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Abstract: In this paper, we consider the controller synthesis for continuous flow systems. These lasts are 
a sub-class of hybrid dynamic systems. Their main characteristics are positiveness and linearity. 
Transport, manufacturing, communication and biological systems are examples of continuous flow 
systems. Numerous tools and techniques exist in the literature for modelling and analyzing such systems. 
As positiveness is a hard constraint, an appropriate tool integrating naturally this constraint is strongly 
needed. Hybrid Petri Nets are an elegant modeling tool of positive systems, while Hybrid Automata are a 
powerful tool giving formally the reachable dynamic space. Combining these two tools aim to a sound 
approach for control synthesis of continuous flow systems. We start by considering the process to control 
and compute its reachable state space using specialized software like PHAVer. Algebraic inequalities 
define this reachable state space. The constrained  behaviour is obtained by restricting this state space 
into a smaller desired space. This reduction is expressed in term of linear constraints only over the 
continuous variables; while the control is given by the discrete transitions (occurrence dates of 
controllable events). The controller synthesis methodology is based on the control of a hybrid system 
modelled by a D-elementary hybrid Petri Net. The control consists in modifying the guard of the 
controllable transitions so as the reachable controlled state space is maximally permissive. 

Keywords: Hybrid Petri Nets, Hybrid Automata, controller synthesis. 

1. INTRODUCTION 

Modelling and control of physical systems are crucial issues. 
In this work we are interested in a particular class of systems, 
such as transport, manufacturing, communication and 
biological systems. These systems have in common that they 
are positive dynamic systems, i.e., the state variables are 
positive. Often continuous and discrete event dynamics 
interact in these systems, so they can be considered as 
positive hybrid dynamic systems. This class of systems 
requires for their description, the use of continuous time 
models like differential equations, and discrete event models 
like finite state automata or Petri nets (PNs). In general, the 
state of a hybrid system is given by the discrete mode and the 
values of the continuous variables. This state may change 
either continuously, according to a differential equation or 
discretely by an instantaneous change of the discrete control 
mode. 

The concept of controller synthesis, considered here, has for 
origin the work of (Ramadge and Wonham, 1989). The latter 
have introduced controller synthesis for discrete event 
systems. The process is a discrete event system described by 
a finite state automaton. The constraints imposed on its 
behaviour are modelled by any regular language. Both 
models (process and constraints) allow synthesizing a 
controller whose role is to prohibit some controllable events 
in order to always satisfy the specifications. The theory of 

(Ramadge and Wonham, 1989) has been extended in several 
directions; one of the major extensions of this theory is the 
controller synthesis for timed systems. In this case the 
process model considers time in an explicit manner. Time can 
either be discretized, in this case the process and its 
supervisor are modelled by finite state machines equipped 
with a discrete clock (Brandin and Wonham, 1997); or dense, 
and in this case the process and its supervisor are modelled 
by timed automata (Alur and Dill, 1994). Several research 
studies have been devoted to the controller synthesis of timed 
systems (Altisen and Tripakis, 1999; Asarin and Maler, 1997; 
Asarin et al., 1998). The controller synthesis theory is well 
established for discrete event systems and timed systems. 
However, it has not yet an explicit solution for hybrid 
systems, although some studies have been devoted to this 
field (Wong-Toi, 1997).The difficulty of analysis, in general, 
and of controller synthesis, in particular, of hybrid systems, is 
due to the fact that restrictions are needed on the dynamics in 
order to have an algebraic characterization of the reachable 
state space. Another difficulty comes from the fact that the 
computation is not decidable in the general case. 

Our aim is to develop a controller synthesis technique for 
hybrid dynamic systems modelled by a D-elementary Hybrid 
Petri Nets (HPNs). It is a formal tool with large description 
capacities and is well appropriate for positive hybrid systems 
modelling. Its dynamic analysis and performance calculation 
have been studied in (Ghomri and Alla, 2007). The 
continuous part of a D-elementary HPN evolves in a 
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piecewise linear manner, according to differential equations 
of the form: ẋ = k, where k is constant. This continuous part 
is controlled by the discrete part which evolves in an 
independent manner (i.e. the discrete part evolution is 
completely independent from the continuous part evolution). 
Because of the strong interaction between the discrete and the 
continuous parts and the lack of analysis tools (software) for 
D-elementary HPNs, we have proposed to translate it into a 
linear hybrid automaton, which has a great analysis power. In 
this way, we associate the modelling power of HPNs to the 
analysis power of hybrid automata. This paper is focused on 
the control synthesis, for more details on HPNs and hybrid 
automata the reader may refer to the basic papers (David and 
Alla, 2010; Alur et al., 1995). 

The rest of the paper is organized as follows: Section 2 gives 
an intuitive presentation of the ideas developed in this paper. 
Section 3 will be devoted to modelling tools; namely: D-
elementary HPNs and hybrid automata, as well as their use in 
the process description. Section 4 corresponds to the main 
contribution on this paper; it is divided into two parts. In the 
first part we will show how to model specifications imposed 
on the system, and in the second part we will explain the 
proposed approach to solve the control problem. The problem 
is formally solved for a location and some directions are 
given for the synthesis of the whole controller. Finally a 
conclusion and some perspectives will be given in Section 5. 

2. INTUITIVE PRESENTATION 

For the control approach that we propose here we start by 
considering a system whose abstraction is a hybrid dynamic 
system, and we want to restrict its continuous dynamics by 
acting on the discrete variables. These dynamics are 
expressed in term of constraints (also called specifications) 
over the continuous variables. Restricting the reachable state 
space needs variables such that the control of these variables 
will prohibit the state space to reach any undesirable value. 

We set here the fundamental hypothesis: 1) the control points 
are the discrete variables, more precisely the occurrence dates 
of controllable events, and 2) there is no control in the 
continuous part. The controller synthesis will take advantage 
on the coupling between the discrete and continuous 
dynamics. This is illustrated in the following example. 

Example: Consider a producer consumer system composed 
of a machine that supplies a buffer with a production rate of 
20 parts/mn (Figure 1.a). The buffer is used to satisfy a 
demand of 13 parts/mn. Stop or start the machine is effective 
after a delay of 2 mns. Initially the buffer contains 50 parts. 
Figure 1.b shows the D-elementary hybrid PN modelling this 
system. The discrete part is represented by simple lines and 
the continuous part by double lines. Transitions T3 and T4 
represent respectively the discrete events stop and start of the 
machine. The main advantage of this modelling tool is to 
show explicitly the physical elements of the process. For 
example the buffer is only modelled by place P1 while, as we 
will see, in the automaton model, this information will be less 
explicit. 

          

Fig. 1.a. A producer consumer system; b. The D-elementary 
hybrid PN model of the producer consumer system. 

In this example, it is obvious that the number of parts in the 
buffer can be infinite, i.e. the firing of T3 is infinitely delayed. 
Let us suppose that we want to impose to the buffer level to 
never exceed 100 parts (specification). In order to control the 
buffer level we must act on the stop date of the machine. 
Even for this simple case it is difficult to calculate the firing 
instants of the discrete transitions so that the specification 
given above is always verified, for any location. The 
specification presented in this example comes to limit the 
state space reached by the continuous variable. The 
translation of a D-elementary HPN in linear hybrid automata 
allows calculating the reachable space using specialized 
software like PHAVer (Figure 2.a). In this paper our control 
objective is to determine formally the new guards of discrete 
transitions, so that specifications are met. This control must 
be maximally permissive as we will show in the sequel; This 
is indicated in the unfolded hybrid automaton in Figure 2.b. 

Our control synthesis approach is based on the following 
three steps: 

Modelling the system without constraints by a  
D-elementary HPN; 

Translating the D-elementary HPN in a linear hybrid 
automaton; 

Modelling the specifications and computing the new 
transitions guards that ensure the specifications compliance; 

These three steps are summarized in Figure 3 below. Each 
block in this Figure corresponds to a step. The two first steps 
correspond to previous results and the contribution of this 
paper corresponds to the third step.  

3. MODELING OF POSITIVE HYBRID DYNAMIC 
SYSTEMS 

This section corresponds to the two first steps of our 
approach, i.e. blocks 1 and 2 in Figure 3. As previously 
mentioned, we are interested here with positive hybrid 
dynamic systems. We use D-elementary HPNs for modelling 
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these systems. Not only this formalism inherits all the 
advantages of classical PNs, but also it is well suitable for the 
class of systems considered here. 

The continuous dynamics are linear in the sense of the linear 
hybrid automata. HPN is a generic name for a set of 
formalisms used for modelling hybrid systems. This set has 
in common the integration of a discrete PN and a continuous 
PN. D-elementary HPN is a specific HPN which integrates a 
T-time PN that controls a constant speed continuous PN. 

        

Fig. 2. Hybrid automaton modelling the producer consumer 
system; a) before control; b) After control. 

         

Fig. 3. Controller synthesis approach.  

We have supposed that all the discrete transitions are 
associated with controllable events, and the continuous part is 
uncontrollable. This represents the current cases met in real 
life systems, however taking into account uncontrollable 
events in the discrete part is a direct extension of the 
proposed approach and constitutes a future research direction.  
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Definition 1 (D-elementary hybrid Petri nets):  

A D-elementary HPN is a structure PN = (P, T, h, E, Σ, Pre, 
Post, U, V, m0) such that: 

1. P = {P1, P2, …,Pn} is a finite set of n places;  
P = PC ∪ PD, such that PC = {P1, P2, …, Pnc} is the set 
of nC continuous places, and PD = {PnC+1, Pnc+2, …, Pn} 
is the set of discrete places. 

2. T = {T1, T2, …, Tm} is a finite set of m transitions; 
T = TC ∪ TD, such that TC = {T1, T2, …, Tmc} is the set of 
mC continuous transitions, and TD = {Tmc+1, 
TmC + 2, …, Tm} is the set of discrete transitions. 

3. h: P∪T→{C, D} defines the set of continuous nodes, 
(h(x) = C) and discrete nodes, (h(x) = D). 

4. E is a set of events;  

5. Σ: TD → E is a function that associates to each discrete 
transition an event from E; 

6. Pre: P x T → N and Post: P x T → N are the backward 
and forward incidence mappings. These mappings are 
such that: 

∀(Pi, Tj) ∈ PCxTD, Pre(Pi, Tj) = Post(Pi, Tj) = 0    (1) 

∀(Pi, Tj) ∈ PDxTC, Pre(Pi, Tj) = Post(Pi, Tj)          (2) 

7. U: E → R+ x (R +∪{∞}) associates to each 
event ej its firing interval [αj, βj]. 

8. V: TC → R+ associates a maximal firing speed Vj to each 
C-transition Tj. 

9. m0 =          is the initial marking vector; it is the 
concatenation of m0C, the real-valued continuous 
palaces initial marking, and m0D the natural-valued 
discrete places initial marking. 

The condition (1) of point 6, in the above definition means 
that no arcs connect continuous places to discrete transitions. 
Physically, that means that the continuous dynamics has no 
influence on the discrete dynamics. This last has a fully 
independent behaviour. The condition (2) in the same point 
means and if an arc connects a discrete Place Pi to a 
continuous transition Tj, the arc connecting Tj to Pi must 
exist. This appears graphically as loops connecting discrete 
places to continuous transitions. Physically this means that 
the discrete dynamics controls the evolution of the 
continuous dynamics. In a D-elementary hybrid Petri net, 
there is no transformation of tokens, neither from the 
continuous state to the discrete state, nor in the other sense. 

A HPN combines a discrete and a continuous PN, its state at 
time θ is given by the state of the two models. This strong 
coupling makes it hard to analyse the hybrid model. The 
translation of HPNs in hybrid automata allows using formal 
tools developed for the latter; and it is possible thereby to 
combine the description power of HPNs to the analysis 
power of hybrid automata. 

Hybrid automata were introduced by (Alur et al., 1995). They 
are the most general formalism to model hybrid dynamic 
systems, in the sense that they can model the largest range of 
this class of systems. They combine: differential equations, 
which are the basic description model of continuous dynamic 
systems, and finite state automata that represent the basic 
model for describing discrete event systems. This is why the 
hybrid automata are the most used formalism in model-
checking and controller synthesis algorithms for hybrid 
dynamic systems. 

To be able to take advantage both from of HPNs and hybrid 
automata, a translation approach was developed in (Ghomri 
and Alla, 2007). This approach allows translating D-
elementary HPNs into hybrid automata. The translation 
approach has been proven formally in (Ghomri and Alla, 
2013). It is presented in appendix A.  

The translation of D-elementary HPN in figure 1.b gives the 
hybrid automaton of figure 4, that we label elementary hybrid 
automaton in this paper. It has particular properties, as 
detailed in the following definition. For a general definition 
of a linear hybrid automaton, the reader may refer to 
(Henzinger, 1996). 

     
Fig. 4. Hybrid automaton resulting from the translation of the 
D-elementary HPN in figure 1.b. 

Definition 2 (Elementary hybrid automata): An 
elementary hybrid automaton A = (Loc, X, E, δ, F, Inv) such 
that: 

1. Loc = {q1, q2, …} is a finite set of locations; 

2. X =  X X   is the continuous state space. It is composed 

of two vectors: XC = (m1, m2, …,mnc)T is the vector of 
nc real-valued variables modelling the continuous 
places marking; and XD = {t1, t2, …, tk} is the vector of 
clocks corresponding to enabled transitions. A valuation 
v is a function that assigns a real-valued v(x) ∈ R n to 
each variable x ∈ X. 

3. E is a set of events;  

 

  ̇ = 7   ̇ = 1 q1   
  True 
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4. δ is a finite set of transitions, each transition is a 
quintuple T = (q, a, g, γ, q’) such that: 

§ q ∈ Loc is the source location; 

§ a ∈ E is the event associated to the firing of T; 

§ g is the transition guard, it is a linear predicate on X; 
a transition can be fired whenever its guard is 
satisfied.  

§ Init is a reset function that affects a linear expression 
to variables of X when taking the corresponding 
transition; 

§ q’∈ Loc is the target location; 

5. F is a function that assigns to each location a continuous 
linear vector field on X. While in discrete location q, the 
continuous variables mi∈ mC evolve according to a 
differential equation of the form m ̇ = B , where Bi is a 
the dynamic balance of the continuous place Pi. and the 
clocks tj∈ TD evolves according to the differential 
equation t  ̇ = 1. 

6. Inv is a function that affects to each location q, a linear 
predicate Inv(q) that must be satisfied by the continuous 
variables in order to stay in the location q. 

A state of a HA is a pair (q, v) consisting of a location q and a 
valuation of continuous variables v. This state can evolve in 
two manners: either continuously; in this case the continuous 
variables evolves according to the vector field and the 
discrete location remains unchanged; or discretely by firing a 
discrete transition. Several problems, related to analysis of 
HA properties, could be expressed as a reachability problem. 
Note that this problem is generally undecidable unless 
restrictions are added to the basic model, to obtain special 
sub-classes of HA (Henzinger et al., 1995).  Our models are 
often well formed and the translation algorithm always 
terminates.  A future research will consist in characterizing 
formally the sub class of HPNs such that the translation 
algorithm terminates always. It is an interesting modelling 
problem which must be solved. 

Remark 1: In the elementary hybrid automaton the 
transitions guards are function of only one variable since a 
controllable transition correspond to the firing of a discrete 
transition in the HPN. They have guards of the form  
αi ≤ ti ≤ βi; where ti is a clock and αi, βi are real constants. 
Uncontrollable transitions correspond to emptying a 
continuous place marking. They have guards of the form  
mi = 0. 

The controller synthesis consists first in solving the problem 
for a location q and then to iterate the procedure for the 
whole elementary hybrid automaton. Figure 5.a gives the 
structural representation of a location; we suppose, in a first 
time, that q has only one output transition, which is 
controllable. The guard of a controllable transition is only 
function of one clock ti. This guard is of the form: αi ≤ ti ≤ βi, 
where αi and βi are real constants. Figure 5.b schematizes 
R(A, q) the reachable state space in location q, which 

depends on the input state space R0(A, q), the vector Field 
F(q) and on the invariant Inv(q). We will resume the location 
q throughout this paper to explain the controller synthesis 
procedure and to indicate the consequences of each step of 
the procedure on the reachable state space in q. 

 

Fig. 5.a) a location q from the elementary hybrid automaton, 
b) reachable state space in location q. 

4. CONTROLLER SYNTHESIS  

The controller synthesis consists in realizing the last step 
described in block 3 of Figure 3. It will be solved in this 
paper for a location; therefore we will develop in this section 
the calculation of the new guards so that the location state 
space verifies the specifications. Some directions will be 
given to extend this hard computation problem in order to 
determine the final controller. 

4.1 Control Specifications Modelling 

In hybrid dynamic systems, specifications can be imposed on 
the discrete part or on the continuous part. We consider here 
specifications on the continuous behaviour; we think that it is 
the most currently met cases in real life systems. It means 
that specifications are only related to continuous variables mi 
and never on clocks. They have the form of linear 
inequalities.  

Definition 3 (Specification): Let S = (s1 s2 …snc)T be a real-
valued constant vector and b be a real constant. A 
specification Spec on the continuous behaviour of the 
elementary hybrid automaton is a predicate of the form:     +     + ⋯+       ≤   

Then  ST.MC ≤ b 

 ̇ =  ( ) q 
Inv(q)  αi ≤ ti ≤ βi 

R0(A, q) 

Inv(q) 

Continuous evolution of R0(A, q) 

R (A, q) 
-b- 

-a- 
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Let us recall that MC is a vector of nc real-valued variables 
modelling the continuous places marking (Definition 2). 

We note by Spec(q) the general form of a specification, it is 
the conjunction of all the specifications imposed on the state 
space in location q:  

Spec(q) = SpecI∧Spec2∧ …∧Speck 

A continuous specification Spec(q) is a set of constraints on 
the continuous space reached by the HA in any discrete 
location q. The automaton must stay in q if Spec(q) is 
satisfied, and must leave q by firing a transition before the 
violation of Spec(q). Of course, a specification can be 
different from a location to another one. 

An example is given for location q1 described in Figure 6. 
Thanks to PHAVer software, the computation of the 
reachable space in this location is obtained. It is determined 
by the following set of inequalities:  

R(A, q ) =  
⎩⎪⎪
⎪⎨
⎪⎪⎪
⎧  m − 3t ≥ 39      m − t ≥ 50         3m − m ≥ 108 m ≥ 53                m − 3m ≥ 114m ≥ 48                m − t ≤ 53        t ≥ 1                      m − 3t ≤ 48       m ≤ 100             

      

Let us add the following specification: m1 - m2 ≤ 20, which 
must be verified at any time. The state space above contains a 
subset of values that violate this specification. The goal of the 
next section is to compute the new output guard so that this 
specification is always verified. 

4.2 Control computation 

The controller is obtained by modifying the guards on 
transitions of the elementary hybrid automaton such as the 
specification are verified in the maximally permissive way. 
This corresponds to block 3 of Figure 3. This calculation is 
made using the reachable state space of automaton A. 

Let us consider the general case of a location q from A 
(Figure 7.a) and the controllable output transition Tj whose 
guard is function of the clock ti: αi ≤ ti ≤ βi. The addressed 
problem is to calculate the largest interval [α’i, β’i] ⊆ [αi, βi] 
in the dynamic behaviour of the elementary hybrid 
automaton. i.e. the guard α’i ≤ ti ≤ β’i that allows to meet the 
specifications. 

Each marking evolves according to a linear function when in 
a specific location since its time derivative is constant, and 
there is an indeterminism in the initial values of time and 
marking. This can be formalized as below. 

Property 1: In a location q, each continuous variable mi can 
be written as:  

mi = ci(t - t0) + di0 

where t0 ∈ [t0min t0max] and di0∈ [d0imin d0imax] are time and 
marking initial values.  

[t0min t0max] and [d0imin d0imax] are convex intervals given by the 
input space R0(A, q),  

With  t0min, ci, d0imin∈ℜ+ and t0max, d0imax∈ℜ+∪{∞} 

 

 
Fig. 6. a) Autonomous behaviour, b) Specification. 

                  

Fig. 7.a) Location q in A, b) Constrained  behaviour. 

For any location q in A, We note by:  

Spec(q) 

 ̇ =  ( ) q 
Inv(q) Ti, αi ≤ ti ≤ βi 

-a- 

-b- 
R(A, q) 

The constrained  behaviour Spec(q) ∧ R(A, q)  

-a- m1 - m2 ≤ 20 

  ̇ = 3   ̇ = 1  ̇ = 1 
q1 

 m1 ≤ 100 m2 ≤ 100   

t ∈ [1  3] m1∈ [48  51] m2∈ [53  54]   t ≥ 3   

-b- 
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C = (c1 c2 … cnC)T the vector of the mi variables slopes 
(dynamics of the markings), 

D0min = (d01min d02min … d0nCmin)T the vector of minimal input 
values in R0(A,q), 

D0max = (d01max d02max … d0nCmax)T the vector of maximal input 
values in R0(A, q), 

S- =  min(  , 0)min(  , 0)⋮min(   , 0)    and     S+ =  max(  , 0)max(  , 0)⋮max(   , 0)  

Where S is the vector of specification decomposed into 2 sub 
vectors S- and S+ 

Such that: S = S- + S+; 

dmax  is the maximal sojourn time in R(A, q). 

Theorem 1: The maximal permissive control of a discrete 
controllable transition Ti meeting the specification: ST.MC ≤ b 
on the continuous part is given by the new guard: α’i ≤ ti ≤ β’i 

Such that: 

α’i = max (αi, timin) 

And  

β’i = min (βi, timax) 

Where: timin = t0min  

And ti max is calculated as follows: 

- If ST.C > 0   tu =      .                            

i. If tu < α’i  then  q is forbidden; 

ii. If tu  ≥ α’i then  ti max = tu 

- if ST.C <  0    tu =      .                            

i. If tu > t0min   then q is forbidden. 

ii. If tu ≤ t0min   then timax = dmax 

- if ST.C =  0, 

i. If STD0  ≤ b,  the specification is always verified; 

ii. If STD0 > b,  Location q is forbidden. 

Proof: 

The value of timin is obvious; it is given by the reachable 
space from location q in A. 

The value of timax is derived from the specification:  

ST.MC ≤ b 

As (from property 1): 

MC = C(t - t0) + D0 

We can write: 

ST.(C(t - t0)+D0) ≤ b 

The sign of the scalar ST.C is very important in the 
calculation of the maximal value of the time upper bound. It 
combines the weights in the specification with the slopes of 
the marking. Depending on the sign of ST.C, three cases must 
be distinguished: 

1st case:   ST.C > 0 ⇒ t ≤     . .     .    .   

is the condition verifying the specification. 

And the more constraining bound for t is: tu =      .                          .  

- If  tu < α’i, then the new guard is empty and location 
q is forbidden. 

- If  tu  ≥ α’i, then timax = tu   and β’i  = min (βi, 
timax) 

2nd case:   ST.C < 0 ⇒ t ≥     . .     .    .  

is the condition verifying the specification. 

And the more constraining bound for t is:   

tu =     . .         .                .  

- If  tu > t0 min then the specification is not verified for 
the entrance space and location q is forbidden. 

- If tu ≤ t0 min then ti max = dmax (maximal sojourn time 
for location q in A) 

and β’i  = min (βi, timax) 

3rd case:   ST.C = 0  

- If  ST.D0  ≤ b,  then the specification is always 
verified 

 
- If  ST.D0 > b, then the specification is not 
verified for some values of the entrance marking in 
location q which is forbidden. 

Figure 7 illustrates the two first cases of Theorem 1. In 
Figure 8.a, the specification: 

m1- m2 ≤ 20 gives  

ST= (1 -1), and ST.C = (1 -1). 31  = 2 

Then ti max =             = 12 and the new guard is  
[3, 12]. 

In Figure 8.b, the specification m2– m1 ≤ 20 gives 
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ST = (-1 1), and ST.C = (-1 1). 31  = -2 

Then ti max =              = -8; In that case, it is necessary to 
compute the maximal sojourn time in the location, dmax= Min         , 100 − 53  = 17.33. The new guard is [3, 17.33]. 

      
Fig. 8. Control computation: a) ST.C > 0 , b) ST.C < 0. 

 
Remark 2: 

1) In the case of a general specification of the form: 

Spec(qi) = Speci1 ∧ Speci2 ∧  … ∧ Specik 

Then each Specik is studied alone with Theorem 1. The final 
solution consists in considering the conjunction of the 
different guards [α’ik β’ik] in order to obtain the final guard. It 
can be noticed that the computation of the reachable space of 
Automaton A is done only once. 

2) When a location has several output transitions, each guard 
is computed as it is alone. There will be several output 
concurrent transitions. 

Our approach is powerful since it gives the control thanks to 
an algebraic computation. This allows considering any kind 
of specifications, which can be different from a location to 
another one.  However it needs the knowledge of the intervals 
of the different variables of the entrance space and in some 

cases the maximal sojourn time in a location. These intervals 
are given using linear programming on the reachable spaces.  

We have soled formally the problem for a location. In order 
to have the complete controller, it is necessary to iterate the 
formal procedure for the whole automaton, leading to a 
decidability problem. It is well known that for a hybrid 
automaton the computation of the reachability spaces does 
not terminate in general. However, real life systems own 
good properties that make this computation decidable. Then it 
will be interesting to characterize the set of systems for which 
the controller synthesis is possible. This constitutes our future 
research.  

Example: 

Let us consider again the producer consumer system and the 
specification that imposes to never exceed 100 parts in the 
buffer. The controller guarantying to meet this specification 
is schematized in Figure 9. This controller is built location by 
location applying Theorem 1. A control is computed for one 
input state pace, called a visit. It is why he final controller 
given in Figure 9 is an unfolded automaton. This model is 
only timed since the control points are given by the discrete 
timed transitions. The continuous dynamic does not appear, 
its influence is taken into account in the computation of the 
guard.  By acting on the discrete controls Start and Stop in 
the control timed intervals, the respect of the specification is 
guaranteed. 

5. CONCLUSION 

In this paper, we have presented a controller synthesis 
technique for hybrid dynamic systems modelled by D-
elementary HPNs.  This model is first translated in a hybrid 
automaton before controller synthesis. We have highlighted 
our contribution on the computation of the control for a 
location. Specifications are added to the hybrid automaton in 
order to limit its reachable state space to a desired one.  

This is obtained thanks to the computation of new guards 
associated with the controllable discrete transitions. We have 
determined algebraic formulas giving the new time bounds 
that allow respecting the specifications. This computation 
needs the bounds of the different variables for the input state 
space, which are obtained by linear programming. The 
controller is a timed automaton; it is optimal in the sense that 
it gives the most permissive state space of the system 
guarantying the specifications. This optimality is obtained via 
an algebraic calculation.   

The obtained timed automaton is the model of the closed loop 
system. It represents the system coupled to its controller, and 
has a nondeterministic  behaviour. It is possible to choose 
one deterministic  behaviour from an infinite number. It is 
also possible to calculate an optimal  behaviour according to 
a given criterion. 

Our future work consists in: 1) establishing a general 
algorithm for the automatic determination of the controller,  

-a- 

-b- 

  ̇ = 3  ̇ = 1 ̇ = 1  
q1 

m1 ≤ 100 m2 ≤ 100   

t ∈ [1  3] m1∈ [48  51] m2∈ [53  54]   3 ≤ t ≤ 12   

Specification: m1 - m2 ≤ 20 

Specification: m2 – m1 ≤ 20 

  ̇ = 3  ̇ = 1 ̇ = 1  
q1 

m1 ≤ 100 m2 ≤ 100   

t ∈ [1  3] m1∈ [48  51] m2∈ [53  54]   3 ≤ t ≤ 17,33   
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starting from any D-elementary HPN; 2) Taking into account 
uncontrollable events in the discrete part; and 3) 
characterizing formally the sub class of HPNs such that the 
translation algorithm terminates always. 

                

Fig. 9. Controller of the consumer producer system. 
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APPENDIX A: Translation approach. 

The translation approach can be summarized in the following 
three steps: 

1. Isolate the discrete PN of the hybrid model and construct 
its equivalent timed automaton: Several algorithms 
permitting the translation of a Time PN in a timed automaton 
exist in the literature. We reuse the existing algorithms for 
this first step of our approach. Locations of the resulting 
timed automaton are said macro-locations in the following. 

2. Construct the hybrid automaton corresponding to each 
macro-location of the timed automaton resulting from the 
previous step: Indeed, a macro-location represents a marking 
of the discrete PN, and therefore a configuration (set of 
locations) of the system. In this second step we determine the 
continuous PN corresponding to each macro-location and we 
translate it in a hybrid automaton. At the end of this second 
step we have a hierarchical model containing macro-
locations, each of which comprises a hybrid automaton. 

3. Replace transitions between macro-locations by transitions 
between internal locations: This last step transforms the 
hierarchical model of the previous step in a linear hybrid 
automaton. 

To illustrate the different steps of the translation approach, let 
us consider again the D-elementary HPN representing the 
producer consumer system in Figure A1.a. 

In Figure A1.b below we isolate the discrete part of the HPN 
of Figure A1.a. The time PN obtained has two reachable 
markings and only one transition enabled at a time. It is 
modelled by a timed automaton with two locations, that 
represent the markings, and one clock, representing the time 
during which a transition is enabled (Figure A1.c). 

To each marking of the discrete part (time Petri net) 
corresponds a configuration of the system. Each 
configuration corresponds to one or several locations. The 
running of a constant speed continuous PN can be modelled 
by a linear hybrid automaton where the state variables are the 
continuous places marking. 

Only one type of events can change the continuous variables 
derivative, this autonomous event is the emptiness of a 
continuous place marking. This is always an uncontrollable 
event. For the HPN in Figure A1.a, the discrete part has 2  

reachable markings, then 2 configurations for the continuous 
part. Figure A2 represents the hierarchical form of the hybrid 
automaton. 

The final form of the hybrid automaton is obtained by 
replacing each transition between macro-locations by 
transitions between internal locations. A reachability analysis 
can be useful to eliminate the unreachable locations and non 
fireable transitions. The hybrid automaton resulting from the 
translation of the HPN in figure A1.a is represented in Figure 
A4. 

              
Fig. A1.a. HPN of the producer-consumer system; b. T-Time 
Petri net of the discrete part; c. Equivalent hybrid automaton. 

 

 

   P2 P3 T3 [2 ∞] 
T4 [2 ∞] 

-a- 

  ̇ = 1 s1   
  True 

T3, t1 ≥ 2   t1 := 0 s2     ̇ = 1   True  T4, t1 ≥ 2   t1 := 0 
t1 := 0  

-b- 

 
  

 

 

 

 

 50 

T3 
[2 ∞] 

T4 
[2 ∞] 

T1 
V1 = 20 

T2 
V2 = 13 

P1 

P2 

P3 

-c- 
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Fig. A2. Continuous  behaviour corresponding to each discrete marking. 

                                        

Fig. A3. Hierarchical form of the hybrid automaton. 

                                                   
Fig. A4. Hybrid automaton resulting from the translation approach. 
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