
CEAI, Vol. 8, No. 3, pp. 32-39, 2006 Printed in Romania

MAPPING LARGE COMBINATIONAL CIRCUITS WITH K-LUT

BASED FPGAS USING HOMOGENOUS DOMINATING CONES

Ion I. Bucur, Alexandru Susu

University Politehnica Bucharest, Faculty of Control and Computers, Department of Computer

Science and Engineering

E-mail bucurb@cs.pub.ro.

Abstract: Partitioning is a technique of dividing a circuit or system into a collection of smaller

blocks (sub-circuits) with roughly equal sizes targeting to minimize the number of interconnections

between the blocks. Due to the limited mapping resource of k-LUT FPGAs, large combinational

circuits partitioning is of practical importance for k-LUT based FPGA circuit implementation. In

this paper is presented multilevel multi-resource partitioning algorithm for partitioning

large combinational circuits in order to efficiently use existing and commercially

available FPGAs packages.

Keywords: critical path, bottom-up clusters, top-down min-cut, homogenous dominating cones;

1. INTRODUCTION

Circuit partitioning has multiple applications in

VLSI design. One of the most common is that of

dividing combinational circuits (usually large

ones) that will not fit on a single package among

a number of packages. Partitioning is of

practical importance for k-LUT based FPGA

circuit implementation. Partitioning is a

technique of dividing a circuit or system into a

collection of smaller blocks (sub-circuits) with

roughly equal sizes targeting to minimize the

number of interconnections between the blocks.

It is, on the one hand, a design task to break a

large system into pieces to be implemented on

separate interacting components and, on the

other hand, it serves as an algorithmic method to

solve difficult and complex combinatorial

optimization problems as in logic or layout

synthesis. Partitioning has been an active area of

research for at least a quarter of a century [1],

[2], [3], [4], [5] and [27].

The main reason that partitioning has become a

central and sometimes-critical design task today

is the enormous increase of system complexity

in the past and the expected further advances of

microelectronic system design and fabrication.

Soaring system complexities result from a

combination of reasons:

CONTROL ENGINEERING AND APPLIED INFORMATICS 33

• Increasing circuits complexity and

• Shorter turn-around time to reach the

market with new products.

Broadly accepted powerful high-level synthesis

tools allow the designers to automatically

generate huge systems. In a functional

specification, by just changing a few lines of

code, the size of the resulting structural

description (net list) of a system can increase

dramatically.

Synthesis and simulation EDA tools often

hardly cope with the complexity of the whole

system under design, and engineer aim is to

concentrate on critical parts of a system in order

to speed-up design cycle. It results that the

present state of design technology often requires

a partitioning of the system [1], [2], and [3].

Fabrication technology makes increasingly

smaller feature sizes and augmented die

dimensions possible, thus allowing a circuit to

accommodate huge number of transistors.

However, circuits are restricted in size and in the

number of external I/O connections. FPGAs

devices are an appropriate example [3], and [5].

Fabrication technology, obviously, requires the

partitioning of a system into components.

Economical pressure yields larger systems, both

to make production cheaper and to exploit the

optimization potential of the complete system.

The various parts of the system should be

implemented in appropriate ways to achieve

low-cost fabrication, optimal system

performance, and easy adaptation to changing

requirements, e.g. Thus, profit can be received

by partitioning a system optimally [5], [6], [8],

and [9].

Partitioning applications exist on all levels of

abstraction, specifically on the functional

(behavioral) and on the structural (net list) level.

In the early stages of design, far-reaching

decisions have to be made how to partition a

design, often based on incomplete knowledge.

It has been observed that structure synthesis

tools, in general, do not generate a hierarchy that

can be used directly for mapping (FPGAs case)

or for layout design if this hierarchy is deep [9],

and [10]. To give the mapping and layout

synthesis tools the freedom they require

generating good results; net lists have to be

flattened out and repartitioned [9], [12], and

[13].

In particular, it has to be decided whether to

implement a component in various types of

hardware technologies to achieve an optimal

size/performance trade-off.

Because the granularity is low in such situation,

i.e. relatively few objects of moderate to high

complexities, human designers based on their

experience can possibly do partitioning [5], [6],

[7], and [9].

The components resulting from system

partitioning are implemented by a team of

designers or synthesized from a high-level

description by using synthesis tools that

generate a structural implementation [2], [4],

and [9].

Field Programmable Gate Arrays (FPGAs),

providing both large-scale integration and user-

programmability, are important circuit

architectures. These features have enormous

impact on reducing integrated circuit

manufacturing time and costs. FPGA packages,

as a general feature, have maximum size CLBs

constraints much larger than the number of

input-output pins IOBs.

Thus, implementation of a large logic network

into working FPGA involves network

partitioning into a near balanced packing of

Combinational Logic Blocks (CLBs) and Input-

Output Blocks (IOBs). Resulting IOBs

bottleneck during circuit partitioning could

involve more required devices and possibly

more ordinary signal wires crossing between

packages. It implies more critical timing paths

between packages and drastically decreases

frequency operational of the circuits. Critical

paths are long combinational path between

sequential elements and IOBs.

Cutting critical paths during circuit partitioning

into separate packages implies capacitances of

packages interconnections that could drastically

reduce network speed [6], [9], [12], [13], [12],

[13], [14], and [15].

FPGA circuit implementation has two main

phases. Placement phase, the first one, is

dedicated to assign desirable locations within

the FPGA structure, to the optimal system

performance, and easy adaptation to changing

34 CONTROL ENGINEERING AND APPLIED INFORMATICS

requirements, e.g. Thus, profit can be received

by partitioning a system optimally.

Routing phase, the last one, provides the

interconnections between these blocks [7], [20],

[21], [22], [23], [24], [25], and [26].

Circuit partitioning is used, however, twice in

FPGA implementation. First usage concerns too

large designs to fit available FPGA packages. A

less obvious usage of network partitioning is

used in the blocks placement phase, [23], [24],

[25], and [31]. Placement algorithms based on

circuit partitioning yields astonishing results

efficiently.

2. PREVIOUS RESULTS

Typical partitioning objectives such as

minimum-width bisection and minimum ratio

cut are NP-complete and require such heuristics

as simulated annealing, greedy k-opt interchange

or quadratic optimization (via relaxation or

spectral methods).

Hopefully these heuristics are computing fine

solution close enough to the optimal one.

The objective of two-way partitioning, [1], [2],

and [3], is to either minimize the cut-size when

partitioning the network into two (roughly)

equal-size blocks, or to minimize the ratio cut

size between the two blocks, [27].

The two-way partitioning algorithms include the

Kernighan-Lin successful heuristic and iterative

improvement methods, [1], [2], and [4], the

graph spectrum method, [21], and the net-based

partitioning method, [22].

The multi-way partitioning algorithms include

the recursive Kernighan-Lin two-way

partitioning method, a generalization of the

spectrum-based partitioning method, [9], the

generalization of the FM-algorithm with look-

ahead scheme, [16], and [3].

Most recent years a number of new thoughts

have been introduced supplementary improving

the quality of partitioning solutions, including

communication-complexity based partitioning

[5], cluster-based partitioning methods, [16],

and partitioning with module replication, [22],

and [25].

3. PROBLEM FORMULATION

In this paper, is studied the partitioning problem

for combinational Boolean networks. A

combinational Boolean network C can be
represented as a directed acyclic graph G = (V,

E) where each node n (n∈V) represents a logic

gate and a directed edge (i, j), ((i, j) ∈E) exists if

the output of gate i is an input of gate j.

A primary input (PI) node has no incoming edge

and a primary output (PO) node has no outgoing

edge. A disjoint Q-way partitioning solution S =

(A1, A2... AK) satisfies the following conditions:

(i) Ai ∩Aj = φ for i ≠ j and

(ii) ∪ Ai, 0<i<Q+1, contains all the

gates in the network;

A1, A2, ... , AK are known as clusters of G (C).

Each node in C has only one output line and

limited number of input lines. It is used input(v)

to denote the set of fanins of gate.

Given a subgraph H of the Boolean network, let

input(H) denote the set of distinct nodes outside

H, which supply inputs to the nodes in H (fanins

of H). For a node n in the network, a w-feasible

cone at n, denoted Kn, is a subgraph consisting

of node n and its predecessors (u is a

predecessor of n if there is a directed path from

u to n), such that |input(Kn)| ≤ w and any path

connecting a node in Kn and n lies entirely in Kn.

The level of a node is the length of the longest

path from any PI node to n. The level of a PI

node is zero.

The depth of a network is the largest node level

in the network.

A Boolean network is p-bounded if |input(n)| ≤

p for each node n in the network.

Since it is always attractive having disjointed

partitioning solutions, the word ’disjoint’ might

be omitted in later discussions.

Main objective is to minimize the total number

of nets between different partitions.

Moreover, for a multi-way partitioning solution

S, one can define a directed graph D(S), called

the dependency graph of S, such that each node

in D(S) represents a block in S, and there is a

directed edge (Ai, Aj) in D(S) if and only if there

exists an edge (x, y) in C such that x ∈ Ai and y

∈ Aj.

The assumption that it is given a combinational

CONTROL ENGINEERING AND APPLIED INFORMATICS 35

network guarantees the existence of disjoint

partitioning solution.

When it is given a general net list, one can first

remove all the sequential elements in order to

obtain only a combinational network, [15], [23],

and [24].

Most of existing partitioning methods model a

network as an undirected graph or hyper graph,

and ignore the signal directions during the

partitioning process.

However, the study in this paper shows that

considering signal directions is very helpful in

identifying the underlining circuit structure,

which can lead to significant improvement on

the partitioning results.

4. CLUSTER PARTITIONING

ALGORITHM

Cluster partitioning algorithm was implemented

using SIS-1.2 structures and routines and most

of the terminology used in this paper is similar

to the terminology used in SIS-1.2

documentation.

Implemented algorithm split-up C using

directed acyclic graph G (as model of this

combinational Boolean network), before

mapping K-LUT nodes in the circuit.

Combinational circuits could be very large

and cluster partitioning helps obtaining

more technological compliant mapping over

the initial circuit.

Before starting the first network traversal,

all nodes are inserted in a partial-ordered

structure, such that each node ni feeding

node nj appears before nj in this structure.

Each internal node structure has an

additional array denoted po_label, mapping

all POs nodes of the circuit; (po_label(β) is

mapping POβ, as an example). This array

it’s initialized with zero.

First traversal, depth first search from

outputs, establish nodes affiliation with

respect to the primary output nodes. Primary

output nodes in figure 1 are z, x, y, and w.

An internal node having more than one

element not zero in its po_label belongs to

more than one primary output transitive

cone, and it’s said to be multiple dominated.

If node n belongs to the transitive cones of

PO1, PO2 and PO3, as an example, than

po_label(1) = po_label(2) = po_label(3) = 1.

All such nodes are defining sub-cone(1,2,3)
as the intersection of the three mentioned cones.

 Node t, in figure 1, has po_label marking w, x,

y, and z affiliation, while primary output node w

has affiliated only node y.

0 1

a

b

c

d

e

g

m

n

q

r

p

z

w

v

t

s

2 3

u

y

x

4 5 6 7

Node’s Level

Fig. 1. Directed acyclic graph representing

multilevel combinational circuit.

36 CONTROL ENGINEERING AND APPLIED INFORMATICS

Figure 2 presents a generic circuit having

multiple primary output (PO) lines. Each PO is

tracing back towards primary inputs (PI)

transitive fan-in cones (TFIC). These cones are,

in general, non-disjoint (as one could remark in

figure 2). Disjoint part of TFIC are named in

[11] Maximum Fanout Free Cone (abbreviated

MFFC). Nodes belonging to cone intersections

are feeding multiple POs. Duplication free

mapping proceeds over each MFFC. Restricting

the mapping solution to be duplication free has

benefits in terms of FPGA’s routability (scarce

resource). It was shown in [10] that any

duplication-free mapping of node w is contained

in the maximum fanout free cone of w (noted

MFFC(w)). It implies that best mapping for an

arbitrary node w has to be searched in the set of

all k-feasible cones rooted on w inside

MFFC(w).

Area minimization mapping of a circuit can be

performed optimally by partitioning the circuit

into a set of MFFCs and finding the optimal

mapping of each MFFC independently, in a

separate approach (figure 3).

These results suggest a dynamic programming

approach for duplication free mapping.

Given a network, for each node w, in topological

order, is computed a level optimum and an area

optimal of MFFC(w) is computed. When

mapping of MFFC(w) is computed for each

node u ∈ MFFC(w), u ≠ w, an optimal mapping

of MFFC(u) is already computed.

In this paper k-LUT mapping is made over

homogenous dominated cones. It means that all

nodes dominated only by z, or by z and t, as an

example, will be mapped in a separate mapping

process.

This strategy separates nodes having fan-outs in

more than one single output cone and avoid

interactions during mappings in different

primary output cones. Additionally, this

approach avoids multiple instances of nodes

Fig. 3. MFFC partitioning network for

duplication free mapping.

Primary

inputs

Fig. 2. Primary output lines and

their transitive fan-in cones.

POr

POs

POt

POu

CONTROL ENGINEERING AND APPLIED INFORMATICS 37

having rich fan-outs in multiple transitive fanout

cones.

Additionally, cones with multiple domination

identification make simpler the task of mapping

for critical performance.

Mapping phase starts by considering nodes that

belongs to the set of critical paths. The primary

output node z and all nodes belonging to the

transitive cone rooted in this node define critical

path, in figure 1.

Depending on the package’s internal connection

resources all non-critical path cones pending to

the critical cone path could be duplicated and

merged into the critical path cone, for speed.

Non-critical path pending cones will be merged

into the critical one based on a linear criterion

computed using graph quality factors (amount of

internal nodes in such a non-critical cone,

number of internal connections, minimal delay

introduced etc).

However non-critical cones are considered in

decreasing critical order and will be mapped

separately and this will save area (CLBs) and

internal interconnections resources.

Mapping process was implemented using

minDepth algorithm as it was first described in

[5] and minLevelMapIII algorithm derived from

the previous one but with powerful additional

heuristics as it was presented in [6], [7] and [8].

5. EXPERIMENTAL RESULTS

Implemented cluster algorithm working with

minLevelMapIII (technological mapping) was

tested against minDepth used without cluster

partitioning.

Results are presented in Table 1.

Circuits, in Table 1 are taken from MCNC91

multilevel examples benchmark; being selected

the most representative ones (as used in similar

works).

Cone partitioning algorithm is similar to those

previously presented in literature, [1], [5], [13],

[15], [18], [19] and [30], but modified to

minimize first critical path delay.

Heuristics introduced to evaluate cone’s costs

are based on the published results, [13], [16],

and [18], but them are slight modified because

actual application was exclusively targeted to

map k-LUT based FPGAs having primary goal

to find best performance circuit and, after that,

area optimal solution.

Table 1: Experimental results.

minDepth MinLevelMapIII

with clustering

Circuit

name
depth LUTcnt depth LUTcnt

5xp1 2 21 2 23

9sym 5 7 5 8

C499 4 67 4 72

C5315 8 500 8 543

C880 7 130 7 139

alu2 5 129 5 140

alu4 5 549 5 551

apex2 5 150 5 157

apex4 5 875 5 895

apex6 4 222 4 229

apex7 4 67 4 74

b9 3 37 3 41

bw 1 28 1 32

clip 3 44 3 47

count 3 74 3 76

des 5 1014 5 1080

duke2 4 151 4 158

e64 3 338 3 352

f51m 3 51 3 51

misex1 2 17 2 17

misex2 2 42 2 45

rd73 2 8 2 8

rd84 3 13 3 13

rot 6 204 6 227

sao2 4 57 4 57

vg2 3 35 3 35

z4ml 2 5 2 5

This was implemented by merging those clusters

containing nodes belonging to the critical path

but having enough slack in order to introduce no

other costs to the partitioning objective.

Cluster generation, is based upon algorithm

illustrated in [6] and provided most of the

application’s backgrounds.

Actual algorithm is computing all clusters

Clusters(n) rooted on internal node n and having

less inputs than M (M > input(Clusters(n)) in an

efficient way compared to the method

MaxFlow-MinCut used in most of the non-

heuristic existing works, see [8], [9], [10], [11],

[24] and [13].

Comparing results for minDepth and

minLevelMapIII it’s obvious that almost all

results are a little less adequate, in Table 1, for

38 CONTROL ENGINEERING AND APPLIED INFORMATICS

minLevelMapIII (improved minDepth) with

cluster partitioning.

That’s because minLevelMapIII is working,

mainly on the non-critical path cones, under the

cone’s boundaries and is not always able to find

best merging nodes with this restriction, while

minDepth is working ignoring cones boundary

restrictions and finds always best area results

(even using less sophisticated heuristics for

that).

Although a number of clustering algorithms,

such as the random walk based clustering

algorithms [17] and [9], the clique based method

[14], [16] and the multi-commodity-flow based

method [32], have been developed most of them

are not considering signal flow during cluster

generation and finally cluster mapping.

4. CONCLUSIONS AND FUTURE WORK

Existing cluster-based partitioning approaches

have reported consistent improvements, in terms

of both the cut size and the run time, over direct

partitioning on the initial circuit.

Since fully automatic partitioning is essential for

fast iterations in the design cycle, considerable

effort is made in academia as well as in industry

to facilitate and improve the difficult decisions

on functional level.

Both mapping algorithms are, actually, under

research and development in order to be able to

accept various and complex delay models

together with new mapping heuristics in order to

obtain better area results.

Cluster partitioning algorithm, also under

development, will be enhanced with new fast

cost estimators making more efficient non-

critical path cones process. Additional to the

technological mapping of FPGA circuits,

cluster-partitioning algorithm, has applications

in large decision diagrams partitioning [7].

REFERENCES

[1] Abouzied, P., Babba, B., Crastes de Paulet,

M., Saucier, G., Input-Driven Partitioning

Methods and Application to Synthesis on

Table-Lookup-Based FPGA’s. IEEE

Transactions on Computer-Aided Design of

Integrated Circuits and Systems, Vol. 12,

No. 7, July 1993, pp. 913-925.

[2] Azegami, K. R., Inagi, M., Takahashi, A.,

and Kajitami, Y., An Improvement of

Network-Flow Based Multi-Way Circuit

Partitioning Algorithm. IEICE Transactions

on Fundamentals, Vol. E85-A, NO.3, March

2002, pp. 655-663.

[3] Beardslee, M. and Sangiovanni-Vincentelli,

A. Heuristic Methods for Communication-

Based Logic Partitioning. The 4
th

ACM/SIGDA Physical Design Workshop,

April 1993, pp. 199-210.

[4] Brasen, D., and Saucier, G., FPGA Package

Partitioning for Performance. Proceedings

of the 1994 FPGA Symposium, Section 1:

Field-Programmable Systems, Posters.

[5] Boppana, R., Eigenvalues and Graph

Bisection: An Average-Case Analysis. IEEE

Symposium on Foundations of Computer

Science, pp. 280-285.

[6] Bucur, I., An Optimal Technology Mapping

for Delay Optimization of Lookup Table-

Based FPGAs. Proceedings of the 12
th

International Conference on Control

Systems and Computer Science, May 26-29,

1999, Bucharest, pp. 127-133

[7] Bucur, I., An Optimal k-Clustering in

Directed Acyclic Graphs. The Proceedings

of the Sixth International Conference on

Economic Informatics, May 2003, pp. 364-

368.

[8] Bucur, I., Partitioning Combinational

Circuit. Proceedings of the 15
th
 International

Conference on Control Systems and

Computer Science, 25-27 May 2005,

Bucharest, pp. 768-774.

[9] Chan, P., Schlag, M., and Zien, J., Spectral

K-Way Ratio-Cut Partitioning and

Clustering. Proceedings of the 30
th

ACM/IEEE Design Automation Conference

(DAC’93).

[10] Cong, J. and Ding, Y., On Area/Depth

Trade-off in LUT-Based FPGA Technology

Mapping. Proceedings of the 30
th

ACM/IEEE Design Automation Conference

(ICCAD’93), pp. 213-218.

[11] Cong, J. and Ding, Y., Combinational

Logic Synthesis for LUT Based Field

Programmable Gate Arrays (Tutorial and

Survey Paper), ACM Transactions on

Design Automation of Electronic Systems,

Vol. 1, No. 2., April 1996, pp. 145-204.

[12] Cong, J., Hagen, L., and Kahng, A.,

Random Walks for Circuit Clustering.

Proceedings of the IEEE 4
th
 International

ASIC Conference, Sept. 1991, pp: 14-2.1.

[13] Cong, J., Hagen, L., and Kahng, A., Net

Partitions Yield Better Module Partitions.

Proceedings of the IEEE 29
th
 Design

CONTROL ENGINEERING AND APPLIED INFORMATICS 39

Automation Conference (DAC’92), pp. 47-

52.

[14] Cong, J., Li, Z., and Bagrodia, R., Acyclic

Multi-way Partitioning of Boolean

Networks. Proceedings of the 31
st
 Design

Automation Conference (DAC’94), pp. 670

– 675.

[15] Cong, J., and Lim, S. K., Edge separability

based circuit clustering with application to

circuit partitioning. Proceedings of the

IEEE/ACM Asia South Pacific Design

Automation Conference (SPDAC-2000) pp.

429--434.

[16] Cong, J., and Smith, M. A., Bottom-up

Clustering Algorithm with Applications to

Circuit Partitioning in VLSI Designs.

Proceedings of the ACM/IEEE Design

Automation Conference (DAC’93), pp. 755-

760.

[17] Dasdan, A., and Aykanat, C., Improved

Multiple-way Circuit Partitioning

Algorithms. Proceedings of the 1994 FPGA

Symposium, Section 1: Field-Programmable

Systems, Posters.

[18] Fiduccia, C., and Mattheyses, R., A Linear

Time Heuristic for Improving Network

Partitions. Proceedings of the ACM / IEEE

Design Automation Conference (DAC’82),

pp. 175-181.

[19] Hagen, L., and Kahng, A. B., Fast spectral

methods for ratio cut partitioning and

clustering. Proceedings of International

Conference on Computer-Aided Design

(ICCAD’91), pp. 10 - 13.

[20] Hagen, L., and Kahng, A., A New

Approach to Effective Circuit Clustering.

Proceedings of the International Conference

on Computer-Aided Design (ICCAD’92),

pp. 422-427.

[21] Hagen, L., and Kahng, A. B., New Spectral

Methods for Ratio Cut Partitioning and

Clustering. IEEE Transactions on

Computer-Aided Design of Integrated

Circuits and Systems, Vol. 11, No. 7, pp.

1074-1085, July 1992.

[22] Hwang, J., and Gamal, A. E., Optimal

Replication for Min - Cut Partitioning.

Proceedings of the International Conference

on Computer-Aided Design (ICCAD’92).

Pp. 432-435, Nov. 1992.

[23] Iman, S., Pedram, M., Fabian, C., and

Cong, J., Finding Uni-Directional Cuts

Based on Physical Partitioning and Logic

Restructuring. Proceedings of the 4
th

ACM/SIGDA Physical Design Workshop,

pp. 187-198.

[24] Johannes, F.M., Partitioning of VLSI

Circuits and Systems. Proceedings of the

33rd Annual Conference on Design

Automation (DAC'96), pp. 83-87.

[25] Kring, C., and Newton, A. R., A Cell-

Replicating Approach to Mincut-Based

Circuit Partitioning. Proceedings of the

International Conference on Computer-

Aided Design (ICCAD’91), pp. 2-5.

[26] Krupnova, H., Abbara, A., and Saucier, G.,

A Hierarchy-Driven FPGA Partitioning

Method. 34th Conference on Design

Automation Conference, (DAC'97), pp. 522-

525.

[27] Kernighan, B., and Lin, S., An Efficient

Heuristic Procedure for Partitioning of

Electrical Circuits. Bell System Technical

Journal, February 1970.

[28] Murgai, R., Brayton, R.K., and Sangivanni-

Vincentelli, A., Logic Synthesisfor Field-

Programming Gate Arrays, Kluwer, 1995.

[29] Sangiovanni-Vincentelli, A., El Gamal, A.,

and Rose, J., Synthesis methods for field

programmable gate arrays, Proceedings of

IEEE 81, 7, pp. 1057-1083.

[30] Saucier, G., Brasen, D., and Hiol, J.P.,

Partitioning with cone structures.

Proceedings of the IEEE International

Conference on Computer-Aided Design,

1993, pp. 236-239.

[31] Wei, Y., and Cheng, C., Towards Efficient

Hierarchical Designs by Ratio Cut

Partitioning. IEEE International Conference

on Computer-Aided Design (ICCAD’89).

Pp. 298-301.

[32] Yeh, C.W., Cheng, C.K., and Lin, T.T., A

Probabilistic Multicommodity-Flow

Solution to Circuit Clustering Problems.

Proceedings of the International Conference

on Computer-Aided Design (ICCAD’92),

pp. 428-431.

