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Abstract: Partitioning is a technique of dividing a circuit or system into a collection of smaller 

blocks (sub-circuits) with roughly equal sizes targeting to minimize the number of interconnections 

between the blocks. Due to the limited mapping resource of k-LUT FPGAs, large combinational 

circuits partitioning is of practical importance for k-LUT based FPGA circuit implementation. In 

this paper is presented multilevel multi-resource partitioning algorithm for partitioning 

large combinational circuits in order to efficiently use existing and commercially 

available FPGAs packages.  
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1. INTRODUCTION 

 

Circuit partitioning has multiple applications in 

VLSI design. One of the most common is that of 

dividing combinational circuits (usually large 

ones) that will not fit on a single package among 

a number of packages. Partitioning is of 

practical importance for k-LUT based FPGA 

circuit implementation. Partitioning is a 

technique of dividing a circuit or system into a 

collection of smaller blocks (sub-circuits) with 

roughly equal sizes targeting to minimize the 

number of interconnections between the blocks.  

It is, on the one hand, a design task to break a 

large system into pieces to be implemented on 

separate interacting components and, on the 

other hand, it serves as an algorithmic method to 

solve difficult and complex combinatorial 

optimization problems as in logic or layout 

synthesis. Partitioning has been an active area of 

research for at least a quarter of a century [1], 

[2], [3], [4], [5] and [27].  

 

The main reason that partitioning has become a 

central and sometimes-critical design task today 

is the enormous increase of system complexity 

in the past and the expected further advances of 

microelectronic system design and fabrication. 

Soaring system complexities result from a 

combination of reasons: 
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• Increasing circuits complexity and 

• Shorter turn-around time to reach the 

market with new products. 

Broadly accepted powerful high-level synthesis 

tools allow the designers to automatically 

generate huge systems. In a functional 

specification, by just changing a few lines of 

code, the size of the resulting structural 

description (net list) of a system can increase 

dramatically.  

 

Synthesis and simulation EDA tools often 

hardly cope with the complexity of the whole 

system under design, and engineer aim is to 

concentrate on critical parts of a system in order 

to speed-up design cycle. It results that the 

present state of design technology often requires 

a partitioning of the system [1], [2], and [3]. 

 

Fabrication technology makes increasingly 

smaller feature sizes and augmented die 

dimensions possible, thus allowing a circuit to 

accommodate huge number of transistors. 

However, circuits are restricted in size and in the 

number of external I/O connections. FPGAs 

devices are an appropriate example [3], and [5]. 

 

Fabrication technology, obviously, requires the 

partitioning of a system into components. 

Economical pressure yields larger systems, both 

to make production cheaper and to exploit the 

optimization potential of the complete system.  

 

The various parts of the system should be 

implemented in appropriate ways to achieve 

low-cost fabrication, optimal system 

performance, and easy adaptation to changing 

requirements, e.g. Thus, profit can be received 

by partitioning a system optimally [5], [6], [8], 

and [9].  

 

Partitioning applications exist on all levels of 

abstraction, specifically on the functional 

(behavioral) and on the structural (net list) level. 

In the early stages of design, far-reaching 

decisions have to be made how to partition a 

design, often based on incomplete knowledge. 

 

It has been observed that structure synthesis 

tools, in general, do not generate a hierarchy that 

can be used directly for mapping (FPGAs case) 

or for layout design if this hierarchy is deep [9], 

and [10]. To give the mapping and layout 

synthesis tools the freedom they require 

generating good results; net lists have to be 

flattened out and repartitioned [9], [12], and 

[13]. 

 

In particular, it has to be decided whether to 

implement a component in various types of 

hardware technologies to achieve an optimal 

size/performance trade-off.  

 

Because the granularity is low in such situation, 

i.e. relatively few objects of moderate to high 

complexities, human designers based on their 

experience can possibly do partitioning [5], [6], 

[7],  and [9].  
 

The components resulting from system 

partitioning are implemented by a team of 

designers or synthesized from a high-level 

description by using synthesis tools that 

generate a structural implementation [2], [4], 

and [9]. 

 

Field Programmable Gate Arrays (FPGAs), 

providing both large-scale integration and user-

programmability, are important circuit 

architectures. These features have enormous 

impact on reducing integrated circuit 

manufacturing time and costs. FPGA packages, 

as a general feature, have maximum size CLBs 

constraints much larger than the number of 

input-output pins IOBs.  

 

Thus, implementation of a large logic network 

into working FPGA involves network 

partitioning into a near balanced packing of 

Combinational Logic Blocks (CLBs) and Input-

Output Blocks (IOBs). Resulting IOBs 

bottleneck during circuit partitioning could 

involve more required devices and possibly 

more ordinary signal wires crossing between 

packages. It implies more critical timing paths 

between packages and drastically decreases 

frequency operational of the circuits. Critical 

paths are long combinational path between 

sequential elements and IOBs.   

 

Cutting critical paths during circuit partitioning 

into separate packages implies capacitances of 

packages interconnections that could drastically 

reduce network speed [6], [9], [12], [13], [12], 

[13], [14], and [15]. 

 

FPGA circuit implementation has two main 

phases. Placement phase, the first one, is 

dedicated to assign desirable locations within 

the FPGA structure, to the optimal system 

performance, and easy adaptation to changing 
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requirements, e.g. Thus, profit can be received 

by partitioning a system optimally.  

Routing phase, the last one, provides the 

interconnections between these blocks [7], [20], 

[21], [22], [23], [24], [25], and [26]. 

  

Circuit partitioning is used, however, twice in 

FPGA implementation. First usage concerns too 

large designs to fit available FPGA packages. A 

less obvious usage of network partitioning is 

used in the blocks placement phase, [23], [24], 

[25], and [31]. Placement algorithms based on 

circuit partitioning yields astonishing results 

efficiently. 

 

 

2. PREVIOUS RESULTS 

 

Typical partitioning objectives such as 

minimum-width bisection and minimum ratio 

cut are NP-complete and require such heuristics 

as simulated annealing, greedy k-opt interchange 

or quadratic optimization  (via relaxation or 

spectral methods).  

 

Hopefully these heuristics are computing fine 

solution close enough to the optimal one. 

 

The objective of two-way partitioning, [1], [2], 

and [3], is to either minimize the cut-size when 

partitioning the network into two (roughly) 

equal-size blocks, or to minimize the ratio cut 

size between the two blocks, [27].  

 

The two-way partitioning algorithms include the 

Kernighan-Lin successful heuristic and iterative 

improvement methods, [1], [2], and [4], the 

graph spectrum method, [21], and the net-based 

partitioning method, [22].  

 

The multi-way partitioning algorithms include 

the recursive Kernighan-Lin two-way 

partitioning method, a generalization of the 

spectrum-based partitioning method, [9], the 

generalization of the FM-algorithm with look-

ahead scheme, [16], and [3]. 

  

Most recent years a number of new thoughts 

have been introduced supplementary improving 

the quality of partitioning solutions, including 

communication-complexity based partitioning 

[5], cluster-based partitioning methods, [16], 

and partitioning with module replication, [22], 

and [25]. 

  

 

3.  PROBLEM FORMULATION 
 

In this paper, is studied the partitioning problem 

for combinational Boolean networks. A 

combinational Boolean network C can be 
represented as a directed acyclic graph G = (V, 

E) where each node n (n∈V) represents a logic 

gate and a directed edge (i, j), ((i, j) ∈E) exists if 

the output of gate i is an input of gate j.  

A primary input (PI) node has no incoming edge 

and a primary output (PO) node has no outgoing 

edge. A disjoint Q-way partitioning solution S = 

(A1, A2... AK) satisfies the following conditions: 

(i) Ai ∩Aj = φ for i ≠ j and  

(ii) ∪ Ai, 0<i<Q+1, contains all the 

gates in the network; 

A1, A2, ... , AK  are known as clusters of G (C). 

 

Each node in C has only one output line and 

limited number of input lines. It is used input(v) 

to denote the set of fanins of gate.  

 

Given a subgraph H of the Boolean network, let 

input(H) denote the set of distinct nodes outside 

H, which supply inputs to the nodes in H (fanins  

of H). For a node n in the network, a w-feasible 

cone at n, denoted Kn, is a subgraph consisting 

of node n and its predecessors (u is a 

predecessor of n if there is a directed path from 

u to n), such that |input(Kn)| ≤ w and any path 

connecting a node in Kn and n lies entirely in Kn.  

 

The level of a node is the length of the longest 

path from any PI node to n. The level of a PI 

node is zero.  

The depth of a network is the largest node level 

in the network.  

A Boolean network is p-bounded if |input(n)|  ≤  

p for each node n in the network. 

 

Since it is always attractive having disjointed 

partitioning solutions, the word ’disjoint’ might 

be omitted in later discussions.  

Main objective is to minimize the total number 

of nets between different partitions.  

 

Moreover, for a multi-way partitioning solution 

S, one can define a directed graph D(S), called 

the dependency graph of S, such that each node 

in D(S) represents a block in S, and there is a 

directed edge (Ai, Aj) in D(S) if and only if there 

exists an edge (x, y) in C such that x ∈ Ai and y 

∈ Aj.  

 

The assumption that it is given a combinational  
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network guarantees the existence of disjoint 

partitioning solution. 

  

When it is given a general net list, one can first 

remove all the sequential elements in order to 

obtain only a combinational network, [15], [23], 

and [24]. 

 

Most of existing partitioning methods model a 

network as an undirected graph or hyper graph, 

and ignore the signal directions during the 

partitioning process. 

 

However, the study in this paper shows that 

considering signal directions is very helpful in 

identifying the underlining circuit structure, 

which can lead to significant improvement on 

the partitioning results. 

 

  

4. CLUSTER PARTITIONING 

ALGORITHM 

 

Cluster partitioning algorithm was implemented 

using SIS-1.2 structures and routines and most 

of the terminology used in this paper is similar 

to the terminology used in SIS-1.2 

documentation.  

 

Implemented algorithm split-up C using 

directed acyclic graph G (as model of this 

combinational Boolean network), before 

mapping K-LUT nodes in the circuit.  

 

Combinational circuits could be very large 

and cluster partitioning helps obtaining 

more technological compliant mapping over 

the initial circuit. 

 

Before starting the first network traversal, 

all nodes are inserted in a partial-ordered 

structure, such that each node ni feeding 

node nj appears before nj in this structure.  

 

Each internal node structure has an 

additional array denoted po_label, mapping 

all POs nodes of the circuit; (po_label(β) is 

mapping POβ, as an example).  This array 

it’s initialized with zero. 

 

First traversal, depth first search from 

outputs, establish nodes affiliation with 

respect to the primary output nodes. Primary 

output nodes in figure 1 are z, x, y, and w.  

An internal node having more than one 

element not zero in its po_label belongs to 

more than one primary output transitive 

cone, and it’s said to be multiple dominated.  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

If node n belongs to the transitive cones of 

PO1, PO2 and PO3, as an example, than 

po_label(1) = po_label(2) = po_label(3) = 1. 

All such nodes are defining sub-cone(1,2,3) 
as the intersection of the three mentioned cones. 

 Node t, in figure 1, has po_label marking w, x, 

y, and  z affiliation, while primary output node w 

has affiliated only node y. 
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Fig. 1. Directed acyclic graph representing 

multilevel combinational circuit. 
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Figure 2 presents a generic circuit having 

multiple primary output (PO) lines. Each PO is 

tracing back towards primary inputs (PI) 

transitive fan-in cones (TFIC). These cones are, 

in general, non-disjoint (as one could remark in 

figure 2).  Disjoint part of TFIC are named in 

[11] Maximum Fanout Free Cone (abbreviated 

MFFC). Nodes belonging to cone intersections 

are feeding multiple POs. Duplication free 

mapping proceeds over each MFFC. Restricting 

the mapping solution to be duplication free has 

benefits in terms of FPGA’s routability (scarce 

resource). It was shown in [10] that any 

duplication-free mapping of node w is contained 

in the maximum fanout free cone of w (noted 

MFFC(w)). It implies that best mapping for an 

arbitrary node w has to be searched in the set of 

all k-feasible cones rooted on w inside 

MFFC(w).   

Area minimization mapping of a circuit can be 

performed optimally by partitioning the circuit 

into a set of MFFCs and finding the optimal 

mapping of each MFFC independently, in a 

separate approach (figure 3). 

These results suggest a dynamic programming 

approach for duplication free mapping. 

 

 
Given a network, for each node w, in topological 

order, is computed a level optimum and an area 

optimal of MFFC(w) is computed. When 

mapping of MFFC(w) is computed  for each 

node u ∈ MFFC(w), u ≠ w, an optimal mapping 

of MFFC(u) is already computed. 

 

In this paper k-LUT mapping is made over 

homogenous dominated cones. It means that all 

nodes dominated only by z, or by z and t, as an 

example, will be mapped in a separate mapping 

process.  

 

This strategy separates nodes having fan-outs in 

more than one single output cone and avoid 

interactions during mappings in different 

primary output cones. Additionally, this 

approach avoids multiple instances of nodes 

 

 

 

 

Fig. 3. MFFC partitioning network for 

duplication free mapping. 
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Fig. 2. Primary output lines and 

their transitive fan-in cones. 
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having rich fan-outs in multiple transitive fanout 

cones.  

Additionally, cones with multiple domination 

identification make simpler the task of mapping 

for critical performance. 

 

Mapping phase starts by considering nodes that 

belongs to the set of critical paths.  The primary 

output node z and all nodes belonging to the 

transitive cone rooted in this node define critical 

path, in figure 1. 

 

Depending on the package’s internal connection 

resources all non-critical path cones pending to 

the critical cone path could be duplicated and 

merged into the critical path cone, for speed. 

 

Non-critical path pending cones will be merged 

into the critical one based on a linear criterion 

computed using graph quality factors (amount of 

internal nodes in such a non-critical cone, 

number of internal connections, minimal delay 

introduced etc).  

 

However non-critical cones are considered in 

decreasing critical order and will be mapped 

separately and this will save area (CLBs) and 

internal interconnections resources. 

 

Mapping process was implemented using 

minDepth algorithm as it was first described in 

[5] and minLevelMapIII algorithm derived from 

the previous one but with powerful additional 

heuristics as it was presented in [6], [7] and [8]. 

 

 

5. EXPERIMENTAL RESULTS 
 

Implemented cluster algorithm working with 

minLevelMapIII (technological mapping) was 

tested against minDepth used without cluster 

partitioning.  

Results are presented in Table 1. 
  
Circuits, in Table 1 are taken from MCNC91 

multilevel examples benchmark; being selected 

the most representative ones (as used in similar 

works).  

 

Cone partitioning algorithm is similar to those 

previously presented in literature, [1], [5], [13], 

[15], [18], [19] and [30], but modified to 

minimize first critical path delay.  

 

Heuristics introduced to evaluate cone’s costs 

are based on the published results, [13], [16], 

and [18], but them are slight modified because 

actual application was exclusively targeted to 

map k-LUT based FPGAs having primary goal 

to find best performance circuit and, after that, 

area optimal solution. 

 

 
Table 1: Experimental results. 

minDepth MinLevelMapIII 

with clustering 
 

Circuit 

name 
depth LUTcnt depth LUTcnt 

5xp1 2 21 2 23 

9sym 5 7 5 8 

C499 4 67 4 72 

C5315 8 500 8 543 

C880 7 130 7 139 

alu2 5 129 5 140 

alu4 5 549 5 551 

apex2 5 150 5 157 

apex4 5 875 5 895 

apex6 4 222 4 229 

apex7 4 67 4 74 

b9 3 37 3 41 

bw 1 28 1 32 

clip 3 44 3 47 

count 3 74 3 76 

des 5 1014 5 1080 

duke2 4 151 4 158 

e64 3 338 3 352 

f51m 3 51 3 51 

misex1 2 17 2 17 

misex2 2 42 2 45 

rd73 2 8 2 8 

rd84 3 13 3 13 

rot 6 204 6 227 

sao2 4 57 4 57 

vg2 3 35 3 35 

z4ml 2 5 2 5 

 

This was implemented by merging those clusters 

containing nodes belonging to the critical path 

but having enough slack in order to introduce no 

other costs to the partitioning objective.  

 

Cluster generation, is based upon algorithm 

illustrated in [6] and provided most of the 

application’s backgrounds.   

Actual algorithm is computing all clusters 

Clusters(n) rooted on internal node n and having 

less inputs than M (M > input(Clusters(n)) in an 

efficient way compared to the method 

MaxFlow-MinCut used in most of the non-

heuristic existing works, see [8], [9], [10], [11], 

[24] and [13]. 

 

Comparing results for minDepth and 

minLevelMapIII it’s obvious that almost all 

results are a little less adequate, in Table 1, for 



38  CONTROL ENGINEERING AND APPLIED INFORMATICS 

 

minLevelMapIII (improved minDepth) with 

cluster partitioning.  

That’s because minLevelMapIII is working, 

mainly on the non-critical path cones, under the 

cone’s boundaries and is not always able to find 

best merging nodes with this restriction, while 

minDepth is working ignoring cones boundary 

restrictions and finds always best area results 

(even using less sophisticated heuristics for 

that). 

 

Although a number of clustering algorithms, 

such as the random walk based clustering 

algorithms [17] and [9], the clique based method 

[14], [16] and the multi-commodity-flow based 

method [32], have been developed most of them 

are not considering signal flow during cluster 

generation and finally cluster mapping.  

 

 
4. CONCLUSIONS AND FUTURE WORK 

 

Existing cluster-based partitioning approaches 

have reported consistent improvements, in terms 

of both the cut size and the run time, over direct 

partitioning on the initial circuit.  

Since fully automatic partitioning is essential for 

fast iterations in the design cycle, considerable 

effort is made in academia as well as in industry 

to facilitate and improve the difficult decisions 

on functional level. 

 

Both mapping algorithms are, actually, under 

research and development in order to be able to 

accept various and complex delay models 

together with new mapping heuristics in order to 

obtain better area results.  

Cluster partitioning algorithm, also under 

development, will be enhanced with new fast 

cost estimators making more efficient non-

critical path cones process. Additional to the 

technological mapping of FPGA circuits, 

cluster-partitioning algorithm, has applications 

in large decision diagrams partitioning [7]. 
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