding flight speed (velocity) of the particle iin a 
continuous search space, respectively. The particles are 
manipulated according to the following equations (Clerc M et 
al., 2002; Eberhart et al., 1995; Kennedy et al., 1995). 
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Where: 

t : pointer of iterations (generations). 

w : inertia weight factor. 

21,cc : acceleration constant. 

21, rr  :uniform random value in the range (0,1). 

)(t
iv : velocity of particle i at iteration t. 

)(t
ix  :current position of particle i at iteration t. 

)(t
ipbestx  : previous best position of particle i at iteration t. 

)(t
gbestx  : best position among all individuals in the population 

at iteration t. 

)1( t
iv : new velocity of particle i. 

)1( t
ix :new position of particle i. 

Algorithm 

1. Initialize the population - positions and velocities 

2. Evaluate the fitness of the individual particle (pbest) 

3. Keep track of the individuals highest fitness (gbest) 

4. Modify velocities based on pbestand gbestposition 

5. Update he particles position 

6. Terminate if the condition is met 

7. Go to Step 2 

5. ANT COLONY OPTIMIZATION 

As shown in Figure 3, two ants start from their nest in search 
of food source at the same time to different directions. One of 
them chooses the path that turns out to be shorter while the 
other takes the longer sojourn. The ant moving in the shorter 
path returns to the nest earlier and the pheromone deposited 
in this path is obviously more than what is deposited in the 
longer path. Other ants in the nest thus have high probability 
of following the shorter route. 

Colony Optimization is another powerful technique to solve 
hard combinatorial optimization problems. In ACO 
algorithms a finite number of artificial ants work together to 
search for the best solutions to the optimization problem 
under consideration. Each ant builds a solution and 
exchanges its information with other ants indirectly (Nada 
.M.A, 2009). Although each ant can build a solution, high 
quality solutions are only found with this cooperation and 
information exchange (Dorigo et al., 1997). 

In ACO algorithms a structural neighbourhood is defined for 
the given problem. Each ant builds a solution by moving in a 
sequence trough out the neighbourhood architecture. While 
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building a solution each ant uses two different information 
sources.  

The first source is private information which is the local 
memory of an ant and the second source is the publicly 
available pheromone trail together with problem specific 
heuristic information (Younes et al., 2009). 

To build a feasible solution ants keep a tabulated list to keep 
the previously visited nodes. Publicly available pheromone 
trail provides knowledge about the decisions of ants from the 
beginning of the search process. An ant-decision table 
defined with the functional combination of this pheromone 
trail and problem specific heuristic values is used to direct the 
search. Pheromone evaporation strategies are used to avoid 
stagnation due to large accumulations (Dorigo M, 1992). 

 

Fig. 3. Movement of Ant algorithm. 

5.1 Solution Construction 

Is where the artificial ants construct their solutions. This 
procedure implements a stochastic transition policy which is 
a function of pheromone trail. It controls the ants’ moves to 
one of the adjacent states allowed in their vicinity by 
applying this policy. Once the ants have completed their 
solutions they calculate the quality of their solution, which 
will be used by the update pheromones procedure (Dorigo et 
al., 1996). 

In ACO there are m artificial ants which are located at m 
random cities. Each ant applies a stochastic transition policy 
to decide on its next move.  

Therefore, the probability that city j is selected by ant k to be 
visited after city i could be written as follows: 
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In the above formula  ij stands for the heuristic value 

specified according to the problem to be solved. In the 

Travelling Salesman Problem (TSP) case, ij is equal to 

ijd/1 .  

k
iN is the feasible neighbourhood of ant k at city i and ij is 

the quantity of the pheromone on the path between the city i 
and j.  

 and  are the parameters which is used to set the relative 

importance of the pheromone trail and the heuristic value. As 
 approaches 0 the pheromone trails become less important 
and the ants tend to choose the closest cities and the search 
becomes very much like a greedy search.  

As  approaches 0 heuristic values are ignored and ants 

consider only the trails when deciding the path to follow. 
This leads to stagnation at the first good solutions found by 
the colony. 

5.2 Pheromone Update 

At the beginning m ants are placed to the n cities randomly. 

Then each ant decides the next city to be visited according to 

the probability k
ijP given by Eq. (15). After n iterations of this 

process every ant completes a tour. Obviously, the ants with 
shorter tours should leave more pheromone than those with 
longer tours. Therefore the trail levels are updated as on a 

tour each ant leaves pheromone quantity given by 
kL/1 , 

where 
kL  the length of its tour respectively. On the other 

hand, the pheromone will evaporate as the time goes by. 
Then the updating rule of ij  could be written as follows: 
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Where t is the iteration counter, ρ Є [0, 1] the parameter to 
regulate the reduction of ij  the total increase of trail level on 

edge (i, j) and ij  k the increase of trail level on edge (i, j) 

caused by ant k, respectively. 

After the pheromone trail updating process, the next  iteration 
t + 1 will start. 

1. Initialize: 

Set time:=0 %  is time counter 

For every edge (i,j) set an initial value  τij(t)=c for trail 
density and Δ τij=0 

2. Set t:=0 %s is travel step counter 
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For k:=1 to m do 

Place ant k on a city randomly. Place the city in visitedk. 

Place the group of the city in tabuk. 

3. Repeat until tabu list is full 

Set t:=t + 1 

For k:=1 to m do 

Choose the next city to be visited according to the probability 

 tPk
ij  given by eq (15). 

Insert the selected city in visitedk. 

Insert the group of selected city in tabuk. 

4. For k:=1 to m do 

Move the k-thant  fromvisitedk(n) to visitedk(1). 

Compute the tour length Lktraveled by the k-th ant. 

Update the shortest tour found. 

For every edge (i, j) do 

For k:=1 to l do 

Update the pheromone trail density ij according to Eqs. 

(16)– (17). 

Time: =time + 1 

5. If (time<TIME_MAX) then 

Empty all visitedk and tabuk 

Goto Step 2. 

Else 

Print the shortest tour. 

Stop 

6. FIREFLY ALGORITHM-ANT COLONY 
OPTIMIZATION (FFA-ACO) 

We have noticed that the meta-heuristic methods are very 
efficient for the search of global solution for complex 
problems better than deterministic methods. However their 
disadvantage is the time of convergence which is due the 
high number of the agents and iterations. To solve this 
problem we have developed a hybrid method with the 
combination of two algorithms, the firefly algorithm and the 
Ant Colony Optimisation with a lower number of ants and 
fireflies as possible, the Figures 4, 5 and 6 show the 
explanation of computation procedure of hybrid method and 
its concept.  

 
Fig. 4. Concept of Hybrid Method 

 

Fig. 5. The pseudo code of FFA-ACO. 
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Fig. 6. Global optimization of all the generators of the 
system. 

7. SIMULATION RESULTS 

The FFA-ACO approach has been developed using Matlab 
version 7. It is tested using the modified IEEE 30-bus system 
(Sayah et al., 2008).  . The system consists of 41 lines, 6 
generators, 4 Tap-changing transformers and shunt capacitor 
banks located at 9 buses.  

The table 1 shows the technical and economic parameters of 
the ten generators of the IEEE 30-bus system (Show in 
Figure 7). 

The parameter settings to execute FFA-ACO are given in 
table 2 

Two cases have been considered: 
1) The first concerns the minimization of  the cost function 
with constant losses 
2) The second the minimization of the cost function with 
variable loss 

 

Fig. 7. One line diagram of IEEE 30 bus system. 
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Table 1. Generators parameters of the IEEE 30 Bus. 

Bus 
min
Gip (MW)            max

Gip (MW)                                Cost coefficients   

                                                                         ia                      ib                 ic  

PG1         50                          200                          0.00375              2.00             0.00 
PG2         20                          80                            0.01750              1.75             0.00 
PG5         15                          50                            0.06250              1.00             0.00 
PG8         10                          35                            0.00834              3.25             0.00 
PG11         10                          30                            0.02500              3.00             0.00 
PG13         12                          40                            0.02500              3.00             0.00 

Table 2. FFA-ACO method parameters. 

 Parameter  Setting 

Number of iterations FFA-ACO                     113 
the population size for firefly(n)                      8 
the light absorption coefficient(γ)                   1.0 
 a randomization parameter of 
FFA(α)      

             0.4 

The attractiveness coefficient of 
FFA(β0) 

            1.0 

number of ants  (m)                       8 
Pheromone constant (ρ)             0.5 
Impact of pheromone in tour  
construction (α) 

            0.5 

Impact of objective value in tour 
construction (β  ) 

               5 

7.1 Case 1: Minimizing the Function with Constant Losses 

Table 3 presents the results of each method individually 
respectively the ACO and FFA methods as well as the results  

of the hybrid approach FFA-ACO applied to a network with 
30 bus with a power demand 283.40MW and constant losses 
of 9.459 MW. 
 

Table 3. Optimization results of FFA-ACO approach for case study1 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7.2 Case 2: Minimizing the Cost Function taking into 
Consideration the Variable Losses 

Table 4 presents the results of   PSO and the hybrid approach 
FFA-ACO applied to a network with 30 bus with a power 
demand 283.40 MW and the variable losses according to 
each method. 

Tables 3 and 4 illustrate the results of the application of the  

methods ACO, FFA, PSO and FFA-ACO as well as the 
results of other researchers [1]-[2]-[3]-[4]-[5] with two cases. 
The first is a study with constant losses; the second case is a 
study with variable losses.   

These results clearly show the effectiveness and performance 
of the FFA-ACO over other methods eitherin terms of 
function cost value or in terms of convergence time as shown 
in Figures 8,9 and 10.  

Bus 
   MDE-OPF                       PSO                             ACO                             FFA                            FFA-ACO 
      [3]                                                                  

PG1   175.974                   157.022797               178.3294                 178.6412                   183.1917        
PG2   48.884                     41.443507                 46.1420                   50.3891                     50.5993    
PG5   21.510                     23.564700                  22.3608                 21.7411                      20.2589       
PG8   22.240                      25.943875                  23.8185                 16.8022                     16.5259    
PG11   12.251                      21.653973                  10.0000                 13.1006                     10.3440    
PG13   12.000                      19.447432                  12.0000                12.0000                      12.0000 

PL     9.459                           9.459                        9.459                     9.459                         9.459 

t(s)          23.07                        16.2569                     14.9688                 13.8334                      10.7292 

Cost 
($/hr) 

802.62                    801.774659                801.7739               801.0074                   800.788 



CONTROL ENGINEERING AND APPLIED INFORMATICS    75 
 

     

 

Table 4. Comparison of different methods for IEEE 30 bus system (case study 2). 

Bus 
    NLP                   TS                   DE-OPF                   EP                     IEP                 PSO              FFA-ACO 
    [1]                        [2]                      [3]                          [4]                       [5]                

PG1 176.26            176.04           176.00             173.848           176.23      186.045462        181.2728   
PG2 48.84                48.76            48.801             49.998             49.00       40.506530           50.1223   
PG5 21.51                21.56            21.334             21.386             21.50        19.989630          20.1240   
PG8 22.15                22.05            22.262             22.630           21.8115      10.912199          15.5418   
PG11 12.14                12.44            12.460             12.928            12.33         26.346145          10.0146   
PG13 12.00                12.00            12.000            12.000             12.01        12.809430           12.0000 

PL  9.48                   /                  9.466                 /                   /                 5.8265                5.6754 

Cost 802.40            802.29          802.394            802.62            802.46        802.262714       787.5593 

             [1]: Park .J.B ; [2]: Abido;[3]: Sayah et al;[4]:  Yuan .X; [5]: Ongsakul .W 

 

Fig. 8. The function cost values in different iterations for 
PSO method (case study 1) 

For the ACO only, convergence is reached after 110 
iterations and the best cost is equal to 801.7739 $/hr, and for 
the FFA the convergence is reached after 160 iterations and 
the best cost is equal to 801.0074 $/hr. Concerning the FFA-
ACO hybrid technique the convergence is reached after 113 
iterations and the cost reached is 787.5593 $/hr. 

 

Fig. 9. The function cost values in different iterations for 
PSO  method(case study 2)  

 

Fig. 10. The function cost values in different iterations for 
ACO, FFA methods and FFA-ACO approach 

8. CONCLUSIONS 

In this paper i have developed a hybrid method for solving 
EPD including active power dispatch using two Meta 
heuristic methods based on firefly and ant colony algorithms. 
The first considers the constant losses and the second studies 
variable losses. The method developed was tested on the 
IEEE 30 bus power system.  The case studies have shown 
that this method is robust and can provide an optimal solution 
with fast computation time and a small number of iterations. 
The method is very simple to apply in other optimization 
tasks. It needs to transform the treated problem to a 
mathematical model as an objective function with equalities 
and inequalities constraints.  
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