
CEAI, Vol.17, No.1 pp. 81-90, 2015 Printed in Romania

Solution Based on IEC 61499 for Standardized Representation of Components in
a Real-time Library of Reusable Algorithms for Process Control

Oana Rohat, Luiza Ocheana, Dan Popescu



University “Politehnica” of Bucharest, Romania, (e-mail: oana.rohat@gmail.com, luiza.ocheana@yahoo.com,
dan_popescu_2002@yahoo.com)

Abstract: This paper describes several solutions for a standardized, generic representation of the
algorithms in a library of complex multi-functional process control algorithms. After presenting the
library architecture, the paper describes the library design guide that will help the library administrators
to manage the components that will be added to the library. Also we defined the performance criteria for
algorithm representation and we presented a comparison of different standards based on these criteria so
that we can find the best solution for the standardized representation of the components in the library. In
the end we apply a transformation method from Simulink to the selected representation in two process
examples. This method can be used for algorithm verification and validation purposes.

Keywords: standardized algorithm representation, open process control library, function blocks, IEC
61499, IEC 61131-3, Matlab Simulink.

1. INTRODUCTION

Currently the industry is based more and more on automated
controllers, managing from simple functions like process
monitoring and standard commands, to PID regulation and up
to complex control applications based on artificial
intelligence, predictive methods and automated system
analysis.

In order to increase their competitiveness, process control
engineers need to find solutions for improved efficiency and
faster development times for control logic programming
while keeping in mind the safety and reliability aspects. Their
focus should be on reusability, the possibility of
implementing the same control logic on similar applications,
and on using a distributed control logic, that will allow
decreasing the complexity by distributing the control
functions on several PLCs. The first aspect is hard to be
implemented because the control logic depends greatly on the
PLC manufacturer. The last one is applied today (usually
while still keeping a high complexity level) in most large
plants, where a dedicated dispatcher is used for monitoring
and/or controlling specific units.

Advanced control algorithms have been developed in order to
respond to the new industrial requirements. When adding
hardware and software components to the system
infrastructure, disturbances may occur, and this is why it
becomes necessary to optimize the existing control
algorithms and to create new ones that are able to provide
efficiency at reduced costs.

Developing an on-line library of advanced control and
optimization algorithms for large – scale industrial plants,
written in a standardized format based on IEC 61499, will
provide the needed support for process control engineers to

develop and implement complex solutions using modular,
scalable, reusable, standardized functions.

Matlab Simulink and LabView are commercial tools widely
used for process control that have implemented libraries of a
large number of functions with focus on process modeling,
simulation and optimization, in the first case, and on
measurement problems in the second one. A widely used
library was SLICOT (Benner et al., 1999) which provided
numerical algorithms for high complexity computations in
control theory and systems. It used BLAS (Dongarra et al.,
1990) and LAPACK (Anderson et al., 1999) libraries with
numerical linear algebra routines to provide methods for the
design and analysis of control systems.

Since these are more oriented to academic research, also
libraries and collaborative platforms that are oriented to the
practical implementation of control functions were formed.
ThinkCycle was a web-based industrial design project with
the purpose of creating an open-source collaborative platform
for engineers, designers, researchers and other professionals
from a wide range of industrial areas. (Strasser et al., 2004;
Wei, 2001) developed IEC61499 function block libraries for
embedded closed loop control and IPMCS (Industrial
measurement and control systems) and their results can be
integrated as part of the open web library presented in this
paper.

The most common way of algorithm representation in current
process control applications is by using function blocks
(FBs). They represent drag-and-drop blocks that can be
linked to each other and execute a specific function or
algorithm based on the input variables and provide the result
as output variables. Simulink and LabView also use this kind
of representation as a more intuitive way for process control
programming and design. DCS (Distributed Control Systems)
manufacturers (like Honeywell, Emerson, Yokogawa, etc.)
have their own representation of FB that is dependent on the

82 CONTROL ENGINEERING AND APPLIED INFORMATICS

control programming application. Most PLC (Programmable
Logic Controllers) manufacturers chose for representation the
IEC61131 standard (IEC, 1993) that was created with the
intention on providing code portability between different
vendors, but this aspect could not be entirely materialized
because of the hardware dependency. Still, commercial
programming applications (like PLC-Prog) or Matlab PLC
coder module provide the possibility of compiling an IEC
61131-3 based algorithm for different controllers. The IEC
61499 (Lewis, 2001) representation further develops the rules
from the IEC 61131-3 standard by adding events to control
the execution of the function blocks.

The main objective of the presented work is to identify the
structure and best representation format for the library
components keeping in mind the reusability and openness
characteristics. The library must ensure the user that the
algorithms provided are reliable and respect certain
performance criteria. This is why we will focus on methods
for the verification and validation of the algorithms that need
to ensure they have the correct behavior in a real process
operating environment.

The main aspects that need to be considered in the algorithm
representation are:

- following a well-documented design guide;
- choosing the best implementation standard that fulfills

the library needs;
- establishing performance criteria for the algorithms that

will be added.

Other aspects regarding the library development like storage
mechanism and process interfaces development were detailed
by (Ocheana et al., 2012).

The rest of the paper is structured as follows. Section 2
presents a comparison between different common
representation standards based on function blocks like: IEC
61499, Matlab Simulink, IEC61131-3 and IEC61850. These
several representations are considered as possible solutions
for algorithm representation in the library. To better
understand the needs in terms of implemented functions, data
representation, reusability and process integration, section 3
shows how the library will be integrated into an on-line
application. Section 4 details the function block design guide,
the performance criteria and the needed characteristics to
represent function blocks so that the objective of providing an
open source library with standardized, reusable algorithms
for advanced control is met. In section 5 we implemented the
simple algorithm of the PID function blocks in the different
representations presented in section 2. Based on the
advantages and disadvantages relative to the defined guide,
we chose the best solution for the library components
representation as being the IEC 61499 standard. Section 6
applies a verification and validation method for the selected
IEC 61499 representation and exemplifies it on designing the
controllers for two different processes: one standard PID
controller for a second order system and a cascade controller
for a heater tank. Conclusions and future work are presented
in section 7.

2. COMPARISON BETWEEN DIFFERENT ALGORITHM
IMPLEMENTATION STANDARDS

The library components must follow a standardized
representation based on an open specification. Also, the main
characteristics of the algorithm are the reusability and the
possibility of deployment on a large number of industrial
controllers or PLCs, independent of their manufacturer. The
main components of the library will be provided as functions.
This involves a clear definition of the capabilities of each
component, as well as their interfaces, meaning the input and
output parameters. In order to comply with these requests, we
analyzed different representations of function blocks: IEC
61499, Matlab Simulink and IEC 61131-3. The main
characteristics of each representation and also a comparison
of their advantages and disadvantages are detailed in the
following subsections.

2.1 The IEC 61499 Standard

The IEC 61499 standard is based on function blocks and has
evolved from the IEC61131-3 standard (see section 2.3),
widely used as a programming language by many PLC
manufacturers (Lewis, 2001; Vyatkin, 2011). The standard is
starting to win the interest of more and more researchers,
process control engineers and manufacturers because of the
important benefits it brings: the possibility of implementing
fully distributed applications, the modularity and reusability
of the function blocks, reconfiguration, the hardware platform
independency etc.

As presented in (FBDK, 2008) IEC 61499 function blocks
are made of 2 areas, one for execution flow control, and one
for data flow control which also runs the function block
algorithm (see Fig. 1).

Fig. 1. IEC 61499 function block.

The execution sequence is as follows: when an event arrives,
the execution control function is activated and notifies the
resource scheduling function. This starts the algorithm
execution that uses the input data flow to compute the values
for the output data flow. The resource scheduling function is
notified when the algorithm ends and it activates the
execution control function that generates the output events.

CONTROL ENGINEERING AND APPLIED INFORMATICS 83

According to the IEC 61499 standard, function blocks can be
basic (when algorithm equations are defined inside the FB, as
described before), service interface (a type of basic FB used
for developing graphical user interfaces GUI elements,
communication services, or interfaces to hardware
components) or composite (when the FB is made of several
basic FBs chained at both event and data levels).

Keeping in mind the representation requests of the library
components, this representation provides the following
advantages:

- it is based on an open standard which makes it possible
for unified algorithm development for all users that want
to contribute to the library development;

- it is hardware independent which results in the
possibility of implementing the developed functions on
any PLC supporting this standard, no matter the
manufacturer;

- reusability and reconfigurability are easily implemented
by the standard specifications;

- it allows the process engineers to divide the controlled
object into several less complex subsystems that are
more easily monitored. Each of these subsystems can
therefore be treated separately and the control algorithms
employed are more generic and can be reconfigured to
work with similar dynamic performances for any of the
subsystems;

- the standard’s modular structure contribute significantly
to the generic nature of these algorithms in the sense that
the same algorithm can be used in different system
components with a minor input/output and parameter
reconfiguration effort;

- it simplifies the design and understanding of complex
control systems by including encapsulation (each
function block is presented as on input/output box, thus
hiding its internal algorithms) and hierarchy (composite
function blocks can be developed to accomplish specific
functions, thus offering the possibility of using a top-
down decomposition approach);

- it allows the definition of specific communication and
process interface function blocks;

- free development and runtime environments are
available for function block design and testing ((FBDK,
2008); FBench, 4DIAC etc.);

- the researchers’ and manufacturers’ grown interest in the
standard development from the last years;

- allows defining the FB execution order since the
functions are event-triggered and are executed based on
the chain of events. This allows designing more efficient,
both synchronous and asynchronous applications.

On the other hand, there are some disadvantages of the IEC
61499 standard, like:

- the free development and runtime environments are not
mature and have some issues that may make some
algorithms to block at execution. This can be overcome
by a rigorous design of the algorithms or by using a
commercial tool like ISaGRAF;

- the verification and validation of the function block
applications can be difficult. One solution is presented in
section 6;

- possible un-deterministic behavior because of poor
standard information regarding the management of
multiple input events that may come in a short period of
time;

- lack of devices from which can run this standard
(including some from manufacturers like Allen Bradley,
Centris Technologies, Motorola, TCS, iMonitor etc.)
resulting in a low industrial adoption;

- difficult to commission and maintain because of the
primitive development tools. This can be overcome by
using a commercial tool like ISaGRAF. Still we must
keep in mind that there are differences in FB
interpretation between the free tools and ISaGRAF.

2.2 Matlab functions

Matlab is a tool for mathematical computation, with a large
number of implemented functions for numerical analysis,
process control, optimization etc. It is widely used especially
for modeling, simulation and analysis of process control
systems. The Simulink tool from Matlab allows
implementing block diagram applications based on function
blocks with the generic representation presented in Fig. 2.

Also, Matlab has a specific component called “Simulink PLC
coder” that allows converting algorithms to a function block
representation based on IEC 61311-3.

Fig. 2. Simulink block.

Compared to IEC 61499, the Simulink representation
provides the following advantages:

- strong computational power and a large number of
implemented functions;

- possibility of testing and validation of the functions by
using process simulation blocks;

- generation of IEC 61131 code (using the PLC coder
module) compatible with the integrated development
environment (IDE) used by most important PLC
manufacturers (including B&R Automation Studio,
PLCopen XML, Rockwell Automation RSlogix 5000,
Siemens SIMATIC STEP 7, and 3S-Smart Software
Solutions CoDeSys).

Still, there are important disadvantages that sustain that this
representation can’t be used in the algorithm library:

- it is not open;
- the reusability features are not strongly sustained by the

block definition as any modification of a block needs to
be done in its every occurrence;

84 CONTROL ENGINEERING AND APPLIED INFORMATICS

- developing distributed applications can be done only
between communication computers, using an additional
Matlab tool;

- it requires greater computational resources;
- it is oriented more on research use rather than industrial

use which results in little or no interest in the
development of process interfaces and communication
objects;

- cyclic execution of all the functions.

A transformation model between Simulink and IEC 61499
was presented in (Yang and Vyatkin, 2010; Yang and
Vyatkin, 2012). As was presented in (Yang and Vyatkin,
2012) the advantages from the Simulink representation can
be used in the IEC 61499 representation by bridging the two
function models using a transformation method. This
provides an easy verification and validation method for the
applications developed based on the IEC 61499 standard.

2.3 The IEC 61131-3 standard

The IEC 61131-3 standard was the first attempt to create a
unified programming language for all PLCs. Even if it was
designed suggesting the portability of code, this was never
materialized due to its hardware dependency. Like IEC
61499, the representation mode is based on function blocks
but without the possibility of controlling the event flow. The
main PLC manufacturers (like Allen Bradley, Siemens,
HIMA, GeFanuc, Mitsubishi etc.) use for logic programming
software tools that are compatible with the IEC 61131
standard.

The representation of the IEC 61131-3 function block is
shown in Fig. 3. A comparison between IEC 61131-3 and
IEC 61499 was done in (Dai and Vyatkin, 2009; Bezak,
2012). The studies conducted by (Gerber et al., 2008; Dai and
Vyatkin, 2009) also present the steps needed for the
migration from IEC 61131-3 to IEC61499, empathizing the
limitations of such actions.

Fig. 3. IEC 61131-3 function block.

The IEC 61311-3 representation has many advantages that
made it the most used PLC programming method (Lewis,
1995). They were kept also in the IEC 61499 representation.
In addition, the following advantages are specific for the IEC
61311-3 representation:

- widely accepted by PLC manufacturers;
- there are many robust tools that allow programming

based on this standard. As a result many applications,

especially in discrete domains like a manufacturing, are
programmed using on this standard.

As this is the IEC 61499 standard’s ungraded version it is
natural that it has important disadvantages over it:

- it doesn’t support the development of distributed
applications;

- the code reusability is limited (or not possible at all)
because the IDE for application development used by the
PLC manufacturers use different syntax or semantics of
the certain programming structures (Dai and Vyatkin,
2009);

- the application is executed according to the cycle time
depending on the control hardware. This may lead to
different response times on different controllers;

- when developing an application, the function blocks
have to be arranged in the sequential order of execution.

The comparison presented in this section empathizes the
advantages of the IEC 61499 standard in terms of openness,
reusability and implementation of distributed applications
over the other two commonly used representations, IEC
61131 and Simulink. Also, the current increasing interest in
the standard development and in its rapid industrial
integration presented it as the best candidate for the library
algorithm representation.

3. INTEGRATION OF THE LIBRARY INTO ONLINE
APPLICATIONS

The library will include a large variety of mathematical
functions and process control algorithms starting with simple
ones (like the PID algorithm, functions for pump/motor
start/stop etc.) and evolve towards more complex ones (like
signal processing, system identification, strategies for hazard
and risk management, fault analysis and assessment, etc.). In
order to ensure the correctness and reusability of the
functions provided, we designed a complex architecture able
to provide support for all stages that are needed. The
proposed application integration architecture is presented in
Fig. 4.

The architecture involves two main components: a virtual
platform for algorithms testing and validation and an on-line
support of application that provides open access for the
library components and also allows adding implementation
results and process feedback.

The library will allow users to view and download different
algorithms, to add new ones after they were tested and
validated by the registered users, or to add process feedback
that will help improve the algorithms and optimize them for
specific processes. The algorithms will be written based on
the IEC 61499 standard and will have associated descriptions
that will give the user information about their functionality,
the process where they can be applied and feedback from
other users regarding their performance after the
implementation in an operating plant. In order to allow
reusability with no or little configuration changes, the
algorithms will be provided as files containing the definition

CONTROL ENGINEERING AND APPLIED INFORMATICS 85

of the function block. This function block will be represented
based on a guide and an open standard so that it can be
included in the existing control logic of the plant. The access
to the library will be possible using an online open
application that will connect to a database for solving the user
requests. Based on its functionality and the resources needed
for its execution, this function block can either be integrated
in the control logic of the process (offline integration) by use
of specific process interfaces (PI) or can be run remotely in
the library (online execution). If the FB is executed online,
the communication to the process will be done through an
OPC communication interface at the function block level that
will send the required information to the process interface by
the use of the Internet. The communication speed will depend
in the selected operation mode, the algorithm complexity and
the controller resources.

Fig. 4. Library integration into an online structure application

The library will also allow registered users to accept or
discharge the uploaded control algorithms based on how they
conform to the defined guide. These registered users will also
have access to the virtual platform component of the library,
consisting in a process simulation application, process
modeling, optimization and system testing and validation
tools. This component, along with the algorithm description
of the implemented functions and the library guide will help
registered users to decide whether an algorithm can be added
to the library or not.

The library administrator will be the “bookkeeper” that will
manage the database, taking care of both the structural

aspects (database organization and search engine, structure,
users etc.) and also the content aspects.

The algorithms can be downloaded directly on a process
controller, or can be run on the web library. For this, process
interface function blocks will be developed. This will allow
accessing algorithms results through common
communication standards like OPC, Modbus, Profibus, etc.

4. LIBRARY DESIGN GUIDE

Because of the great importance of the correct and efficient
management of all possible use cases we must ensure that the
algorithms added to the library are extremely reliable and
efficient. For this it is necessary to consider the recent
progress in the field of process automation from both
theoretical and practical view, of computer science and of
mathematical analysis.

The algorithm library must conform to specific documenting
and implementation standards in order to ensure a uniform
interface with the user, easy maintenance and the adaptability
and portability needed for the execution on several
computing platforms or applications. Such standards were
defined for the libraries of international use BLAS (Dongarra
et al., 1990), LAPACK (Anderson et al., 1999) and also for
the automation library SLICOT (Benner et al., 1999).

The usability of the library will be enhanced if the user could
run their components in a widely accepted software programs
like MATLAB, Mathematica, Python, or Octave for the
advanced theoretical applications or in a widely used
automation standard like IEC 61131 (IEC, 1993) or IEC
61499 (Lewis, 2001) for the practical implementation. Such
interfaces would allow increased flexibility and would
simplify experimenting and combining different components.

The library will include at least two types of components:
main components, fully documented, that involve a complex
logic and can be used as they are in the process control
application, and auxiliary components, which are used by the
main components, involve less documentation and do not
solve a process control problem on their own.

The library architecture presented in Fig. 5 is organized in
sections, based on the problem solved and the type of
industry on which they apply. Each section may have several
subsections.

The sections for the algorithm type are:

- basic functions (refers to basic functions that are not yet
implemented in FBDK or other free development
environments and are needed in other algorithms);

- process interface (probably developed by
manufacturers);

- communication interface (OPC, Modbus, Profibus etc.);
- control (PID, RST, cascade controller, bipositional

controller, tripositional controller etc.);
- control sequence (for example an Enercon controller for

wind turbine or a Schneider frequency converter need a
certain sequence for sending set-points);

86 CONTROL ENGINEERING AND APPLIED INFORMATICS

- safety (fault detection, fault accommodation, risk
management etc.);

- modeling and optimization (Particle Swarm
Optimization – PSO, Model Predictive Control - MPC,
Genetic algorithms etc.).

Fig. 5. Library architecture.

An example of the process type structure is:

- universal (sau general) (for example basic functions,
process or communication interfaces do not depend on
the type of process where they are used);

- oil and gas (refinery, warehouse, oil/gas loading and
unloading terminal, etc.);

- chemical;
- power (wind power plant, photovoltaic park, nuclear

plant, etc.);
- water and wastewater;
- manufacturing;
- building.

The library should not include an unnecessary large number
of components. In order to implement similar tasks, often
only one component can be used, with one or more
functioning modes which can be set up by external
parameters.

The library components that were identified in section 3 must
be designed keeping in mind the correlation and
compatibility between them in order to ensure the
consistency of the results.

The main criteria for adding an algorithm to the library are:

- utility: to solve a problem of practical need;
- robustness: to provide either the correct results or an

error or warning flag if the algorithm is used incorrectly
(the problem is not well conditioned or does not apply to
the class of problems for which that algorithm was
designed);

- numerical stability and precision: to provide precise
results as expected in the mathematical representation;

- execution speed: to be as high as possible, while keeping
in mind the robustness, numerical stability and precision
aspects.

In order to organize the data and algorithms in the library we
need to define a unified strategy and rules for algorithm
representation. These rules must ensure the performance
criteria needed for the components of the library in order to
be possible to accomplish the main objective. Considering
the above mentioned we can say that the main objective of
the paper is to establish the functionality of an open library of
reusable algorithms for the advanced control of industrial
processes. The following are the rules for the algorithm
representation:

- reusability of the developed algorithms with minimum
reconfiguration effort;

- open standard of representation;
- portability between different software development tools

based on the selected representation;
- hardware independency (the same algorithm can be used

on controllers from different manufacturers);
- adaptability to the process time.

The correspondence of the considered implementation
standards to these criteria will help us find the most suitable
solution for algorithm representation.

5. REPRESENTATION OF THE REUSABLE CONTROL
ALGORITHMS IN THE LIBRARY

Due to the mentioned advantages, the algorithms in the
library will be represented according to the IEC 61499
standard, based on the comparison presented in section 2. The
exemplification of this model of representation will be made
using a simulated discrete process having a PID regulatory.
The process has the following transfer function:

05263.01053.0

01316.002632.001316.0
)(

2

2





zz

zz
zH (1)

The positional PID controller for discrete processes
implements the following algorithm:

)(**

1

1
0







 

NN
S

D
P

n

i
iISpnp

EE
T

T
K

EKTKEKYY
 (2)

where KP, KI and TD are respectively the proportional,
integral and derivative parameters of the PID controller, TS is
the sampling period and Ek is the error between process value
and set-point at different earlier algorithm execution
moments.

The closed loop control of the process is illustrated in Fig. 6.
The PID algorithm has as input the difference between the
desired set-point and the process value. The output from the
PID block controls the execution element (the exit valve in
our example). The response of the process after this
command is measured and compared to the set-point to
analyze if the desired state was reached. When there is no
error, the PID algorithm stops its command over the
execution element and the process goes into a steady state. In

CONTROL ENGINEERING AND APPLIED INFORMATICS 87

Fig. 6 we empathized how the PID algorithm will be
integrated in the process through an interface. When the PID
is developed according to the IEC 61499 standard, this
interface is a SIFB (Service Interface Function Block).

Fig. 6. Closed loop control.

For IEC 61499 representation of the PID algorithm we used a
model presented in (Lewis, 2001) and implemented it in the
free FBDK (Function Block Development Kit) environment
(FBDK, 2008).

The algorithm is developed as a composite function block
with the structure presented in Fig. 7 and Fig. 8. The
component basic function blocks are PID_CALC,
DERIVATIVE_REAL and INTEGRAL_REAL. The INIT
event is used to initialize the internal variables of the
corresponding function block. The PID algorithm is run when
the RUN event is activated. In auto mode (MODE = 1) the
PID_CALC FB computes the ERROR variable based on the
PV and SP values and passes the result to
DERIVATIVE_REAL and INTEGRAL_REAL. These
blocks are executed when the EX event is activated. After
that these two FBs send the values for the computed
derivative and integral components of the PID algorithm and
set the POST event in FB_CALC. Here, based on the KP, KI
and TD parameters it calculates one step of the PID algorithm
and outputs the value of the command through the XOUT
variable. In manual mode (MODE = 0) the output is
forwarded as the value of the MANOUT input. The CYCLE
variable sets the sampling period for the algorithm execution.

Fig. 7. PID composite function block.

In this representation, the running of the algorithm can be
easily adapted to the process time by the use of events. The
RUN event can be set to either a cyclic execution signal or
triggered by the change of the PV or SP values. This provides
great flexibility and helps improve controller’s execution

performance. The reconfiguration of the algorithm can be
done by modifying the basic function block network.

Fig. 8. PID Function block specification.

For comparison, we also represented the algorithm in
Simulink using the existing PID function block. The
Simulink representation is presented in Fig. 9.

The block allows setting the parameters for Kp, Ki, Kd. The
block input is the error between set-point and process value.
The output is the control signal for the valve. The block is
executed at each sample time.

Fig. 9. PID algorithm in Simulink.

The main disadvantage there is no access to the structure of
the algorithm, so no reconfiguration can be done in this form.
Still, one can build a new PID algorithm using de blocks
provided by Simulink (including derivative, integral and
transfer function blocks).

Similarly, we represented the PID algorithm based on the
IEC 61131 standard on a HIMA H51q controller using the
ELOP II programming environment. ELOP II has a function
block with the PID algorithm already implemented, as can be
seen in Fig. 10.

This representation follows the discrete PID equation (1). The
process value (Controlled variable), set-point (Reference
variable), PID Structure (P, PI, PD or PID) and parameters,
sampling period, processing pulse and the option for a
correcting parameter (Y Value) must be set.

Even if the function block is accessed at each controller time
cycle, the algorithm is only executed when the processing
pulse is set, thus giving functionality similar to the IEC
61499 representation from the control of execution point of
view.

88 CONTROL ENGINEERING AND APPLIED INFORMATICS

Fig. 10. IEC 61131 PID algorithm in ELOP II.

The block implemented in Elop II gives some options for
controller reconfiguration, but this aspect may differ based on
the development environment. For developing new
algorithms that involve complex calculations little support is
provided based on the limited library of existing function
blocks.

After representing the PID algorithm in different formats, we
concluded that from the development point of view, the
IEC61131 and Simulink representations were easier to
implement because of the availability of an already defined
PID function block and of the use of an user-friendly
environment compared to the rudimentary FBDK
environment. Still, the Simulink PID block does not allow
the user to reconfigure its parameters in run-time. From the
reusability point of view, the blocks developed using Elop II
does not allow exporting developed function blocks outside
of the project application. The blocks developed in Simulink
can be exported to other Simulink applications, with the
limitations that come if using different Matlab versions. The
IEC 61499 representation was more difficult to implement
because of the lack of a process control library in FBDK.
This aspect will be solved while developing the library, as
both common and complex control algorithms will be
represented as function blocks. This also adds the possibility
of adding functionalities like dynamic reconfiguration or
distributed execution to the algorithm. From the reusability
point of view, the function blocks developed in FBDK can be
exported to any other IEC 61499 compliant application. All
these, added to the advantages mentioned in section 4.1.
motivated us to choose IEC 61499 as the algorithm
representation in the library.

6. VERIFICATION AND VALIDATION OF THE
CLOSED LOOP APPLICATON

Verification and validation of the closed loop application
refers to ensuring that the process response follows the
system requirements. This implies modeling both the process
and the controller and analyzing the closed loop response at a
specific simulated input. While doing this in Simulink is an
easy task, IEC 61131 and IEC 61499 require a greater effort.
This is because most of the programming environments
provide no support for system modeling. A solution for
minimizing the effort of the verification and validation stages
in IEC 61131 and IEC 61499 applications was presented in
(Yang and Vyatkin, 2012; Yang and Vyatkin, 2010). This
solution recommends the modeling and simulation of the

process using Matlab Simulink and then applying a
transformation method from the Simulink model to IEC
61499. A similar and even easier transformation method can
be imagined also for the IEC 61131 standard and also
specific modules like PLC Coder from Matlab or PLC Link
can be used to automatically transform Simulink models into
IEC 61311-3 function block networks.

We applied this method by creating a Simulink model of the
PID controller similar to the IEC 61499 controller presented
in section 5. We added the transfer function of the process
according to (1) and analyzed the closed loop response.

Considering a sampling period of 0.05s we obtained the
results presented in Fig. 1 for the following values of the PID
parameters:

KP = 350
KI = 300
TD = 50

Fig. 11. Closed loop process response.

As this closed loop response satisfies the process
performance requirements, we can say the PID controller was
validated and we can also use the IEC61499 PID
representation for process implementation.

Fig. presents the controller in its Simulink and IEC 61499
representation, and the correspondence between blocks. By
applying the transformation, there is one IEC 61499 basic
function block for each Simulink block. Every Simulink
input and output parameter has a corresponding IEC 61499
input or output parameter. The State-flow charts implement
the IEC 61499 ECC functionality, allowing block execution
in specific conditions.

Fig. 12. Applying the transformation method between
Simulink and IEC 61499.

CONTROL ENGINEERING AND APPLIED INFORMATICS 89

A more complex control algorithm was implemented for the
control of the level in a heating tank, by modifying the water
input flow. For this, we chose a cascade control using two
PID regulators. The outer loop will set the reference for the
inner loop according to the heating tank level. The inner loop
will control the valve for the tank input flow considering also
the steam flow perturbations. The functional representation of
the system is presented in Fig. . The red square represents the
cascade controller. The blue square represents the inner
control loop without perturbations.

Fig. 13. Functional representation of the heating tank closed
loop system.

Considering the inner loop system without perturbations we
selected a P controller for the flow control. By setting up the
system requirements in terms of performance and stability,
we identified this system with a second order process and
obtained the following value for the Kp parameter:

KP = 1.56

For the outer loop we selected a PI controller. We computed
the system transfer function in the absence of perturbations
and obtained the following parameter values:

KP = 2

KI = 200

As this is a continuous system, we modeled the equivalent
discrete controller and compared the result. The different
closed loop responses are presented in Fig. .

Fig. 14. Heating tank closed loop response.

After the control rules were established in Simulink, we built
the IEC 61499 model by applying the same transformation
method described before. The resulting function block
system can be seen in Fig.

Fig. 15. IEC 61499 representation of the heating tank
controller.

In the Simulink model, the execution is started by the step
block that sets the level set-point. The order of execution
depends on the linking of the blocks and is dictated by the
Simulink solver. It can be displayed on each block. Each
block is executed at each program cycle. This order of
execution was considered when developing the IEC 61499
model. The IEC61499 application execution is launched by
initiating the input and output blocks using the INIT event. A
change in the level input activates the IND event. This
executes the PI block. The end of the PI block execution
provides a set-point for P and launches the DIV block. It
computes the process value and activates the execution of the
P controller. As can be seen, the IEC 61499 standard
provides more efficiency and reduced total execution times as
only when changes occur blocks are processed.

6. CONCLUSIONS

This paper presents the solution for the selection and
representation of the components of an open library for
process control algorithms. The comparison between the
different representation standards empathized a series of
advantages and disadvantages, relative to the established
performance criteria. We concluded that IEC 61499 standard
is the best choice for representing the algorithms. Starting
from these advantages we proposed a design and a functional
architecture for the library and a solution on how that library
can be integrated in a real-time application. We showed how
Simulink can be used for the verification and validation of
the algorithms included in the library by applying a
transformation method on the PID controller for a second
order system and on the cascade controller of a complex
system.

Future work will include the validation of the proposed
solution on an industrial scenario, developing complex
algorithms in the IEC 61499 standard, defining the library
structure and use-cases so that in the end we can develop and
manage a functional on-line open library for process control.

90 CONTROL ENGINEERING AND APPLIED INFORMATICS

REFERENCES

Anderson, E., Bai, Z., Bischof, C., Demmel, J., Dongarra, J.,
Du Croz, J., Greenbaum, A., Hammarling, S.,
McKenney, A., Ostrouchov, S., and Sorensen, D..
(1999). LAPACK Users' Guide: Third Edition. Society
for Industrial and Applied Mathematics.

Benner, P., Mehrmann, V., Sima, V., Van Huffel, S. and
Varga, A. (1999). SLICOT - A subroutine library in
systems and control theory. Applied and Computational
Control, Signals, and Circuits, vol. 1, p. 499 – 539.

Bezák, T. (2012). Usage of IEC 61131 and IEC 61499
Standards for Creating Distributed Control Systems.
Publ. Univ. Verlag.

Dai, W. W., and Vyatkin, V. (2009). A Case Study on
Migration from IEC 61131 PLC to IEC 61499 Function
Block Control. 7th IEEE International Conference on
Industrial Informatics – INDIN 2009, p. 79 - 84.

Dongarra, J., Du Croz, J., Duff, I. S., and Hammarling, S.
(1990). Algorithm 679: A set of Level 3 Basic Linear
Algebra Subprograms. ACM Trans. Math. Softw.

FBDK. (2008). Holobloc Inc. Resources for the New
Generation of Automation and Control. Function Block
Development Kit (FBDK), www.holobloc.com.

Gerber, C., Hanisch, H. M., and Ebbinghaus. S. (2008_.
From IEC 61131 to IEC 61499 for Distributed Systems:
A Case Study. EURASIP Journal on Embedded Systems,
p.1-8.

IEC International Electrotechnical Commission. (1993)
Programmable Controller - Part 3: Programming
Languages, IEC 61131-3 Standard. International
Electrotechnical Commission, Geneva.

Lewis, R. W. (1995). Programming industrial control
systems using IEC 61131-3. IEEE Control
Engineering, The Institution of Electrical Engineers.

Lewis, R. W. (2001). Modelling control systems using IEC
61499: applying function blocks to distributed systems.
IEE, U.K. – Control Engineering Series 59.

Ocheana, L., Rohat, O., Popescu, D., and Florea, G. (2012).
Library of Reusable Algorithms for Internet - Based
Diagnose and Control System. 14th IFAC Symposium on
information Control Problems in Manufacturing, vol. 14,
part 1.

Strasser, T., Auinger, F., and Zoitl, A. (2004). Development,
implementation and use of an IEC 61499 function block
library for embedded closed loop control. 2nd IEEE
International Conference on Industrial Informatics
INDIN 2004, p.594 – 599.

Vyatkin, V. (2011). IEC 61499 as Enabler of Distributed and
Intelligent Automation: State of the Art Review. IEEE
Transactions On Industrial Informatics, vol.7, issue 4, p.
768 – 781.

Wei, Y. (2001). Implementation of IEC61499 Distributed
Function Block Architecture for Industrial Measurement
and Control Systems (IPMCS). Total Enterprise
Solutions Conference, ICAM.

Yang, C. and Vyatkin, V. (2010). Model Transformation
between MATLAB Simulink and Function Blocks. 8th
IEEE International Conference on Industrial Informatics
INDIN 2010, p.1130-1135.

Yang, C., and Vyatkin, V. (2012). Transformation of
Simulink models to IEC 61499 Function Blocks for
verification of distributed control systems. Control
Engineering Practice, vol. 20, issue 12, p. 1259 – 1269.

