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Abstract: This paper presents the design and analysis of adaptive and robust-adaptive control strategies 
for a class of fed-batch fermentation processes. The control strategies are developed under the realistic 
assumption that both the bacterial growth rates and the influent flow rates are time-varying and uncertain, 
but some lower and upper bounds of these uncertainties are known. The adaptive control structure is 
achieved by combining a linearizing control law with a state asymptotic observer and a parameter 
estimator used for on-line estimation of bioprocess unknown kinetics. The robust-adaptive control 
structure is achieved by combining a linearizing control law with an interval observer able to estimates a 
lower and an upper bound of unmeasurable states. Also, in the proposed robust-adaptive control strategy 
the uncertain process parameters are replaced by their lower and upper bounds assumed known. The 
effectiveness of the designed algorithms is validated by several numerical simulations applied to a 
particular alcoholic fermentation bioprocess. 
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1. INTRODUCTION 

The biotechnology, whose applications can be found in many 
domains, is one of the fields that over the last decades have a 
high development. An important issue of biotechnology is the 
synthesis of some products by using fermentation processes. 
Therefore, due to its advantages, the control of industrial 
bioprocesses has been an important practical problem 
attracting wide attention. 

Fermentation processes that are carried out in perfectly 
stirred tank reactors are commonly described by a set of 
ordinary differential equations expressing mass and energy 
balances. A basic difficulty for the application of modern 
control techniques to these processes lies in the fact that, in 
many cases, the models include kinetic parameters, which are 
highly uncertain and time varying (Bastin and Dochain 1990; 
Dochain and Vanrolleghem 2001; Bernard and Bastin 2004; 
Dochain 2008; Petre 2008). Another important challenge in 
the monitoring and control of such living processes is finding 
adequate and reliable sensors to measure all the important 
state variables of the plant (Bastin and Dochain 1990; 
Dochain and Vanrolleghem 2001; Bernard and Bastin 2004). 
Even if several on-line sensors providing state information 
are available today at industrial scale, they are still expensive, 
especially in the field of biological processes (Bastin and 
Dochain 1990; Dochain and Vanrolleghem 2001; Bernard 
and Bastin 2004; Dochain 2008). 

To overcome these difficulties, several strategies were 
developed, such as linearizing strategy (Bastin and Dochain 
1990; Dochain 2008; Petre 2008), adaptive approach (Bastin 
and Dochain 1990; Dochain 2008; Petre 2008, Petre et al. 
2008), optimal control (Bastin and Dochain 1990; Queinnec 
et al. 1991; Van Impe et al. 1994), sliding mode control 

(Selişteanu et al. 2007), neural strategies (Hayakawa 2008; 
Petre et al. 2010) and so on. Some of these approaches 
imposed the use of the so-called “software sensors” – 
combinations between hardware sensors and software 
estimators (Bastin and Dochain 1990; Dochain and 
Vanrolleghem 2001; Bernard and Bastin 2004). Note that 
these software sensors are used not only for the estimation of 
concentrations of some components but also for the 
estimation of kinetic parameters or even kinetic reactions 
(Bastin and Dochain 1990; Dochain and Vanrolleghem 2001; 
Dochain 2008). However, in all previously cited schemes, the 
knowledge of all the inputs of the process, including, for 
example, the substrate input concentration, is needed. 
Unfortunately, there are many bioprocesses for which the 
complete knowledge of inputs is not available. As a 
consequence, part of the process input vector is considered as 
unmeasured input disturbance and classical observer schemes 
cannot be used (Alcaraz-González et al. 2000, 2003, 2005; 
Aviles and Moreno 2009; Moisan and Bernard 2005; 
Rapaport and Dochain 2005). For these situations, in the last 
decade it was developed a special class of observers called 
set-observers, which allows the user to reconstruct a 
guaranteed interval on the unmeasured states instead of 
reconstructing their precise numerical values (Alcaraz-
González et al. 2000, 2003, 2005; Aviles and Moreno 2009; 
Goffax et al. 2009, Mazenc et al. 2009, 2011; Moisan and 
Bernard 2005; Rapaport and Dochain 2005). The only 
requirement is to know an interval in which the unmeasured 
inputs of the process evolve. These robust observers are 
capable of coping simultaneously with the problems posed by 
both the uncertainties in the inputs and a full unknowledge of 
the nonlinearities or process kinetics (Alcaraz-González et al. 
2000, 2003, 2005; Aviles and Moreno 2009; Moisan and 
Bernard 2005; Rapaport and Dochain 2005). Even if the 
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design of interval observers has a high development, only 
few papers were dedicated to designing of robust output 
feedback controllers using interval observers (Alcaraz-
González et al. 2000; Rapaport and Harmand 2002; Rapaport 
et al. 2006; Petre et al. 2012).       

This paper presents the design and analysis of adaptive and 
robust-adaptive control schemes applied to alcoholic 
fermentation processes that are carried out in fed-batch 
reactors. In contrast with continuous stirred tank reactors, 
which continuously operate in steady state, fed-batch reactors 
are permanently in a transient regime and therefore offer 
challenging problems to the control engineer. Industrial fed-
batch stirred tank reactors are traditionally operated in open 
loop using prior calculated feeding patterns and dosage 
schemes (Van Impe 1994). But to increase the efficiency of 
these processes, there has been interest in the application of 
modern control theories. So, for optimization of alcoholic 
fed-batch fermentation process there were used dynamic 
programming and nonlinear programming schemes (Van 
Impe 1994; Duvivier and Sévely 1988). Some other linear 
and non-linear adaptive control strategies (Dahhou et al. 
1993; Petre 2005) were developed. But the knowledge of all 
inputs is of crucial matter for all these kind of control 
strategies. 

In this work, the concentration of the influent substrate will 
be considered highly uncertain or even completely unknown, 
but some intervals in which this unmeasured concentration 
evolve are known. Also, the kinetic parameters will be 
considered, like in reality, highly uncertain and time varying, 
but some lower and upper bound of these uncertainties are 
assumed known. In order to design control algorithms under 
abovementioned conditions, a state asymptotic observer and a 
robust interval observer are briefly presented. Using these 
observers some adaptive and robust-adaptive control schemes 
are developed and analysed.  

The adaptive control structure is achieved by combining a 
linearizing control law with a state asymptotic observer 
which plays the role of the software sensor for on-line 
estimation of the interest process biological states and a 
parameter estimator for on-line estimation of uncertain or 
unknown bioprocess kinetic rates.  

The robust-adaptive control structure is achieved by 
combining a linearizing control law with an appropriately 
interval observer able to estimates lower and upper bounds of 
unmeasurable states. Furthermore, the uncertain process 
parameters are replaced by their lower and upper bounds 
assumed known. 

The paper is organized as follows. A briefly description of a 
class of fed-batch fermentation processes and its modelling 
are presented in Section 2. An adaptive and a robust-adaptive 
control strategy for this class of bioprocesses are presented in 
Section 3. The performance of the proposed control 
algorithms applied to an alcoholic fermentation process is 
validated by using numerical simulations presented in 
Section 4. Concluding remarks in Section 5 complete this 
paper. 

 

2. BIOPROCESSES DESCRIPTION AND MODELLING 

Consider the class of fed-batch fermentation processes 
involving one limiting substrate for biomass growth and 
product synthesis that are carried out in fed-batch stirred tank 
bioreactors. A representative process from this class is the 
alcoholic fermentation bioprocess whose mathematical 
model obtained from mass balance considerations is given by 
the following set of nonlinear equations (Queinnec 1991): 

)/()()( VFXXtX in ,                            (1) 

  )/()()( VFSSXtS ininS  ,                        (2) 

)/()()( VFPXtP inP  ,                          (3) 

inFtV )( ,                  (4) 

with X - biomass concentration, S - substrate concentration, 
Sin - influent substrate concentration, P - product 
concentration, V - volume of the culture medium, Fin - 
volumetric feed rate, VFD in /  - dilution rate,   - specific 

growth rate, S  - specific substrate consumption rate and P  

- specific production rate. The parameters appearing in this 
description are complicated functions of the variables of 
interest. The challenge for the control engineer arises from 
the fact that the analytical modelling of these specific rates 
functions is highly uncertain and generally not reproducible 
from one fed-batch to the next one. After several experiments 
the following expressions for the bacterial growth rate have 
been adopted (Queinnec 1991): 

  )//(/1)( 2
max ISm KSSKSPP  ,              (5) 

)//()( 2
max ISP KSSKS  ,              (6) 

)()/1()()/1()( //  PSPSXS YY ,                (7) 

with SXY /  - biomass on substrate yield coefficient, SPY /  - 

product on substrate yield coefficient and Pm - alcohol 
inhibition factor. This model takes into account both 
substrate and product inhibition on the growth and the fact 
that growth and production interact. Fed-batch fermentation 
processes have been found to be most effective in 
overcoming such effects as substrate inhibition, catabolite 
repression, and glucose effects. In other words, whenever the 
specific rate of growth   and/or production are non-

monotonic functions of the limiting substrate concentration 
(as in our case), a fed-batch operation may be superior and it 
is then necessary to determine the optimal feed rate of 
substrate (for details, see Van Impe 1994). 

Remark 1. It is known that temperature is an important factor 
that can to influence the reaction rates of the alcoholic 
fermentation. For example, in the case of wine fermentation, 
the mathematical models of reaction rates ware adapted so 
that to include the influence of temperature (Coleman et al. 
2007; David et al. 2010). It must to note that the 
mathematical model (1)-(7), used in this paper, was obtained 
under appropriately (standard) constant ambient temperature 
and pressure.      
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Defining the state vector as TPSX ][ , the model (1)-(3) 

can be written in a compact form as: 

QFDKGQFDK  )()()( ,        (8) 

where F = [0  FinSin/V  0]T  is the vector of mass inflow rates, 
Q = [0  0  0]T  is the vector of gaseous outflow rates, 

T][ 21  , with X1  and XP2 , is the vector of 

reaction rates, which can be written as )()()(  G , 

with )(G  a diagonal matrix whose entries are products of 

the component concentrations involved in each reaction and 
T][ 21   the vector of specific reaction rates, and K is 

the constant yield coefficients matrix. The matrices K and G 
have the following structure:      
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For the alcoholic fermentation bioprocess, the control 
objective consists in adjusting the plant’s load in order to 
convert the substrate (glucose) into alcohol via fermentation, 
to get a large production of alcohol.  

From the above inhibition considerations, it follows that the 
alcohol production process requires regulation of the 
substrate concentration S inside the bioreactor at a set point 

*S  corresponding to a desired biomass specific growth rate 
by acting on the feeding substrate rate Fin.  

An optimal value of the set point *S  can be obtained by 
analysing the ratio between the alcohol production and the 
yield of the bioreactor (see Bastin and Dochain 1990; Petre 
2005). More exactly, considering that the process model (8) 
is incompletely known, its parameters are time varying and 
not all the states are available for measurements, the control 
goal is to maintain the substrate concentration inside the 
reactor at some values, which correspond to both a maximal 
production of alcohol and a yield of the bioreactor. 

3. CONTROL STRATEGIES 

In this section under the assumptions formulated in Sections 
2, for the class of fed-batch fermentation bioprocess 
described by dynamical model (8) we will develop some 
adaptive and robust-adaptive control algorithms for 
controlling the substrate concentration S inside the bioreactor. 

3.1 Exactly linearizing feedback control 

Consider the ideal case where maximum prior knowledge 
concerning the process is available, that is in (8) the specific 
reaction rates 1  and 2  are assumed completely known, 

while all the state variables and all the inflow and outflow 
rates are available for on-line measurements. Then, the 
following exactly linearizing feedback control law (Petre, 
2005): 

 XYSS
SS

V
F SX

in
in 


 )/1()( /

*
1 XY PSP  )/1( / , (10)  

leads to a dynamical behaviour of closed-loop system 
described by the following first order linear stable differential 
equation: 

0)()( *
1

*  SSSS  , 01  .                                     (11) 

The control law (10) leads to a linear error model ee 1 , 

where yye  *  represents the tracking error, which for 

01   has an exponential stable point at 0e . 

The controller (10) will be used as a benchmark in order to 
compare its behaviour with the behaviour of the indirect 
adaptive controller developed in subsection 3.2 as well as 
with the behaviour of a robust-adaptive controller developed 
in subsection 3.3. 

3.2 An indirect adaptive control strategy 

Since the prior knowledge concerning the process assumed in 
the previous subsection is not realistic, in this subsection we 
will consider that the process kinetics are incompletely 
known and time varying and some state variables are not 
accessible. So, let’s assume that the only on-line available 
measurements are S, Sin and P and that reaction rates   and 

P  and obviously S  are time varying and incompletely 

known. The implementation of the control law (10) requires 
the knowledge of the state X, and of the reaction rates   and 

P . Since X is not measured and   and P  are incompletely 

known, the control law (10) becomes an adaptive control law 
by replacing the true unknown values of X,   and P  by 

their corresponding on-line estimates provided by a suitable 
state observer and a parameter estimator, respectively.  

For the estimation of state X, independent of the unknown 
reaction rates   and P , we use an asymptotic observer 

(Bastin and Dochain 1990; Petre 2005), which can be derived 
as follows. Let’s define the auxiliary state ŵ  as (Petre 2005): 

SPYXYw SPSX  )/1()/1(ˆ // ,               (12) 

whose dynamics, deduced from the model (1)-(3), is 
expressed by the following linear stable equation: 

ininin SVFwVFtw )/(ˆ)/()(ˆ  .                                    (13) 

Then, the on-line estimate X̂  of X is calculated from values 
of ŵ  via dynamical equation (13), as: 

 SPYwYX SPSX  )/1(ˆˆ
// .              (14) 

The unknown kinetic terms   and P  in (10) can be written 

as: 

1),(  SPS ,   2)(  SSP ,                     (15) 

where the specific reaction rates 1  and 2  are considered 

completely unknown and time varying. This simply expresses 
that S is a limiting substrate of the reactions and that, in 
consequence 0  and 0P  if 0S . For our example: 
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which are positive functions of S. 

The estimation of 1  and 2  can be performed by using an 

appropriately parameter estimator applied only the dynamics 
of S and P given by (2) and (3), respectively, which under the 
above assumptions can be written as follows (Petre 2005): 
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The model (17) can be written in a compact matrix form as: 
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To obtain the on-line estimates 1̂  and 2̂  of 1  and 2  we 

will use a recursive least-square parameter estimator (Bastin 
and Dochain 1990; Petre 2005, 2008) that, using the 
submodel (18) and the notations from (19), is particularized 
as follows:  

)( KGTT ,    FD  00
 ,      (20) 

  ˆˆ
0

T
s

 ,  T , 0)0(  ,  

            (21) 

where T  is the regressor matrix,  is the gain matrix of the 
updating law (21), and 0  and  (forgetting factor) are 
design parameters at the user’s disposal to control the 
stability and the tracking properties of the estimator (Petre 
2005, 2008). In our case the regressor matrix is given by: 
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Finally, the full indirect adaptive controller is made up by 
combination of (13), (14) and (20)-(22) with the control law 
(10) rewritten as (23):  
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and is schematized in Fig. 1. 
 
3.3 A robust-adaptive control strategy 

Now, for the class of analysed bioprocesses, we consider a 
more realistic case when the influent concentration Sin is not 
measurable, but some lower and upper bounds, possible time-
varying, are given, and the reaction rates   and P  are 

highly uncertain and time varying, that is the kinetic 
coefficients max  and max  are two uncertain and time-

varying parameters, but some lower and upper bounds of 
them are known, and the state X is unmeasurable. The control 
objective is the same as it was formulated in Section 2.  
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

A robust interval observer 

Since Sin is unknown, to estimate the unmeasurable state X, 
we cannot use the state observer (13), (14). But, since we 
assumed that some lower and upper bounds of Sin are known, 
then, depending on these known bounds, we can estimate a 
lower and an upper bound of X by using an appropriately 
observer interval.  

The design of interval observers is based on properties of 
monotone dynamical systems or cooperative systems                
(Alcaraz-González et al. 2003; Rapaport and Dochain 2005; 
Smith 1995). Such systems have the property to keep the 
partial order between two trajectories depending on the 
bounds of the uncertainties in the model: if the (unknown) 
initial condition of the real system can be bounded between 
two known values, the trajectories of the same system 
starting from these bounds will enclose the real trajectory 
(Rapaport and Dochain 2005; Mazenc and Bernard 2011; 
Moisan and Bernard 2005;).  

In (Alcaraz-González et al. 2003), it is shown that starting 
from an asymptotic observer it is possible to construct an 
interval observer which is robust against the uncertainness of 
the inputs and nonlinearities of the system that is stable in the 
presence of time varying parameters in the dynamical 
matrices. Thus, an asymptotic observer can be achieved as 
follows (Alcaraz-González et al. 2003). The model (8) can be 
rewritten in the form: 

)()()())),(()( tbttAttKt  ,                       (24) 

with n  - state vector, m  - reaction rate vector, 
mnK   - yield matrix, nnA   expresses the linear 

dependence between the state variables and nb   contains 
all the model terms that are not a function of state. If we 
assume that nq   states are on-line measured, then the 

model (24) can be rewritten as (Alcaraz-González et al. 
2003): 

ADAPTIVE 
CONTROLLER

UNCERTAIN
PROCESS

STATE 
OBSERVER

REACTION 
RATES 

ESTIMATOR

S

Sin

Fin S*

P
_+

X̂  

X̂

1̂ 2̂

Fig. 1. The structure of the adaptive controlled system.
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                    (25) 

with 1  ( q1dim ) - measured variables and 2  ( 2dim ) 

sqn   unmeasured variables. Matrices K1, K2, A11, A12, 

A21, A22, b1 and b2 are the corresponding partitions of K, A 
and b respectively.  

The following hypotheses are introduced (Alcaraz-González 
et al. 2000, 2003): (H1) K, A and b are known, 0 t ; (H2) 

),( t  is fully unknown, 0 t ; (H3) 1Krank  

pKrank  , with nmp  . (H4) A(t) is bounded,  
  AtAA )( , 0 t , where A  and A are two constant 

matrices. Hypothesis (H2) allows the observer’s design so 
that it enables the reconstruction of the unmeasured states, 
whatever the uncertain or unknown kinetics is (Alcaraz-
González et al. 2000, 2003). This can be achieved by finding 
a suitable linear combination of the states given by 

)()( tNtw  , where nsN   and w is an auxiliary variable 

)(dim sw  , such that (Alcaraz-González et al. 2003): 

02211  KNKNKN .                 (26)  

Under hypotheses (H1)-(H4) the following system (Alcaraz-
González et al., 2000, 2003): 
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with 
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                   (28) 

where ][ 21 NNN   with N2 chosen as skIN 2 , 0k , is a 

real arbitrary parameter, and  1221 KKNN , is a reaction 

rates independent asymptotic observer for the model (24). 
The kinetic independence property of the observer (27)-(28) 
is guaranteed by (26). Note that the hypothesis (H4) is used 
to prove the stability of the asymptotic observer.  

The observer (27), (28) works only if the process input 
(vector b) is known (see (H1)). If some inputs are 
unmeasured, that is in (27) the vector b is unknown, then the 
asymptotic observer (27), (28) cannot be used. Therefore, 
based on the above described asymptotic observer, we 
present an interval observer for estimation of the unknown 
states able to handle the uncertainties in the input variables, 
model parameters, etc. For this purpose, the following 
supplementary hypotheses are introduced (Alcaraz-González 
et al. 2003; Rapaport and Dochain 2005): (H5) The input 
vector b is unknown but guaranteed bounds, possibly time 

varying, are given as   btbb )( ; (H6) The initial 

conditions of the state vector are unknown but guaranteed 

bounds are given as )0()0()0(   . Also, the 

hypothesis (H1) is modified as: (H1 ) The matrices K and A 
are known, 0 t . 

Remark 2. The operator ≤ applied between vectors or 
matrices must to be understood as a collection of inequalities 
between components (Alcaraz-González et al. 2003; 
Rapaport and Dochain 2005).                   

Under conditions (H5)-(H6), the idea is to design a set-valued 
observer in order to build guaranteed intervals for the 
unmeasured variables instead of estimating them precisely 
(Alcaraz-González et al. 2003; Rapaport and Dochain 2005). 
Interval observers work as a bundle of two observers: an 
upper observer, which produces an upper bound of the state 
vector, and a lower observer producing a lower bound, 
providing by this way a bounded interval in which the state 
vector is guaranteed to evolve (Alcaraz-González et al. 2003; 
Moisan and Bernard 2005); Rapaport and Dochain 2005). 

Under hypotheses (H1 )-(H6), a robust interval observer for 
the system (24) presented in (Alcaraz-González et al. 2003; 
Langowski and Brdys 2007) can be reformulated as: 
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            (29) 

where )(tW  and )(tZ  are given by (28), )(2 t  and )(2 t  

are upper and lower bounds of the estimated state )(2 t , 

]
~

[ 211 NNNM  , |][|
~

,11 ijNN  , and 
Tbbbbbtv ]2/)(2/)[()( 21111

  , 
Tbbbbbtv ]2/)(2/)[()( 21111

  ,  

with 
21 , bb  and 

21 , bb  the corresponding partitions of the 

known upper and lower bounds of the input vector b. 

If the matrix 1212222
1

2 AKKAWNNW 
   is cooperative 

then, under hypotheses (H1)-(H6), the pair ),(  SS  from 

(29) constitutes a stable robust interval observer generating 

trajectories  2  and  2  and it guarantees that    222 , 

0t  as soon as )0()0()0(    (Alcaraz-González 

et al. 2003; Langowski and Brdys 2007). 

In the case of the alcoholic fermentation bioprocess to 
estimate a lower and an upper bound of unmeasurable state X 
we use an asymptotic observer whose structure is achieved by 
particularization of the equations (27) and (28). So, we 

consider the state partition TPS ][1  , X 2 , that 

induces on the matrices K, A and b from (24) the following 
partitions: 
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If the matrix N2 is chosen as 02 N , then the matrix N 

takes the form:  1/][ ///21  SPSXSX YYYNNN  . 

The unmeasured state X can be obtained by using the 
asymptotic observer (27), (28) where W and Z are described 
by the following matrices: DtW )( , 0Z . It is obvious 

that if   DtDD )(0 , where D  and D  represent a 

lower and respectively an upper bound of D, then 
  WtWW )(  with )()( tWtW   when )()( tDtD  . 

It is straightforward to very that if SXY //1 , then 

 SXSP YYN // /1/11   and, by using the first equation 

from (27), we find that the dynamic of auxiliary variable 

 Ntw )(  takes the form: ininin SVFwVFtw )/(ˆ)/()(ˆ  . 

Then the unmeasurable variable 2̂  from (27) is given by 

 SPYwYX SPSX  )/1(ˆˆˆ
//2 . As a result, the achieved 

asymptotic observer is identically with the observer given by 
(13)-(14).  

Then a robust interval observer for the system (8), which 
estimates a lower and an upper bound of the unmeasurable 
state X, is defined by the following equations: 
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    (30) 

To develop a robust-adaptive controller, let’s assume that the 
dynamics of S in (2) can be rewritten as follows (Alcaraz-
Gonzalez et al. 2000, 2005): 

)())(),(),(())(),(),(()( 2121 tutpttgtpttftS          (33) 

where f and g are two scalar functions (usually nonlinear and 
possible time-varying) and the vector p contains all uncertain 
parameters (both the uncertain process inputs as well as the 
uncertain kinetic parameters), some of them possible time-

varying. Assume also that p is bounded as   ptpp )( . 

Then, if p is bounded and both the maximum bound and the 
minimum bound of 2  are known (by using the interval 

observer) it is possible to establish the maximum and the 
minimum values of f and g at each time (Alcaraz-Gonzalez et 
al. 2000, 2005). Under these assumptions, the following 
parameters can be defined (Alcaraz-Gonzalez et al. 2000): 
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Using the parameters defined in (34) and (35) we can 
formulate the following result.  

Theorem 1. If the functions f and g in (33) are so that the 
condition 0),,(/),,( 2121  pgpf  is fulfilled, then a 

control law of the form   

   )()()(/1 **
1

*** tfSSStgFin                (36) 

with 0,0*  tg , asymptotically stabilizes S towards *S . 

Proof. Let’s define the tracking system error as  

)()()( * tStStet   and consider the following candidate 

Lyapunov function: 2* ))()(()( tStStV   (see also (Alcaraz-

Gonzalez et al. 2000)). Using (36), its time derivative along 
the trajectory (33) takes the form: 

  







 )()((

)(

)(
)()()( **

1
*

*
** tfSSS

tg

tg
tfSSStV  . 

Using the definitions of *f  and *g  and the condition 

0/ gf , one can obtain that 0)()( 2*
1  SStV , 

01  . So S asymptotically converges towards *S . 

It must be noted that in the case of analysed alcoholic 
fermentation bioprocess, the functions f and g from (33)  are 
given by pSPSX XYXYf  )/1()/1()( //  and 

VSSg in /)()(  . Note also that in a normal operation of 

the bioreactor, the function 0,0)(  tg . 

4. SIMULATION RESULTS AND COMMENTS 

The performance of the designed adaptive and robust-
adaptive controllers by comparison to exactly linearizing 
controller (10) has been tested by performing extensive 
simulation experiments. For a proper comparison, the 
simulations were carried out by using the process model (1)-
(4) under identical conditions.  The values of the yield and of 
the kinetic coefficients are (Queinnec 1991; Petre 2005): 

10
max 54.0  h , lgKS /5 , lgKI /201 , 10

max 1.2  h , 

lgKS /9'  , lgKI /297'  , lgPm /70 , 5.1/ SXY , 

43.0/ SPY , lgSin /1600  , ]2,0[inF l/h, 

lVVV ]16,4[],[ max0  . 

Case 1. The behaviour of closed-loop system using indirect 
adaptive controller (23), by comparison to exactly linearizing 
control law (10) is presented in Fig. 3 - the time evolution of 
the controlled variable S, and Fig. 4 - the control input Fin. In 
this case the influent concentration Sin is time varying as it is 
shown in Fig. 2, but it is assumed measurable, and the kinetic 
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1 – Exactly linearizing control 
2 – Adaptive control 

coefficients max  and max  are two time varying parameters 

upon some sinusoidal patterns as: 

))2/sin(2.01()( 0
maxmax tt  ,               (37) 

))3/cos(2.01()( 0
maxmax tt  .               (38) 

 
  
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2. Time evolution of Sin and of its bounds.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3. Time evolution of output S.  
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Fig. 4. Profile of control input Fin. 

From Fig. 3 and Fig. 4 it can be observed that the substrate 

concentration S tracks the reference profile *S , and the 
control inputs Fin is kept in the physical limits required by the 
process. The gain of control laws (10) and (23) is 1 2.5, 

and the tuning parameters of adaptive controller have been 
set to the values:  = 100,  21 1.5, 45.0 . 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5. Time evolution of estimate of unknown variable X.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6. Profile of estimates of unknown parameters 1 and 2. 

The time evolution of the estimate of unmeasured variable X 
provided by the asymptotic observer (13)-(14) is presented in 
Fig. 5, and the time evolution of estimates of unknown 
specific reaction rates 1  and 2  provided by the recursive 

least-square parameter (20)-(22) is presented in Fig. 6. From 
this figures, it can be noticed a good behaviour of both state 
observer and of parameter estimator. 

From graphics in Figs. 3-6 it can be seen that the behaviour 
of overall system with adaptive controller (23), as we 
expected, is good, despite the high variation of Sin and time 
variation of process parameters, being very close to the 
behaviour of closed loop system in the ideal case obtained 
using the linearizing controller (10) when the process model 
is completely known.  

Case 2. Now we analyse the behaviour of closed-loop system 
using an adequately structure of robust-adaptive controller 
(34)-(36). The system’s behaviour is analysed assuming that 
the influent concentration Sin is not measurable but some 

lower and upper bounds, denoted by 
inS  and 

inS , 

respectively, as in Fig. 2, are given, and that the kinetic 
coefficients max  and maxv  are two uncertain and time-

varying parameters, but some lower and upper bounds of 
them, possible time-varying, are known i.e. 

  maxmaxmax )(t  and   maxmaxmax )(t .  In our 
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analysis we assume that the time-variations of max  and maxv  

are given by (37) and (38), respectively, that is 

]2.1,8.0[],[ 0
max

0
maxmaxmaxmax   , and 

]2.1,8.0[],[ 0
max

0
maxmaxmaxmax   . 

The control objective is the same as in the previous case, i.e. 

to maintain the output S at a desired value *S  despite 
the unknown and variation of Sin as well as the time variation 
of some process parameters. 

 
 
 
 
 
 
 
 
 
 
 
 
 

In the control law (36) the definitions of the functions *f  

and *g  are particularized as follows: 
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with  

  ))//(/1 2
max ISm KSSKSPP    and  

)//( 2
max ISP KSSKS   ,                  (42) 

and X  and X  corresponding to 
inS  and 

inS , 

respectively. 

A block diagram of the proposed robust-adaptive system is 
shown in Fig. 7.  

The behaviour of closed-loop system using robust-adaptive 
controller (36), (40)-(42) by comparison to the exactly 
linearizing law (10) is presented in Fig. 8 and in Fig. 9.  

The graphics shown in Fig. 8 correspond to the controlled 
output S, and graphics in Fig. 9 correspond to the control 
input Fin.  

The time evolution of the estimates of the lower and upper 
bounds of the unmeasured variable X is presented in Fig. 10.  

The estimated values X̂  and X̂  are obtained by using the 
interval observer (29), where the input vector v contains the 

known bounds 
inS  and 

inS , respectively. The initial 

conditions of these states are unknown but some guaranteed 
lower and upper bounds are assumed known as 

5.2)0()0()0(5.0   XXX (g/l). The gain of control 

law (36) has been set to the same value as in the first two 
cases, i.e. 1 2.5.  

 

 

 
 
 
 
 
 
 
 
 
 
 
Fig. 8. Time evolution of controlled output S. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 9. Profile of control input Fin. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 10. Profile of estimates of upper and lower bounds of 
unknown variables X. 

The time evolution of the uncertain but bounded time varying 
parameters  and Pv  as well as of their bounds given in (42) 

is shown in Fig. 11. 

From graphics in Fig. 8 it can be seen that the behaviour of 
overall system with robust-adaptive controller (36), (40)-(42), 
even if this controller uses much less a priori information, is 
good, being close to the behaviour of closed loop system with 
adaptive controller (32) as well as to the behaviour of closed 
loop system in the ideal case obtained using the linearizing 
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controller (21) when the process model is completely known. 
The controller is able to maintain the controlled output S 

close to its desired value *S , despite the unknown high 
variation of the unmeasurable concentration of Sin and time 
variation of the uncertain process parameters max  and maxv , 

respectively  and Pv . Also, as in the first case, the control 

input *
inF  is kept in the physical limits required by the 

process. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 11. The time evolution of parameters   and P . 

7. CONCLUSION 

In this paper some adaptive and robust-adaptive control 
strategies for a class of fed-batch fermentation processes 
were designed and analysed. The designed algorithms were 
applied to a particular alcoholic fermentation process and the 
effectiveness of the designed algorithms was validated by 
numerical simulations. Since the proposed control strategies 
involve an unmeasurable process state, this must has to be 
estimated based on the known measurements by using 
appropriately state estimators. Therefore, in the paper, an 
asymptotic observer and a robust interval observer for the 
analysed class of fed-batch bioprocesses were presented.  

The adaptive control structure was achieved by combining a 
linearizing control law with an asymptotic observer and a 
parameter estimator used for on-line estimation of the 
bioprocess unknown kinetics. This control structure was 
developed under the assumption that the specific reaction 
rates were completely unknown, but the influent substrate 
concentration was measurable. As we expected the obtained 
results were very good.   

The robust-adaptive control structure was developed under 
the assumption that the reaction rates are highly uncertain and 
time-varying and the influent substrate concentration is 
completely unknown, but some lower and upper bounds both 
of influent substrate concentration and of reaction rates 
uncertainties are known. This control structure was achieved 
by combining a linearizing control law with an interval 
observer able to estimates a lower and an upper bound of 
unmeasurable state. Also, in the proposed control strategy the 
uncertain process parameters are replaced by their lower and 
upper bounds assumed known. From the obtained results one 
concludes that this approach can handle time-varying 
uncertainties simultaneously on the kinetic and on the feed 
concentrations. 
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