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Abstract: This study has introduced parameter free, decomposable with no penalty factor and an 
efficient saleable scoring metric, the Non Parametric Factorized Likelihood Metric (NP-FiLM) useful for 
structure learning. The proposed score metric has its root in information theoretic elucidation. The metric 
is devised to maximize the discriminant function for query variables with respect to the class and other 
non class variables. An empirical evaluation of the proposed metric has been carried out over an 
abundant number of natural datasets obtained from UCI machine learning repository. The comparison is 
made with respect to eleven tree classifiers, one regression model and two neural network system. 
Furthermore, the scoring metric has been examined to six peer scoring metrics within the greedy search 
mechanism. NP-FiLM oriented Bayesian Belief Network has been satisfactory found with significant 
results in a paradigm of accuracy and classification error. The introduced scoring function is capable of 
illustrating the best possible data fitting in the context of hyper-parameters described above. 
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1. INTRODUCTION 

The evolution of ensemble or single classifier which involves 
Bayesian Belief Network (BBN) or its variant is a rising 
research interest in numerous domain of real world 
application. In classification, structure prediction from 
Bayesian inference model is a highly symbolic formalism for 
the purpose of retrieving hidden rules in pragmatic situations. 
This process consists of two steps broadly. First step deals 
with the construction of best suitable structure. The second 
step is oriented towards parameter learning for the sake of the 
inference drawn from this structure. In this study, the focus is 
on the first part. In general a thick network deems to 
represent an optimized fitted model. This study has 
introduced parameter free, decomposable with no penalty 
factor, an efficient scale-able scoring metric, the Non 
Parametric Factorized Likelihood Metric (NP-FiLM) useful 
for structure learning. The proposed scoring metric can 
deliver equally or better results using thin network as a result 
of which the complexity of the model is significantly 
extenuated without reducing the classification accuracy. 

2. BAYESIAN NETWORK 

This article is forwarded with the introduction of the theory 
and definition around structure learning explained briefly to 
the shrewd readers of this study. This section carries out 
some myriad terms of BBN in the context of structure 
learning. A BBN which is also known in alternate names of 
Belief Network is a graphical model representing a process of 
an arbitrary nature.  
 

• It can be described by a triplet <D, G, R>.  
• The first component of this triplet denotes the underlying 

dataset.  
• The second component indicates a graph  
• The last component is set of parameters representing the 

underlying network.  
• The second component G belongs to the family of 

Directed Acyclic Graphs (DAG).  
• Each node in the DAG is a representation of query 

variables of the underlying objects or process.  
• It is inscribed as a set of independence conditions; which 

means each query variable does not depend on its 
corresponding parent node in the DAG.  

• The component R holds parameters 
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• Each query variable GZ

i
∈ is denoted as a vertex or 

node in a DAG.  

The number of graphs in structure learning is not limited to a 
single graph during the searching process; therefore it is 
useful considering more than one graph in our consideration 
given that )(

iG
Zpa which shows the parents of the variable 

i
Z in the DAG. The cumulative joint probability of a single 
DAG can be calculated by the formula given in equation 1. 
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The set of data which is to be learnt can be formally 

described as },......,{ 1 nooO = where 

}......,,{
21

i
N

iii zzzo = Note down that subscript points out 

the number of observations and the superscript is the 
indication of the number of query variables or column in the 
data set. The value of N is the total count of instances in the 
dataset in which each instance covers all of the variables. It 
has been set forth a compulsion that there must exist at least 2 
instance below which although the network may be built but 
the division of training and test data set requires this value to 
be 2≥N . Each query node has varying number of distinct 

states expressed by 
i

j
Z indicating the counts of ith variables 

with jth states. Each structure Gg ∈ of the Bayesian 

Network can be denoted by N sets of parents 
N
∏∏,...

1
. In 

simple words, it can be stated that for each node Nj ,...1=  

the set 
j

∏ is a set of parent nodes in which a node has no self 
loop or close loop. Formally it can be represented such that 

jNj

ZZZ }{\},....{
1

⊆∏ . 

3. SCORING FUNCTION 

A BBN classifier is technically composed of two components 
which include a scoring function or scoring metric and a 
searching heuristic; the way through which a scoring metric 
is evaluated. (Jensen et al., 2007) pointed out two essential 
characteristics for any scoring metric. The first characteristic 
is the capability of any scoring metric to balance the accuracy 
of a structure versus structural complexity. The second 
characteristic is its computational tractability. We shall revive 
currently existing scoring metrics as below: 
• Minimum Description Length (MDL) fulfils these 

characteristics (Lam et al., 1994). MDL is usually suited 
to complex Bayesian network. Mathematical formulation 
of MDL is comprised of explanation of Log Likelihood 
(LL) as described below: 
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The value of LL is used in obtaining the value of MDL as 
below: 

( | ) ( | ) (1 / 2 ) log ( ) | |M D L B T L L B T N B= −            (3) 

|B| denotes the length of network. It is frequentistic 
enumeration of distinct states of a given query feature 
and its corresponding parent’s state combination as 
described below: 
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• Akaike Information Criterion (AIC) (Akaike, 1974) 
originally is described mathematically:  

      2 ln( ) 2AIC likelihood K= − × + ×                            (5) 

The value of K indicates the count of parameters in the 
given model. However in BBN, its mathematical 
formulation has been transformed into 

     ( | ) ( | ) | |AIC B T LL B T B= −                                       (6) 

• BDeu (Buntine, 1999) is another scoring measure relying 
only on equivalent sample size of (N´. Carvalho et al., 
2011) has provided and discussed its decomposition as 
below in mathematical form: 
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• (Cooper et al., 1992) introduced an algorithm K2 in 

which greedy search was employed while a scoring 
metric of Bayes was used. It was described that the 
structure with highest value of Bayes metric was 
considered the best representative of the underlying 
dataset. It motivates us to describe Bayes metric formally 
expressing in mathematical notations. Let us consider 
that there is a sequence of n instances such that 

n

n
ddddz .....321= the Bayes scoring function of 

structure Gg ∈ can be formulated in form of the 
equation. 
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Where )(gPb = is prior probability of full 

network Gg ∈ . The prior probability can be omitted in 

the computation. The notation },....,1{ NJj =∈ is the 
enumeration of the variable of the network g, and 

),( gjSs∈ is the counting of the set of all sets of values 
obtained from the parents of the jth node variable. The 
expansion of the denominator factor can be expressed 
mathematically as below.  

• (Carvalho et al., 2011) introduced factorized conditional 
log likelihood (fCLL) and empirically proved it to be 
reasonable among other established scores. Its 
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decomposability over the network structure is defined as 
below.  
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4. TOWARDS NP-FILM 

A scoring metric in general can be expressed as the sum of 
local score that depends only on every variable and its 
parental nodes. With a given dataset D, parent set Π for n 
feature fi, the score for each node is Ψi. The cumulative 
scoring criteria Ψ can be expressed formally: 

1
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The scoring function in general is based on Log likelihood 
drawn from the dataset. The Log Likelihood (LL) which can 
be described as the log probability of dataset D given 
network structure G as shown by equation 12.  
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Where ijkN indicates that ith feature is instantiated with kth 
state along with the jth state of qth parent of ith feature. See the 
equation 12 that LL is a very simple and easy to calculate, 
hence a decompose-able format. Moreover, it can be noted 
that adding an arc to a network always tend to increases the 
probability of likelihood of the underlying network. A 
proposition can be formulated here as below. 

Proposition 3.1. Let ϻ denotes a Bayesian network over the 
query variables X. Moreover, it is also assumed that Bayesian 
network parameters ΦM are locally and globally independent. 
Then the size of the model is a function of number of links Ḻ 
and distinct states Ṩ such that 

Size (ϻ) = ƒ(Ḻ, Ṩ)                                                               (13) 

A simple decomposition will result in  

Size (ϻ) = (| ( ) | | |)
x X

pa x x
∈

×∑
                                       (14)

 

Which means the complexity of a model ϻ can be found by 
the product of count of parents and states of a node variable. 

Lemma 3.1. Let ϻ be a Bayesian network being represented 
by the set of query variables X. The optimized and most 
representative model ḾX of the underlying dataset contains 
only essential links. It can be shown that no other network 
MX can have lesser number of links or say smaller size of the 
model.  

Proof. Let ϻ be any ordinary model which denotes parameter 
distribution say PUX. On the other hand, ḾX is an optimized 
model. It can be observed that whenever two nodes xi and xJ 
are linked which increases the accuracy of the model. If these 

are connected in model ϻ, they must be present in ḾX. 
However, if there is a situation where the size of ϻ is smaller 
than size of ḾX then it is so because some links in ϻ carries 
the opposite direction to that of the corresponding optimized 
model. It justifies the search for a minimal model. If the 
network is a Bayesian network, and containing only essential 
links then the model is optimized model. 

Obviously, any extra arc which is not causing any increase in 
the information of the structure must be ignored. The extra 
arc is prone to give rise two issues.  
• First issue is problem of over-fitting during training 

phase, eventually poor accuracy in testing phase might 
be observed.  

• Secondly, this enhances the complexity of the network. 
Computational complexity will be increased during 
inference (prediction) phase given a dense network.  

The solution to this problem appears in form of addition of 
penalty factor. The term penalty factor has its notion in 
penalizing the complexity of network structure. That is why, 
a complex network may bear high Log Likelihood value but 
the degree of penalty factor can adjust the score to be 
equivalent to a less complex network. The scoring function 
carrying penalization can be generally expressed in a 
following non decomposable notation. 
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Several well known scoring functions which have been 
discussed in previous sections belong to penalized scoring 
function. The only major difference is the magnitude of the 
penalty factor while they incur similar overhead for memory 
consumption (Liu et al., 2012). However, this issue has been 
investigated from a different angle. In studying the structure 
learning, there is a general principle of inductive learning 
introduced by William Ockham (1285-1349) that select the 
simplest hypothesis such that the hypothesis is consistent 
with the underlying observation. It has been reported that this 
principle has a vivid rationalization in structure learning 
using BBN (Jensen et al., 2007). Proceeding with this notion 
of simple hypothesis, let F and C are two features such that C 
is a class feature and F is a non class feature. It is to find out a 
metric of relationship between two features which can deliver 
the answer of how much class feature is explainable by the 
non class feature F. Let F is the realization of distinct states 
given C contains b number of unique states. 

{ | 1,... }iF f i a= =              (16) 

{ | 1,... }jC c j b= =               (17)
 

The above is a simple case of point estimation of learning 
where there is only single input variable with a single target 
feature (class variable). In fact point estimation is the base 
case for numerous learning models which gradually 
developed towards inclusion of other input variables. In this 
case, a learning model predicts a value for the target feature 
class for all of the sample instances. The joint probability 
state between both of these feature variables can be described 
as: 
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The above joint probability is not normalized; which means it 
is not calibrated between the value of 0 and 1 in order to 
compare with other pair wise values. Such probability 
distribution is termed as potential. The potential ξ  can be 
described formally as: 

, ( , )C F
c f

P C c F fξ = = =∑∑
           (19)

 

Our aim here is to maximize the discriminant objective 
function out of this potential. A change in this potential can 
be incurred such that 

, maxarg ( , )C F
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The above is the discriminant prior over simple point 
estimation which in fact serves as another measure of 
coherence between two relations when viewed from the 
information theory perspective. This basic unit can be 
integrated into a well behaved measure spanning over 
relationship of set of features versus class variable. 

Lemma 3.2. The discriminant joint probabilities obtained 
from the potential in the equation 20 may lead to turn into 
maximum a prior probabilistic inference for a simple point 
estimation case in structure learning. 

Proof.  It begins with re writing the equation 20 such that 
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Let )(Fϑ denote the marginal probability of the feature. The 
potential shown in the above equation can be converted into 
conditional probability by placing the marginal probability as 
the denominator factor in the above equation such that 

,
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          (22) 
The simple point estimation potential (see equation 21) is 
decomposed into conditional joint probability factor. 
However, this study is not dealing in ordinary cases of single 
input features. It must be required to generalize it to a dataset 
with more than one non class features. 

Lemma 3.3. NP-FiLM is a decomposable scoring function. 
Proof. While generalizing NP-FiLM, there are n number of 
non class feature variables and a single class variable within 
the dataset D. It can be expressed easily to reduce this simple 
point estimation into a generalized maximum a posterior 
inference notation as below: 
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A scoring function is decomposable if its expression is 

convertible to a sum of local scores, where local score refer 
to a feature variable in the family of feature variable in 
pursuit of drawing graph G. The simple calculation between 
two feature variable is shown in equation 22. An extended 
version of this equation can be expressed as 
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Where i is feature iterator, j is parent iterator, k is 

feature state iterator and c is class iterator. If the factor of 
class variable is included, a minor change will be developed 
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Plugging this value into equation 23, it can be expressed as 
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If a link is introduced between node iX and node jX  

pointed towards jX , then only the local value of NP-FiLM 
will be altered for the purpose of evaluating whether this 
addition gives any significant improvement in the structure 
being represented by G such that. 
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Equation 24 and 25 indicates that simple frequency 
calculation of the feature node, non class node and class node 
can result into a numerical value. Hence it can be concluded 
that NP-FiLM belongs to the class of decomposable scoring 
function. The decomposition property is quite useful when 
searching mechanism has to calculate net score over addition 
or deletion of an arc in G. 

Whilst reviving our motivation for the introduction of new 
scoring metric, according to which the increase in the 
potential candidate for the addition of the node found in a 
queue, the number of possible configuration over node iX  
will also get large. From this large number of factors, only 
those factors will be selected which has more contribution 
towards explanation of any class member. However, it also 
begets some critical observation. Let us consider feature set 
and class variable as defined in equation 16 and 17. Let us 
consider the last feature in ordered list. Surely in a non 
augmented network, this must be linked to class variable with 
a specific discriminant value of joint probability. An 
inclusion of the next feature in the set of its parent list will be 
restricted by a higher value of discriminant value. However, 
as the new node is linked, such chances are quite narrow 
unluckily, because the factor of joint probability distribution 
will start thinning with the increase of new parental value. It 
means, in a randomly ordered set of features, there is very 
little chance that structure appears to be other than simple 
Naïve Bayes. It has been already illustrated that simple Naïve 
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Bayes is suffering from under-fitting. The question arises 
how to tackle this issue. A clear solution lies in the intelligent 
ordering of the variables prior to application of search and 
score bound heuristics.  

Proposition 3.2. If the Feature set is denoted by 
},...,,{ 321 nffffF = then ordering weight of any feature 

will be determined by weight factor shown in equation 26. 

, ,F C F C Fω λ λ= −
           (26) 

The terms FC ,λ and FC ,λ plays the role of existence 
restrictions. Let us consider both of them as existence 
restrictions such that :),( ,FCCF λ∈  the link CF →   
explains the discriminant objective with respect to the class 
such as: :),( ,CFCF λ∈  the link FC → means the 
discriminant score with respect to the feature. In our earlier 
research (Naeem et al., 2013) the correct topological ordering 
between two features was highlighted. This was shown by an 
earlier version of the proposed scoring function Integration to 
Segregation (I2S) in which it was emphasized that majority 
of the scoring metrics can’t precisely capture the casual 
relationship between two variables in pursuit of true topology 
in numerous situations; this ultimately leads to the selection 
of potential neighbour and parents becoming unreasonable. 
However I2S is capable of rightly identifying it in majority of 
the cases as compared to BIC, MDL, BDeu, Entropy and 
many more. Moreover, (Madden, 2009) described that a 
structure in which class node is placed at the top most may 
lead to higher predictive accuracies. This type of scheme was 
termed as ‘‘selective BN augmented NBC’’ (Madden, 2009). 
Hence the later score value must be eliminated from the first 
value which will result into a weighted score vector as shown 
in the equation 27. 
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See equation 22 and 23 for detail of equation 25. A function 
for simple descending order is applied to the weights 
achieved from the equation 24 which results into an ordered 
list of input variables.  

{ | 1... }
i

fF i nω
←

= =            (28) 

Plugging this ordered set into the equation 24 will give result 
in 
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Lemma 3.4. The ordered set initialized by an intelligent 
heuristic may convert NP-FiLM into a well behaved scoring 
metric. 

Proof. Let us consider a set of n un-sorted 
features },...,,{ 321 nffffF = . Let us begin from any of 

the succeeding feature say jth feature jf such that it lies 
somewhere in the trivial un-ordered list denoted by 

φςρςρ =∩∴},,{ jf where ρ is the set of predecessor 
and ς is the set of successor nodes. It is already stated that 
K2 adds incrementally for a node as its parent from a given 
ordering whose addition possibly increment the score of the 
resulting structure. K2 search algorithm can choose any of 
the parent-set before jf . If a feature sf  exists such that it 
can significantly contribute towards score of structure, then 
following expression must hold trueffcf jss :,),( →∈∀ ρ  
and otherwise the expression holds 

falseffcf jss :,),( →∈∀ ς .  

A careful consideration of expression of NP-FiLM (see 
equation 29), one can frame out the following characteristics 
possessed by the introduced scoring metric.  
1. No penalty factor 
2. Non parametric 
3. Scalable to large dataset   
4. Decomposable 
5. Value increases only on adding those nodes which 

contribute information towards structure being built, 
otherwise halts. 

NP-FiLM holds no prior information factor as well as no 
penalty factor. Contrary to it, the selected parameter value of 
alpha which controls the penalty factor in BDeu greatly 
influences the BDeu’s performance. In other words, it can be 
stated that BDeu is significantly dependent on the specific 
value of alpha parameter; yet it is quite hard to predict its 
appropriate value a priori (Liu, 2012). For some datasets, 
Average Hamming Distance (AHD) metric was found in 
consistent with value of alpha when sample size was 
increased in a particular fashion. Usually AHD get decreased 
as the value of alpha is increased. But unluckily this result 
was not generalize-able as this specific trend was restricted to 
only a few specific distributions only. Secondly, they 
produced sample of various sizes based on the gold standard. 
Such dataset may also posses peculiar fashion in support of 
alpha or against value of alpha. Moreover, (Liu, 2012) 
concluded that performance of BDeu is highly dependent on 
the selected parameter specially value of alpha and in fact 
there is no specific mechanism found to estimate the most 
appropriate value of alpha in prior. 

5. EMPIRICAL VALIDATION OF NP-FiLM 

A number of benchmark datasets have been used for 
evaluation purpose in this study. These include dataset with 
binary classification problems as well as multivariate 
classification problems obtained from the UCI data repository 
(Frank et al., 2010). These dataset are processed into *weka  
support format (arff) available at sears project ((Hall et al., 
2009; Sears, 2013). These data sets were randomly selected 
so as to choose from various real-world domains with 
varying characteristics. The random sampling of the dataset 
result into diversified attributes count, number of rows 
(cases) and classes. It is preferred selecting dataset with 
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variety of information under these categories to avoid any 
prior bias factor in favour of a specific technique. None of the 
dataset was discretized prior to feeding in the weka package. 
However, weka itself discretize the continuous data using its 
default setting. The performance of the proposed measure 
used in introduced classifiers is measured by accuracy which 
is a function of True Positive Rate (TRR) and False Positive 
Rate (FPR). It is formally defined as:  

T P T NA ccuracy
T P T N F P F N

+
=

+ + +
                 (30)   

The results are illustrated showing eleven tree classifiers, 
three function based classifiers and six well known scoring 
function based NB system. The scoring function comparison 
has been made using various parent values of 4, 3 and 2 
(polytree) within the searching algorithm of K2. 

In all of these experiments, ten fold cross validation was 
exercised, which means the dataset was divided into ten equal 
subset. There were ten sessions, all were run such that in each 
session, one subset considered as test data while the union of 
all other subsets treated as training data. At the completion of 
these sessions, median value of statistical results is 
considered as the final result of the classifier. There is some 
general explanation towards the figures in this section. Firstly 
the proposed measure is compared with every other classifier 
in terms of average (see figure 1,3 and 5) and in term of  
win/neutral/lose that the proposed scoring function based 
classifier wins or loses from the specific algorithm. Where as 
in the neutral case, no significant statistical difference was 
found. That is, any other classifier exhibited statistically 
better than the proposed technique according to corrected t-
test with p < 0.05 (Nadeau et al., 2003). The simple t-test 
dictates that the samples are independent. However, because 
of the procedure of cross validation functionality, the sample 
instances are not independent. It gives high value of type 1 
error if this assumption is generally ignored (that is, the test 
indicating, there is a difference between the tested technique 
while in fact there is not).  The corrected t-test exercises a 
fudge factor to enumerate the dependence between sample 
instances which practically emanates into acceptable type I 
errors (Nadeau et al., 2003).  

 

Fig. 1. Comparison of accuracy of NP-FiLM vs. other 
classifiers over 50 dataset (win/neutral/lose). 

Although, the results of NP-FiLM with respect to other 
classifiers have been obtained which were either tree based 
classifiers or neural network based learner and one regression 
model. However, it is preferable to draw results while 
keeping maximum number of external and internal 
parameters quite same. This includes the same searching 
algorithm, the same number of potential candidates for 
parental node, estimation of frequencies, the pre-processing 
steps such as deciding what to do with missing samples and 
discretization of continuous data. Let us keep all of these 
parameters same and plug seven scoring function one by one 
including our proposed NP-FiLM. In BBN, number of 
potential parents is a non trivial parameter. Its value greatly 
influences the shape of the final structure. A higher value is 
responsible to yield a dense network as compared to keeping 
a small value. A dense network also poses to increase the size 
of parameter learning. Moreover, the enumeration for 
maximum potential parents for a non class node given a 
certain scoring function which is being exercised in a 
particular searching algorithm is indeed a bounded value for 
every dataset. The increase in this value does not imply that 
the non class nodes will be conditioned with more parents 
rather it gets exhausted. In this study, three sets of 
experiments have been performed to validate the 
effectiveness of our NP-FiLM. In the first session of the 
experiment, the maximum value of parents is set to four 
which means a dense network as compared to other two 
sessions in which this value was set to three and two 
respectively. The setting of markove blanket is set to false, 
initNaiveBayes value set to true and random order set to 
false. 

 

Fig. 2. Average accuracy of classifiers over 50 dataset. 

This session of experiment was repeated by keeping parent 
set value of three and two respectively as indicated by the 
figure 1 and figure 2. A careful examination of these figures 
indicates that the best performance of the NP-FiLM was 
obtained in the relatively dense graph. Secondly an important 
observation was noticed that in all of three cases, the 
proposed scoring function exhibited almost same accuracy 
(see figure 2). It means the proposed scoring function usually 
generates a polytree whatever the value of the maximum 
number of parent is set to (greater than two). This aspect of 
the technique reduces its computational cost significantly. In 
fact, its simple heuristic can enable to select the best non 
class node as the parent value and unless another node with 
best characteristics is not found, it is not conditioned with 
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that specific node. A recently introduced scoring function 
fCLL by (Carvalho et al., 2011) has also been included. The 
authors of fCLL have made available the source code of the 
program, hence this code was useful in obtaining the result on 
the dataset in this study. The scoring function fCLL was 
evolved in the background of improvement in TAN, 
however, its functionality was exploited in context of general 
Bayesian network with maximum parent set of four. When 
the results were examined from the perspective of average 
accuracy, again NP-FiLM outperforms the other scoring 
function. 

 

Fig. 3. Comparison of accuracy of NP-FiLM vs. other 
classifiers over 50 dataset. 

So far, the results have been examined by comparing NP-
FiLM with respect to its peer scoring metrics, however it is 
quite essential to examine its performance to other classifiers 
such as tree based classifiers or neural network based learner 
and regression model while keeping all of the default 
parameter values for these classifiers (usually fixed with 
optimized setting). Figure 3 and 4 represent the results of tree 
based classifiers including Simple NB, Breadth First Tree 
(BFTree), J48 (implementation of C4.5 in weka), J48graft, 
Decision Stump, LAD Tree, Radom Tree, Simple Cart, 
Random Forest (RF) and Decision Stump with Adaboost 
ensembler (AB(DS))  (see Pang-Ning, 2006)) for detail). In 
comparative results, NP-FiLM gives best result in 14 dataset 
followed by RF for which RF delivers best result for 9 
datasets. In some of the dataset, the highest score was shared 
by more than one classifier such as J48, J48graft and RF 
where J48 and J48graft deliver highest result for data set 
‘trains’ and ‘mushroom’. 

Some dataset were too large in number of features that a few 
of the classifiers did not give result in reasonable time, thus 
the results of these dataset have been excluded from average 
performance comparison. On the other hand, when the results 
are observed from different perspective of win/neutral/lose, 
then it is the comparison of NP-FiLM with respect to other 
tree classifier. In these comparisons, one can observe that 
Decision Stump and Adaboost Decision Stump both exhibit 
poor results in comparison to NP-FiLM while J48 and its 
modified version J48graft were in close competition; albeit 
NP-FiLM outperforms all of these eleven tree classifiers. The 

second dimension of comparison is achieving average 
accuracy over set of all 50 datasets. 

 

Fig. 4. Average accuracy of classifiers over 50 dataset. 

It is noteworthy that while calculating average, missing cells 
were omitted for comparison on equalitarian basis. It is 
evident from figure 4 that the highest average accuracy was 
obtained by NP-FiLM which is 78.49% followed by J48graft 
and RF classifier while the worst classifier in this comparison 
was Adaboost with a score of 61.4%. Our finding reveals that 
on the overall, the tree classifiers are comparatively well 
suited for ‘thin network’, where the notion thin network 
points out the degree of size. A small size means less 
complex network while a big size indicates highly complex 
network. Explaining it by an example, the dataset arrhythmia 
and audiology contains 280 and 70 features respectively, the 
class size is also 16 and 24 respectively. These datasets can 
give rise to a complex network. The tree classifiers did not 
deliver best in both of these cases. In fact, the same is true for 
other datasets where the raw dot product of number of 
attributes and class size is relatively larger; albeit this product 
score does not strictly indicate the complexity of the size. 
(See proposition 1 for detail). The dataset in which the 
performance of tree classifiers is relatively better posses very 
simple structure (thin network) such as in case of balance-
scale, hayes-roth_test or some others. 

 
Fig. 5. Accuracy of NP-FiLM vs. other classifiers over 50 
dataset. 

Figure 5 is another comparison of NP-FiLM towards function 
classifiers which include Logistic (a regression model), 
Multilayer Perceptron (MLP) and Radial Basis Function 
(RBF) Network. These classifiers in general have high time  
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complexity as compared to their peer classification system. 
Specially, Multilayer perceptron consumes exceptionally 
outstanding time resulting into excluding some larger dataset 
cylinder-bands, kdd_synthetic_control, mfeat-pixel and 
splice. It can be observed that although Multilayer Perceptron 
delivers some comparable results to NP-FiLM in which NP-
FiLM wins over 22 dataset and also lose over other 22 
dataset. However, the time complexity of our technique is far 
lower than dictated by Multilayer perceptron. Moreover, the 
average accuracy for Multilayer perceptron was also low for 
46 dataset which is 77.93% but NP-FiLM gives average of 
78.49%. 
 
Table 1. NP-FiLM vs. PUBLISHED RESULTS (Madden, 

(2009). 

Dataset Naïve TAN 
GBN-
K2 

GBN-
HC 

NP-
FiLM 

Adult 84.03 86.15 86.16 86.02 85.90 
Australian 85.8 85.06 86.22 85.93 85.94 
Breast cancer 97.38 96.99 97.32 97.15 97.00 
Car 85.15 93.96 89.61 86.36 91.61 
Chess 87.85 92.09 94.45 94.95 90.55 
Cleve 82.87 81.04 81.07 82.33 83.11 
Connect-4 72.11 76.43 79.08 73.88 74.60 
Corral 87.05 99.23 99.62 99.38 93.75 
DNA-splice 95.26 94.92 95.93 95.81 95.17 
Flare 80.12 82.65 82.24 82.56 82.65 
German 74.61 72.07 74.2 73.25 74.70 
Glass2 81.16 79.37 79 77.29 84.66 
Heart 82.74 83.11 82.3 83.04 81.11 
Hepatitis 86.38 88 87 86.38 83.87 
Letter 74.67 86.28 81.76 75.12 84.54 
Lymphography 82.16 81.07 77.46 75.06 87.16 
Mofin-3-10 85.34 91.96 86.85 93.04 94.26 
Nursery 90.29 93.3 91.18 91.68 91.24 
Pima 75.69 76.37 76.33 76.18 78.26 
Segment 91.27 95.27 94.64 93.45 95.84 
Soybean-large 91.83 92.35 89.22 78.02 93.12 
Spect 68.53 70.29 68.98 74.19 68.75 
Tic-tac-toe 69.76 76.32 69.26 68.38 75.89 
Vehicle 60.62 70.36 67.3 62.5 72.93 
Vote 90.27 93.84 93.57 95.11 92.18 
Waveform-21 80.9 81.96 81.67 79.73 83.90 
Average 82.46 85.40 84.32 83.34 85.49 
Absolute Win 1 8 5 3 11 

When it came to question of number of parents for a non 
class node in Naïve Bayesian networks, three groups can be 
introduced. The first group contains single parent in which 
each node is linked to its single parent which is a class node. 
The second group is Tree Augmented Naïve Bayes (TAN) 
introduced by (Friedman et al., 1997) over a decade ago in 
which each node is linked to a class node and one non class 
node as its parent. The third group was quite independent of 
this category, in which any node must be linked to class node 
but apart from this basic assumption, any node can have other 
node as its parent where the count of parents is usually 
restricted by the user of the system. (Madden, 2009) termed 
this group as General Bayesian Network (GBN). However 
one restriction of Markov Blanket was essentially implied,  

 

according to which markov blanket is used to ensure that 
every non class node in the learnt structure must be a part of 
markov blanket where the markov blanket of any node points 
out to its parents, children and other parent of its children 
within a learnt network structure. (Madden, 2009) give a 
comparison among three of these type of network and deliver 
some assertions that GBN is relatively a better network 
structure and is inherently robust enough to be adapted into 
any specific domain set. This is the reason that a lot of 
variants of GBN have been proposed preferably suitable in 
various domains of interest while the other two networks 
were usually void of this phenomenon. Albeit It was pointed 
out that GBN may suffer from some limitations, yet this 
breed of classifiers deserve more attention due to its 
versatility in nature and insight into classification decisions 
yielding good accuracy. 

(Madden, 2009) challenged some existing challenges 
according to which Tree Augmented Naïve Bayes (TAN) is 
superior in its classification accuracy over General Bayesian 
Network (GBN). (Madden, 2009) produce a comparative 
study of four NB classifiers. Simple Naïve Bayes as shown in 
the column next to the dataset in table 1. Simple Naïve Bayes 
indicates all of the features have at most single parent which 
is a class node. Optimal TAN is build by marking the 
maximum weighted spanning tree within a complete graph 
connecting the nodes, while the nodes are annotated with the 
conditional mutual information between all pairs of non class 
variables but conditioned on the class node, as shown by the 
equation. 

1 2

1 2
1 2 1 2

, , 1 2

( , | )( , | ) ( , , ) log
( | ) ( | )x x c

P X X CI x x c P X X C
P X C P X C

 
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 
∑

           (31)
 

(Madden, 2009) presented comparison of these two 
classifiers and two flavors of GBN. The first was termed as  
GBN-K2 in which BDeu scoring function was used within 
K2 search algorithm. The second GBN was GBN-HC, in 
which MDL scoring function was used with hill-climbing 
search function. They exercised these experiments over 26 
datasets from UCI machine learning repository and 
concluded that the prevalent axiom that TAN usually 
outperforms is incorrect. The experimental analysis reveal 
out that the poor performance which was earlier reported by 
(Friedman et al., 1997) about GBN has its roots in simple 
empirical frequencies (parameter smoothening) in order to 
estimate General Bayes Network parameters. It may be 
concluded that parameter smoothing plays important role in 
improvement of a classifier. It can be pointed out that GBN 
has much more potential to be considered for any specific 
domain because of its diverse nature in drawing structure. 
The environment used in their experiment motivated us to 
give a comparison on the published results because the pre 
processing steps were quite similar to our study. All of the 26 
datasets were discretized using the same mechanism which 
was employed. Moreover, missing attributes were ignored in 
both of the studies. Table 1 illustrates that NP-FiLM delivers 
better results as compared to others as it outperformed in 11 
datasets out of 26 datasets. Moreover, the average of the 
classification accuracy was also highest towards NP-FiLM.  
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Table 2. NP-FiLM vs. Kabir et al., (2011). 

Dataset ECNBDMM-I ECNBDMM-II NP-FiLM 

Thyroid 95.59 96.0035 99.0721 

Iris 98.53 100 92.6667 

Adult 87.38 89.97 85.9034 

Car 89.9 90.65 91.6088 

In the last, another comparions of NP-FiLM to a technique 
forwarded by Kabir et al., (2011) is described. (Kabir et al., 
2011) presented two models ECNBDMM-I and 
ECNBDMM-II for improving accuracy of the naïve Bayes 
classification system. The underlying idea behind these 
models is to split the training data into clusters where 
clustering was performed on a simple K mean cluster. Each 
cluster was considered to learn the model and then test data is 
evaluated. The authors illustrate that clustering can produce a 
better training set eventually an improved model learning. 
Moreover, in these models, the number of clusters is again 
arguable; albeit authors produce a criteria of weighted 
training error such that. 

1

_ _ _ ( )
k

i

i

ntraining error cluster error of Ci
N=

 = × 
 

∑
                   (32)

 

Where },...,,{ 321 nccccC = comprise of set of k number of 
classes. ni=Number of data of ith cluster and N denotes the 
count of all training instances. The authors set the initial 
value of k to 2 and then increases it gradually till it reaches a 
specific stop threshold. The stop threshold is marked by 
continuous increase of weighted training error after a few 
observations. This generates an optimal value of K.  

The published result presented by (Kabir et al., 2011) shows 
that ECNBDMM-II is somewhat efficient with good 
accuracy on its best dataset; albeit the dataset is quite limited 
in size (only four datasets in all) raising an argument in 
generalize their techniques (See table 2). One dataset Iris is 
particularly a short data and the number of states in each of 
its features is below medium in size. It can be suggested that 
their technique might be well suited for thin networks. 
However, there are many issues arguable in models 
ECNBDMM-I and ECNBDMM-II. In this technique, training 
data set is limited enough to build a “correctly represented” 
model in each run. Although during clustering whole of 
actual dataset, there are n numbers of clusters; but only a 
single cluster is used for training model whereas the test data 
is assumed to be fixed. It means n numbers of models are 
developed considering each cluster for its training and each 
model is evaluated on same “fixed” test data. Such model can 
be termed as the building block of incomplete data arguing a 
question of biases in dataset.  

6. CONCLUSION 

In classification, structure learning and inference from 
Bayesian model is a well renowned practice for the purpose of 
mining hidden but useful information out of large amount of 
data. Generally, this process comprised of two phases. First 
phase addresses the construction of best representative 

structure from the dataset. The second phase conducts the 
inference using this learnt structure. This study has tweaked 
out the first phase. The central crux in the designing first 
phase of a BBN classifier is to bring out a discriminant metric 
functioning within vector space of query variables through 
exercising of a prior knowledge. The effectiveness of the 
Bayesian belief network using K2 greedy heuristics searching 
mechanism has qualified its splendid place in the field of 
classification systems. Analysis were made for numerous well 
established scoring metrics including Bayes, BDeu, MDL, 
AIC, Entropy, and fCLL in the perspective of balance 
between over-fitting and under-fitting. This study presented a 
novel parameter free, penalty-less and decomposeable metric 
in the domain of structure learning. The introduced measure, 
known as Non Parametric Factorized Likelihood Metric (NP-
FiLM) is characterized by the mutual dependence 
approximated by maximizing marginal and joint probability 
distribution. The novel metric is especially designed for 
discriminative learning because it is decomposable with the 
potential to forward efficient estimation of structure learning. 
The accuracy merit of NP-FiLM is empirically evaluated and 
compared to six well known state of-the-art scoring metrics 
given a reasonable size of benchmark data sets. Furthermore, 
exhaustive experimentation of comparison to numerous tree 
classifiers, two neural networks and one regression model 
were presented. The study delivered the analysis and 
comparison from different angle using Greedy search with 
various setting of parental set. NP-FiLM performed 
significantly better than others in all of these comparisons. 
The proposed measure is extrapolated to construct the realistic 
network which is likely to tally with the practical gist of 
domain experts. 
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