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 Abstract: Model Based Predictive Control (MBPC) is a class of computer algorithms that 
explicitly use a process model to predict future plant outputs and compute an appropriate 
control action through on-line optimization of a cost objective function over a future 
horizon, subject to various constraints. This paper presents an MBPC type algorithm 
applied to nonlinear processes. The basic idea of the algorithm is the on-line simulation of 
the future behavior of the control system, by using a few candidate control sequences. Then, 
using rule based control these simulations are used to obtain the ‘optimal’ control signal. 
The efficiency and applicability of the proposed algorithm for nonlinear processes are 
demonstrated through applications. 
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 1. INTRODUCTION 
 
The analyses and design of control systems are 
most of time based on linear systems. There are 
two reasons for this approach. First of all, there 
are relatively simple closed analytical solutions 
to many control problems like including LQR 
and pole-placement controller design, Kalman-
filtering, model parameter and structure 
estimation, etc.  On the other hand, practical 
applications are also based on linear or 
linearized models in most cases and handle 
nonlinearities only when it is absolutely 
unavoidable [1]. 
 

A common approach of controlling process 
systems with strong nonlinear character is to 
apply model-based predictive controllers where 
a detailed dynamic process model is used in an 
optimization framework. The popularity of 
model-based predictive control is partially 
explained by the fact that it uses traditional 
dynamic process models which are usually 
available for design and/or simulation purposes. 
At the same time, model-based predictive 
control is being criticized by control engineers 
because of its lack or weakness of theoretical 
background, having no guarantee of 
convergence, stability, robustness, etc. in the 
general case [1], [2]. 
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For optimization purpose, the cost function is 
defined by using the output prediction error 
relative to the system setpoint and the weighted 
control signal: 

( ) ( )[ ] ( ) ( )[ ]2

1

2
21 1),(

2

1

−+∆++−+= ∑∑
==

jtujjtyjtyNNJ
uN

j

N

Nj
r ρ

 (1) 

where y[.] is the predicted values of output 
signal, yr[.] is  the future setpoint, u[.] is the 
future control signal, N1 is  the minimum 
predicted horizon, N2 is the maximum predicted 
horizon, Nu is the command horizon, ?(j) is a 
control-weighting sequence. 
 
The purpose of the controller is typically to 
force the output to follow the reference signal. If 
reference is a constant, the problem is 
commonly referred to as set-point regulation. 
When the reference is time varying (but is 
known in advance), defining a control law to 
force the output to follow the reference signal is 
called the positioning control. The remainder of 
this paper is organized as follows. In sections II 
and III are reviewed the proposed algorithm in 
two cases: set-point regulation and positioning 
control. Five nonlinear plants are presented as 
case studies in section IV. 
 
 
2. SET-POINT REGULATION 
ALGORITHM (MBPC-A1) 
 
In [3] it was proposed an algorithm (MBPC-A1) 
designed for set-point regulation problem (but 
set-point can be arbitrary changed). The main 
idea of the algorithm is to compute for every 
sample period: 

- the predictions of output over a finite 
horizon (N); 

- the cost of the objective function (1), for all 
(theoretically case) or a few (practically case) 
possible control sequences: 
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and than to choose the first element of the 
optimal control sequence. For a first look, the 
advantages of the proposed algorithm include 
the following: 
  - the minimum of objective function is global; 
  - this algorithm can be applied to nonlinear 
processes; 
  - the constraints can easily be implemented. 
 
The drawback of this scheme is a very long 
computational time, because there are possible a 

lot of sequences. Therefore, the number of 
sequences must be reduced. For a first stage, 
there were proposed [3] the next four control 
sequences:  
 

( ) { }minminmin1 ,..,, uuutu =  
( ) { }minminmax2 ,..,, uuutu =  

          ( ) { }maxmaxmin3 ,..,, uuutu =             (3) 
( ) { }maxmaxmax4 ,..,, uuutu =  

 
where umin and umax are the limits of the control 
signal. 
 
Using these sequences results four output 
sequences y1(t), y2(t), y3(t), y4(t). The control 
signal is computed using a set of rules based on 
the extreme values ymax0, ymax1, ymin0, ymin1 (fig. 1- 
d is dead time, t1=N) of the output predictions. 
In the followings, considering processes with 
positive sign, it can be put in evidence four 
usual cases: 
 
Case 1:   If  ymax0<yr (corresponding to u1(t) 
sequence)  and  ymax1>yr (corresponding to u2(t) 
sequence)  Then:         
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Case 2:   If  ymin0<yr (corresponding to u3(t) 
sequence)  and  ymin1>yr (corresponding to u4(t) 
sequence)   Then: 
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Case 3:   If:  ymax0>yr  (corresponding to u1(t) 
sequence) 
 
Then              u(t0)=umin                                    (6) 
 
Case 4:   If: ymax1<yr   (corresponding to u2(t) 
sequence)   
 
Then             u(t0)=umax                                    (7) 
 
In fig. 1, every output prediction curve is 
marked with a number which corresponds to the 
number of control sequence from relations (3). 
Analogous to case 3 and case 4, there are two 
similarly cases if dy/dt<0 for t<t0.  
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Fig. 1. Examples of output predictions 
 
If the algorithm uses only these 6 rules, the 
variance of u(t) will be large [3]. So, for the 
second stage, depended by behaviour of the 
control system, are used next methods: 
- an algorithm that modifies the limits of 

control signal: 
-  

          umin = uminst(t) = u(t) = umaxst(t) = umax                          
          ? umin= ? u= ? umax                     (8) 

 
In relations (3).. (7), the values of umax, umin are 
replaced with uminst(t), uminst(t);   
- using  the “variable set-point“ [3]: 
-  

           yr1(t)=yr(t)+k ref[y(t)-yr(t)]                        (9) 
 
where kref is a weight factor. The algorithm will 
try to reduce only a part of error; 
 - using a filter to compute control signal. 
 
This algorithm was applied with good results, 
both for linear processes [3], and for nonlinear 
processes (heat exchangers, inverse pendulum 
on a cart) [4], [5]. 
 
 
3. POSITIONING CONTROL 
ALGORITHM (MBPC-A2) 
  
For positioning control, it is used a specific 
algorithm. In this case, the rules (4)…(7) can not 
be applied directly. In fig. 2, are represented the 
evolutions of errors ei(t)i=1...4, versus sample 
time. Every output prediction curve is marked 
with a number which correspond to the number 
of control sequence from relations (3).  

Notations: t0 is current time, N is the horizon of 
output, d is a parameter which is used for a fine-
tuning (first, it is more simple to consider d=0).  
 
It is used next five rules: 
Case 1: The sequence u3(t) leads to: 

( ){ }teminmin
Ntdt

3
0

0
<<+

=
,  δ>0min        (10) 

 
In this case u(t)=uminst(t). 
Case 2: The sequence u2(t) leads to: 

( ){ }temaxmax
Ntdt

2
0

1
<<+

=
,  δ−<1max     (11) 

 
In this case u(t)=umaxst(t). 
Case 3: The sequence u4(t) leads to: 
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and: e4(t0+d+1)>0. In this case u(t)=umaxst(t). 
Case 4:  The sequence u1(t) leads to: 

           
( ){ }temaxmax

Ntdt
1

0
0

<<+
=

,    δ>0max        (13) 
 
and: e1(t0+d+1)<0. In this case u(t)=uminst(t). 
 

 
 

Fig. 2. Output predictions (Cases 1..4) 
 
Case 5: In majority of the other situations, the 
predictions (for u2 and u3 sequences) are 
obtained like in fig.3. In this case it is used a 
linear relation: 
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Fig. 3. Output predictions (Case 5) 
 
If the algorithm uses only these 5 rules, the 
variance of  u(t) will be large. There are some 
solutions to reduce this variation. One of them is 
to use an algorithm that modifies the limits of 
control signal based on relations (8). As a result, 
the difference between umaxst and uminst decreases. 
On the other hand, in some cases, it is necessary 
to limit or to increases this difference.  A good 
behaviour of the control algorithm leads to a 
prevalence of case 5.  
 
4. APPLICATIONS  
 
There are some well-known nonlinear control 
system design techniques: Lyapunov control 
design, input-output linearizing control design, 
input-state linearizing control design and 
integrator backstepping control design. 
 
In [6], [9] are presented some examples where 
these methods failed and it's proposed a hybrid 
method as an alternative nonlinear control 
system design method.  
 
The algorithms presented in previous sections 
can not be directly applied to nonlinear 
processes. For example, in the case of the 
inverted pendulum on a cart [5], it is necessary 
to use a supplementary rule  which approximates 
the sign of the process.  
 
In the following will be used the examples from 
[6] for testing the algorithms presented in 
previous sections. There will be denoted with 
(P) – the case of MBPC algorithm and with (H) 
– the case of the hybrid algorithm. 
 
Example 1 
 
Consider the system: 
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Using an accurate model, the results obtained by 
two methods are similar. Though, due to the fact 
that (P) actions in first place on the state x1 (the 
output y), the results obtained for the output 
signal are better. In fig. 4 at step 45 it is noticed 
the four predictions of the output signal. 
 
Also, some tests of robustness were realized. In 
the first test (fig. 5) the control signal u(t) is 
replaced in equations (15) with 0.5·u(t), in the 
second test (fig. 6) with 2·u(t). 
 
In the first test, (H) becomes unstable, while (P) 
succeeds to stabilize the system.  
 
In the second test both algorithms succeed to 
stabilize the system. The dominant nonlinearity 

is the quadratic term 
2
2x  in the second state 

equation. Let us consider this equation under the 

form uxaxx +⋅+= 2
212& . For a=2.1 (H) is still 

stable (fig. 7) but for a=2.2 (H) becomes 
unstable. (P) succeeds to stabilize the system 
even for a=3 with the condition of increasing the 
limits of the control signals (umax=4, umin=-4). 
 

 
 

Fig. 4. Example 1. Accurate model. 
 

 
 

Fig. 5.  Example 1. Robustness test 1. 
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Fig. 6. Example 1. Robustness test 2. 

 

 
 

Fig. 7. Example 1. Robustness test 3. 
 
In fig. 8 it is presented the behaviour of (P) in 
the case of the positioning system. The output y 
(state x1) follows a trapeze reference. 
 

 
 

Fig. 8. Example 1. Positioning case. 
 
Example 2 
 
Consider the system: 
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Fig. 9. Example 2. Accurate model. 

 
If the model is accurate, the output reply is 
better in the case (P), but the variance of the 
control signal and the variance of the state x2 
increases (fig. 9). For testing the robustness it is 

modified the equation 2 thus uaxxx ⋅++= 2
212& . 

For a=0.8 (H) becomes unstable while (P) has a 
good behaviour (fig. 10). 
 

 
Fig. 10. Example 2. Robustness test 1. 

 
To observing the effect of noise it is considered 
the measured value of the output signal under 
the form: ( )( )255000101 −⋅+= random.xy . It is 
noticed that for (P) the output signal it follows 
much better the reference (fig. 11), with a larger 
variation of state x2. 
 

 
Fig. 11. Example 2. Noise test. 
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In fig. 12 it is presented the behaviour of (P) in 
the case of the positioning system. The output 
y=x1 follows a trapeze reference. It is noticed 
that for yr(t)>0.25 the setpoint can not be 

followed because equation 0112
2
2 =−++ xxxx &  

does not have a real solution if 25.011 >− xx & . 
 
Example 3 
Consider the system: 
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                           (17) 
 
In the case of the predictive algorithm, for 
examples 3, 4, 5, it is necessary the introduction 
of new control sequences or/and some 
supplementary rules. The reason is the fact that 
system may change its sign. Possible solutions: 
 

 
 

Fig. 12. Example 2. Positioning case. 
 
 - approximation of the actual sign of the 
system; if the sign is negative, it is necessary to 
use supplementary rules but similar to the rules 
defined for positive sign [5]. 
 - usage of some supplementary sequences [7]:  
 

( ) { }minminmin5 ,..,, ukukuktu ⋅⋅⋅=  
( ) { }0..,,0,06 =tu                                           (18) 

 ( ) { }maxmaxmax7 ,..,, ukukuktu ⋅⋅⋅=  
 
where k  <1 is a parameter of the control 
algorithm. 
 
In the case of usage of accurate model (fig. 13), 
the reply is more rapid in case of (P). In figure 
are represented also the form of predictions to 
the sampling steps 1, 5, 20, 100, 120. Used 
notations:   (a) correspond to the sequences u3 
and u4, (b) correspond to the sequences u1 and 
u2, (c), (d), (e) correspond to the sequences u5, 
u6, u7, (a1) and (b1) correspond to the sequences 
u3,u1 respectively u4 ,u2. It was used k=0.2.  

Comparatively with examples 1 and 2 it was 
produced supplementary rules that permits the 
choosing of the most rapid way to the reference. 
For example, for sampling steps 1 and 5 it is 
chosen u(t)=uminst but for the sampling step 20 it 
is chosen u(t)=0. 
   

 
 

Fig. 13. Example 3. Accurate model. 
 

 
 

Fig. 14. Example 3. Robustness test. 
 

For the study of robustness, the equation ux =2&  

was replaced by ux ⋅= 22&  
respectively ux ⋅= 5.02& . In both cases, the hybrid 
system is very small affected. The predictive 
algorithm is very small affected in the first case 
but in the second case appear dumping 
oscillations.  
 
Let us consider now the first equation under the 

form ( )21 5.0sin xx ⋅=& . It can be noticed the 
sensible increasing of the response time and, in 
case of MBPC algorithm a certain trend of 
oscillation of the control signal in the moment in 
which the error tends to zero (fig. 14). 
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Another test was realized modifying the initial 
state. For x1(0)=15 the hybrid system diverges; 
the predictive algorithm having a good 
behaviour.  
 
In fig. 15 it is presented the behaviour way for 
(P) in the case of a positioning system. The 
output y (state x1) follows a trapeze reference. 

 
 

Fig. 15. Example 3. Positioning case. 
 
Example 4 
 
Consider the system: 
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                 (19) 
The behavior of the two algorithms is similar 
(fig. 16). In the case of (P) algorithm, using of 
the relations (8) hasn’t lead to favorable 
behavior. 
 

 
 

Fig. 16. Example 4 
 
Example 5 
 
Simplified dynamics of the ball-on-beam 
problem are modeled by the following fourth 
order system: 
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As it can be seen (fig. 17), the system (P) has a 
faster response comparatively with the system 
(H). Let us consider now the forth equation 

under the form ux ⋅= 5.14& .  

 
 

Fig. 17. Example 5 
 

In this case, (P) has a better behavior, (H) being 
unstable. If  ux ⋅= 5.04&  then the system (H) has 
a good behavior, meanwhile, in case of system 
(P), for obtaining a good behavior, the k 
parameter from relations (18) had to be 
increased. 
 
5. CONCLUSIONS 
 
The paper presents a simple and intuitive 
algorithm applied in the case of some nonlinear 
process. Using the process model and a reduce 
number of the sequences control, it’s simulated 
the future behavior of the process and based on a 
set of rules it is chosen the signal control 
considered optimum at the actual moment. Of 
course there are some difficulties such as the 
proof of the stability, the way of choosing of the 
control sequences and the set of rules which will 
lead to a better result, choosing some parameters 
etc. Although, taking into account the simplicity 
of this algorithm the obtained results in the case 
of the presented examples by nonlinear systems 
are remarkable. A demo application that 
implements the proposed algorithm can be 
downloaded from reference [8]. 
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