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Abstract: This paper presents a new approach of parameters identification using Particle Swarm 
Optimization (PSO). This new technique is applied to a nonlinear system which is the conductivity of a 
low pressure discharge lamp. The latter is considered as the most important component of a plasma 
reactor used for water ultraviolet disinfection. PSO, an intelligent meta-heuristic for hard optimization, is 
shown to be a very efficient tool for parameters identification of complicated nonlinear physical systems. 
A comparison between experimental and simulation results proves the efficiency of the proposed method. 
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1. INTRODUCTION 

The mathematical modelling is used for a better 
understanding of real physical systems. Generally, the model 
identification is based on local convergence methods. 
However, the performance of these classical approaches are 
only limited for linear convex models. In the case of no 
convex optimization problems which are encountered in a lot 
of practical physical and engineering applications, heuristic 
approach may emerge as valuable solution. 

In reality, there is no common approach to nonlinear systems 
identification and some methods are available for specific 
systems classes. 

In literature, we find many global optimization research 
methods such as the simulated annealing and the genetic 
algorithms, but these techniques need many parameters to set 
and can have problems with time convergence (Prez et al., 
2007; Yin et al., 2010). 

Since, Genetic Algorithm (GA) has the global searching 
ability in complex space, it has been widely used in nonlinear 
system identification, and however it has the shortage of slow 
convergence speed and pre-maturation. The Simulated 
Annealing (SA) is an attractive alternative to traditional local 
search method as it is quite easy to implement.   

The most negative aspect of these two stochastic methods is 
their lack of memory, which limits the search and 
convergence ability of the algorithms. However, Particle 
Swarm optimization (PSO) emerges as a powerful stochastic 
optimization method which overcomes this problem (Clerc,  
1999; Eberhart et al., 1998).  

Particle swarm optimization (PSO) has attracted much 
attention in the last ten years in the stochastic search 
algorithm. So many complex problems have been solved 

using this new technique such as parameters identification 
problems for nonlinear systems. 

The discharge lamp, which represents the most important 
component of a plasma reactor, is the typical example of the 
physical systems modelling. But physical models, based on 
the full equation of plasma, are very complex and need lamp 
data as pressure or gas filling composition that are not usually 
available, and a large calculation time is necessary. The work 
of Zissis and Damelincour describe a discharge lamp 
conductance by a differential equation, named G-model, 
using coefficients considered as unknown parameters (Zissis 
et al., 2002; Zissis, 2005). Such parameters were identified 
from input-output measurements with different classical local 
techniques (Blanco et al., 2007; Blanco et al., 2011; Billing et 
al., 1982). 

In this paper we present a new method to conductivity 
parameters extraction using the PSO algorithm as an 
identification tool. The effectiveness of PSO is demonstrated 
to show its convergence properties.  

The paper is organized as follows. Section 2 states the 
conductivity model of a discharge lamp. Section 3 presents 
the PSO method. Section 4, describes the steps to identify the 
low pressure discharge lamp conductivity model with PSO 
algorithm. Section 5 gives results showing the effectiveness 
of the proposed method. 

2. THE CONDUCTIVITY MODEL OF DISCHARGE 
LAMP 

In view of the importance of water in the human life, its 
treatment and conservation are essential in an urgent way on 
most of planet and particularly on the Mediterranean 
circumference. Research in this field presents a major 
priority. In the above mentioned areas, the requirements of 
water in the rural zones are important and generally more 
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difficult to satisfy because of dispersion of the habitat and the 
limited energy installations. 
All resources must thus be mobilized including on the level 
of the habitat individual, recovery, storage of rain water, 
exploitation of the urban tablecloths by well, the water used 
by station of purification. However these resources can be 
factor of diseases transmission when their exploitations are 
badly led and the water treatment is badly adapted or 
inadequate. 
The water disinfection by ultraviolet radiations was 
developed in North America these last twenty years. This 
disinfection technique proceeds without any addition of 
chemicals and none under chemical is formed. Also, this 
disinfection is reliable and reveals a simple use with a great 
profitability and a high effectiveness.  
For the user, handling does not present a danger. In fact, the 
lamps are protected and the system is in safety. The process 
of water disinfection by ultraviolet radiations is a cylindrical 
stainless reactor. It is equipped with mercury low pressure 
discharge lamps, emitting with the germ-destroying wave 
length of 254 nanometres. 
The radiant energy flux emitted by a discharge lamp as the 
arc voltage is a complex function of the current and time. 
They depend on the geometrical characteristics of the lamp, 
the nature of rare gas, the pressure and the temperature. The 
variations are very complicated and have a behaviour which 
depends on internal dynamics whose equations are not 
exactly given, what makes difficult the determination of a 
general model, which characterizes the emitted flows 
variation or the arc voltage according to the arc current and 
thereafter according to time. 

For simplicity reason, we are going to concentrate our study 
on the low pressure discharge, considered as the most 
important component of the plasma reactor. 

Aiming to study the interaction between discharge lamps and 
electric source circuits, it’s necessary to have a model of the 
lamp which is neither simplest nor of a high complexity. The 
polynomial approximation of the discharge lamp conductance 
time variation which is derived from a physical complex 
model, had been recognized to be efficient in simulation of 
high complexity degree circuits. 

Many authors tried to present mathematical models for the 
arc conductance aiming to provide significant representation 
of the system behaviour. Unfortunately, all these models are 
restricted by approximations and experimental reasons. 

To obtain models for discharge lamps is not easy due to the 
negative impedance of discharge lamps and the complexity of 
physical phenomena that occur inside the discharge tube. 
Moreover, discharge lamps can be operated at different 
frequencies with electromagnetic or electronic ballasts. These 
different operating conditions can affect lamp behavior. For 
instance, it is well known that the I-V discharge lamp 
characteristic changes with frequency, so lamp models should 
be able to reproduce and predict lamp behavior under 
different operating conditions. 

 A discharge lamp inserted in an alternative source circuit 
(Fig. 1) is a nonlinear element; this nonlinearity is due to the 
exponential nature of the conductivity dependence on the 
internal energy of the lamp. The study of a complex system 
consisting on an electronic power supply and a highly non-
linear element needs a competence combination from several 
disciplines.  

V arc 
Discharge 

Lamp V  

i  
Magnetic ballast 

  

Fig. 1.  A discharge lamp inserted in an alternative circuit. 

Discharge lamps need some electric circuits for their correct 
operation. It is realized through ballasts, which can be 
constructed from classical passive components only 
(magnetic ballast) or from semiconductors and passive 
components (electronic ballast). But majority of discharge 
lamps are powered by magnetic ballast. Such circuits have to 
ensure three general functions which are start of a discharge 
lamp, a lamp relighting each half cycle and control of current 
through a discharge lamp. 

Looking at the existing literature, we noticed that very 
complex physical models have been developed for almost 
any type of discharge lamp. But in many cases the lamp 
models developed by the specialists are incompatible with the 
software used by the other community. Thus, electrical 
engineers tried to create some simple lamp models based 
essentially on experimental I-V characteristic of the lamp. In 
this work, experimental data have been obtained from a 70W 
discharge lamp operating at 50Hz inserted in an alternative 
circuit (Fig. 1) and 2500 measurements (input-output) are 
considered. 

Fig. 2 and Fig. 3 show the real lamp voltage and current 
waveforms. Fig. 4 shows the lamp I -V characteristic at 
50Hz. 
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Fig. 2. Measured voltage waveforms. 
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 Fig. 3. Measured current waveforms. 
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Fig. 4. Real lamp I - V characteristic. 

Experimental results show that the discharge lamp is a very 
complex nonlinear system. 

The lamp conductivity is deducted from voltage v(V) and 
current i(A) of the lamp in the following equation: 

( ) ( )1

( )
−Ω =

i A
g

v V
                  (1) 

Fig. 5 shows the lamp conductance waveforms deducted from 
experimental measurements and equation (1). 
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Fig. 5. Measured conductance waveforms. 

The polynomial approximation of the discharge lamp 
conductance time variation, which is derived from a physical 
complex model, had been recognized to be efficient in 
simulation of high complexity degree circuits. Many authors 
tried to present mathematical models for the arc conductance 
aiming to provide significant representation of the system 
behaviour; unfortunately all these models are restricted by 
approximations and experimental reasons.  

The mathematical modelling is used for the better 
understanding of real physical systems. The description of the 
system is realized by the number of mathematical equations. 
They try to characterize the objective reality more or less 
complex. The creation of a model is based on these general 
steps: a task analysis and formulation, a mathematical model 
construction, an identification of model parameters, a 
mathematical model solving, a verification of the model and 
finally results interpretation (Kopernicky, 2008.  

The modelling of discharge lamp is the typical example of 
the physical systems modelling. We present in the following 
the most known models. 

2.1. Mayr’s nonlinear model 

0

1 1g hE i
g t w θ

∂
= −

∂              (2) 

Where h, E, g, i, w0 and ϴ are respectively the arc length, the 
electrical field in the arc, the arc conductance, the arc current, 
the time constant of the arc and the dissipated energy at the 
time origin. 

The equation (2) can be written as: 

2g i g
t

δ β
∂

= −
∂

             (3) 

Where δ=1/w0 and β=1/θ 

In fact, the parameters β and δ cannot be considered as 
constant values if all physical phenomena in the lamp such as 
the temperatures profiles and other parameters of the plasma 
are considered. 

2.2. Herrick’s nonlinear model 

Based on equation (3), Herrick proposed a general nonlinear 
polynomial model (equation 4) justified by experimental 
reasons only (Herrick 1980). 

4 3 2 4 3 2
4 3 2 1 4 3 2 1

g a i a i a i a i b g b g b g b g
t

∂
= + + + − − − −

∂       
(4) 

ai and bi are constant parameters to be estimated using 
parameters identification algorithms. 

In fact the number of terms in this model depends on the 
physical characteristics of the lamp.  

References describe a discharge lamp conductance by a 
differential equation named G-model. The parameters of the 
lamp conductance “g(t)” are given by means of a single 
differential equation of the type: 

2
2 2

1 2
dg a i (t) b g(t) b g (t)
dt

= − −            (5) 

Where i(t) and g(t) are the lamp current and conductivity. 

The work of Stambouli (Sambouli M., 1984), describe a 
discharge lamp conductance by a differential equation of the 
first order with the same form of equation (5). In this work, 
coefficients a and bi can be determined experimentally from 
the voltage-current characteristics or from physical 
evaluation and have physical meaning. 

a2, b1 and b2 are parameters to be identified, a2 means input 
energy to the plasma, b2 means radiation losses, b1 means 
thermal losses and the number of elastic collisions. 

Noting that there are many forms of discharge lamp 
conductivity model, but our work is based on the model of 
equation (5) which is linear with respect to parameters but 
nonlinear with respect to measure. 
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3. PARAMETER IDENTIFICATION USING PARTICLE 
SWARM OPTIMIZATION 

3.1. Overview of particle swarm optimization 

A fundamental part of engineering applications in systems 
simulation and control relates to system models, and 
considerable effort has been devoted towards developing 
methods to identify precise models together with accurate 
estimation of system parameters. To date a wide range of 
analytical techniques have been introduced to meet these 
demands. However, for non-linear systems, limited progress 
has been made using analytical methods. In responding to 
ever-increasing demands, nonlinear optimization techniques 
have been an alternative approach to cope with the need to 
adapt the system identification and parameter estimation 
methodology in response to inherent changes occurring in 
dynamic systems. Computational intelligence (which 
attempts to biologically emulate the adaptive evolutionary 
nature of living beings like reasoning, decision-making, 
learning, and optimization via a series of techniques) is one 
suitable technique for system identification and parameter 
estimation. 

The initial ideas on particle swarms of Kennedy (Kennedy et 
al., 1995) (a social psychologist) and Eberhart (Eberhart et 
al., 1998) (an electrical engineer) were essentially aimed at 
producing computational intelligence by exploiting simple 
analogues of social interaction, rather than purely individual 
cognitive abilities. So, Kennedy and Eberhart have originally 
proposed PSO algorithm. This algorithm works by 
initializing a flock of birds randomly over the problem space, 
where every bird is called as a “particle”. The particles 
remember the best solution found by itself and by the whole 
swarm along the search trajectory, than they update their 
velocity and position. 

Particle swarm optimization (PSO) is a stochastic search 
algorithm for nonlinear functions based on the reproduction 
of a social behavior. It was first introduced in 1995. Since 
then, it has been widely used to solve a large range of 
optimization problems. The algorithm was presented as 
simulating animal’s activities (Clerc M., 1999; Eberhart et 
al., 1998). 

PSO is based on an individual set arranged in uncertain way 
called particles which move in the research space and 
represents a potential solution. Each particle has a memory 
concerning its better visited solution as well as the capacity to 
communicate with its setting constituent particles. Based on 
this information, particle is going to follow a tendency; first, 
of its motivation to return toward its optimal solution, and 
second, of the relation to solutions found in its neighborhood.   

From local and empiric optima, the whole of particles goes, 
normally, to converge toward the global optimal solution of 
the treated problem.  

Based on the stated information of which it arranges, a 
particle must decide its next movement that is to decide its 
new velocity.   

It combines three information linearly:   

- The present position   

- The better performance   

- The best performance of its neighbors. 

In this paper, we haven’t explained the neighbors topology 
because it haven’t an large importance, but authors interested 
can see the work of Maurice Clerc (Clerc M., 1999). 

Recent implementations of the PSO have made use of 
dynamically changing inertia values. The weight factor 
usually starts with a large value, which decrease over time. 

The next figure show the particle evolution through work 
space, and explain how to move from a position to another, 
with references to the neighbors, and taking information 
about the better position of a particle in the swarm.  

Pi 

x 
Pg 

V(t) 

Present 
position 

Better 
performance 

Best performance 
of neighbors C1 

C2 C3 
V(t+1) 

 

 
Fig. 6. Vector diagram of a particle movement. 

Three fundamental elements for the calculation of the next 
displacement of particle: according to its own velocity, 
towards its best performance and the best performance of its 
best informant. 

The simplest way to calculate the true displacement starting 
from these three basic vectors is to make a linear weighting 
of it, thanks to confidence coefficients. 

As a deduction from the vector diagram of a particle 
movement (Fig. 6), the equations of a particle movement can 
be written as: 

v(t+ 1) = c1. v(t) + c 2.(Pi- x(t)) + c 3.(Pg- x(t))

x(t+1) = x(t) + v(t+1)




         (6) 

Where ci are confidence coefficients defined as: 

c1 is constant (confidence in its own movement) and must 
have an absolute value less than 1 (recommended 0.7 to 0.8); 
c2 and c3 (respectively confidence in its best performance 
and that of its best informant) are randomly selected with 
each step of time according to a uniform distribution so that 
c2+c3<4 (Clerc, 1999).  

Recent work done by Clerc (Clerc, 1999) indicates that use of 
a constriction factor may be necessary to insure convergence 
of the particle swarm algorithm but PSO algorithm with the 
constriction factor can be considered as a special case of the 
algorithm with inertia weight. 
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The new velocity is calculated from a linear combination of 
three elements, and then applied to the current position to 
give the new position. 

The implementation procedure of the PSO algorithm can be 
illustrated in the flowing chart in Fig. 7. Then, in the next 
part of this paper, we explain how to implement this chart 
step by step. All these algorigramme steps are detailed with 
references to our work parameters. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 7. Flowchart of PSO.  

Let’s consider X=[a2 b2 b1] the parameters vector to be 
identified (particles of the PSO algorithm). These three 
parameters are coefficients of the polynomial conductance 
model given in eqaution 5. 

This vector must minimize an error function called fitness 
function J(X). Steps of this algorithm are the follows: 

Step1: Generate randomly the initial population and set the 
initialized parameters, c1=0.79/MaxIter, where MaxIter is 
number of iteration and c2+c3<4. 

Step2: Randomly initialization of particles position and 
velocity X0 and V0. 

Step3:  Evaluate the fitness for each particle, the global best 
particle is chosen to be the particle with the best fitness. 
Substitute Xi vectors in J(X). 

Step4:  Find the vector X which gives the minimum value of 
J: this is the initial global minimum. 

Step5: Update position and velocity according to equation 
(6).Make sure that the updated velocity and position particles 
are not out of their limits, if it’s the case the over-limit 
elements are set to the corresponding limits.  

Step6: Go back to step3 until the stop conditions are 
attempted (number of iteration reaching the maximum or 
sufficient optimization error find).  

Step7: The best solution obtained during the optimization 
process is output in this step. 

In this paper, PSO is proposed for solving parameters 
identification problem of nonlinear physical system (a low 
pressure discharge lamp). Practical application of PSO leads 
us to allege that PSO is indeed more accurate, reliable and 
efficient at locating global optima than the local alternatives 
which can’t give good results.  

3.2. Application of the PSO for conductivity parameters 
identification  

Conductivity parameter identification problem is to estimate 
with PSO the parameters a2, b1 and b2 of equation (5) by 
using experimental data obtained from well-defined standard 
conditions (Liu A. et al., 2009; Liu L. et al., 2007).  

The fitness function is defined as a measure of how well the 
model output fits the measured system output (Kennedy et 
al., 1995; Alrashidi et al., 2010) . The system’s dynamics can 
be described using a differential equation such us: 

( ) ( , ( ), ( ))dg t f p g t i t
dt

=                          (7) 

Where g(t) is the lamp conductivity defined as its output and 
i(t) is the current which represent the lamp input. p is the 
vector of  the three unknown parameters (p=[a2 b2 b1]) and f 
is a nonlinear function.   

To formulate the optimization problem, equation (7) can be 
written with the next form: 

( , , )g f p g i=&                           (8) 

To identify p, the system model is introduced as:   

ˆ ˆ ˆ( , , )g f p g i=&              (9) 

From equation (8) and (9), the same input “i” is applied to the 
system and its model having the same structure of the real 
system. To evaluate the parameters to be identified, the real 
system output “g” is compared with that of the model. 

Hence, the optimization problem can be formulated as to 
minimize the fitness function defined by: 

[ ]2

1

ˆ( ) ( , )
N

i

J p g ti p gi
=

= −∑            (10) 
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Step2: Initialization of particles positions and  
velocities X0, V0.  

Step3: Evaluate the fitness for each particle.  
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equation (6).  
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Estimated output ĝ  
Identified parameter p̂    J(X)    

Real system  

System model   

Performance evaluator
 

  

PSO based identifier   

Where g(ti,p) and gi are, respectively,  the numerical solution 
of the mathematical model and experimental data point for 
the i-th data point. N is the total experimental data number. 

The next figure illustrate how to implement the identification 
procedure and prove that system identification is equivalent 
to a particle swarm optimization problem. 

 

 

 

 

Fig . 8. Diagram block of the PSO identification approach. 

First, the same input is presented both to the real system and 
its model. Then, measured and estimated outputs are used to 
calculate the fitness function with a performance evaluator. 
Based on the calculated function, the PSO identification 
algorithm performs the unknown parameter vector. 

As described in Section 2, low pressure discharge lamp 
conductivity model identification is an identification problem 
with nonlinear model structure. In the next section, we 
identify the conductivity parameters of the lamp from its 
measured current and voltage, and then we compare these 
parameters with the simulation results.   

4. EXPERIMENTAL RESULTS 

The identification was held for a low pressure discharge lamp 
inserted in an alternative circuit (fig. 1) with the 
characteristics mentioned in the table 1.  

Table. 1. Characteristics of the low pressure discharge 
lamp. 

Diameter Length Power Nominal current 

15 mm 400 mm 70 W 0.65 A 

The PSO identification tool was coded in Matlab R2008b, 
and the developed algorithm was run on an Intel Core 2 Duo 
CPU 2.67 GHz with 4 GB memory capacity. 

With a digital scope, we have taken 2500 measured input-
output data. In this experiment we use only 1250 samples to 
find the parameters vector p.  The rest of data (1250 samples) 
are used in the lamp conductivity model verification 
procedure which is performed by simulation with MATLAB 
software.   

The lamp conductivity was given from experimental 
measurements using the equation (1), so for every measured 
current and voltage point, we have to complete the calculated 
conductivity, and then we make a table containing voltage, 
current and conductivity.  

The illustration of real and estimated conductivity of the low 
pressure discharge lamp is shown in the Fig. 9. This curve  

shows that the proposed PSO approach converges very 
quickly and gives very good results. In fact, there is no error 
between the experimental and the calculated conductivity of 
the lamp. 
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Fig. 9. Measured and identified conductivity waveforms. 

The waveform of lamp conductivity is exactly the needed 
form, so we can deduce that particle swarm optimization, 
makes as an intelligent optimization technique, is a very good 
method to identify nonlinear system parameters. 

The fitness function is given by the following figure (Fig. 
10). We deduce that after a little number of iterations, the 
fitness function, which represents the error between lamp and 
its model, becomes minimal. 
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Fig. 10. Fitness function.  

Table 2 gives model parameters identified with PSO method. 

Table. 2. Identified parameters. 

 

 

After finding the parameter vector p (see Table. 2.), we use 
the obtained values to simulate the conductivity model of the 
discharge lamp. 

Using Matlab/Simulink, we make the conductivity model of 
the lamp, and then we use the find values to simulate this 
model. This part of work is just used to verify the obtained 
results, and then to justify the efficiency of the used method 
in parameters identification. 

a2 b2 b1 

93.33 582036.5 994.7   
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The diagram bloc of the model simulation is given by the 
figure 11: 

 

 

 

 

 

 

Fig. 11. The Matlab Simulink conductance model. 

The waveforms of the lamp voltage and current are given by 
Fig. 12 and Fig. 13. 
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Fig. 12. Simulated voltage waveforms. 
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Fig. 13. Simulated current waveforms. 
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Fig. 14. Real lamp V-I characteristic at 50Hz. 

Comparing experimental waveforms of voltage and current 
(Fig.2 and Fig.3) with simulated PSO based ones (Fig.12 and 
Fig.13), we can see clearly the concordance of the obtained 
results and the efficiency of the proposed identification 
approach. 

The comparison in figures 12 and 13 confirms that the 
nonlinear continuous time conductance model (equation 5) 
associated with the identified coefficients (table 2), represents 
very well the input-output behaviour of the discharge lamp. 
In fact, the application of the identification procedure using 
the particle swarm optimization based procedure showed a 
great concordance between the real behaviour and the 
estimated model.  

As an intelligent computational method based on stochastic 
search, PSO is shown to be a versatile and efficient tool for 
this complicated engineering problem.  

In this work, it was shown that parameters identification of 
physical complex systems can be solved using heuristic 
optimization methods like particle swarm optimization and 
the efficiency of the method was approved so we can use it to 
have parameters of many others nonlinear systems in our 
laboratory. 

The method is generally applicable to other types of complex 
systems, and as well as other dynamic systems with nonlinear 
model structure. 

5. CONCLUSION 

In this paper, we have presented the nonlinear conductivity 
model of a low pressure discharge lamp considered as a 
physical complex nonlinear system. Parameters of this 
nonlinear system were identified using Particle Swarm 
Optimization (PSO) approach. The paper gives a view of this 
new optimization method, and explains how to implement it 
for extracting parameters of nonlinear complex systems. Both 
simulation and experimental results are provided to 
demonstrate the effectiveness and the efficiency of this 
identification method. It is shown that the PSO algorithm is 
able of tracking time-varying parameters with good accuracy. 
However, applied to low pressure discharge lamp, this PSO 
base identification method is generally applicable to other 
systems, in our research unit, like permanent magnet 
synchronous motors or stepper motors. 

It was shown that the modelling of discharge lamps is not a 
simple task, mainly due to the fact that the discharge is a 
complex phenomenon which involves electrical, chemical, 
thermal and optical characteristics. But, we have proven that 
PSO can solve the difficult part in this problem which is the 
parameters identification.  

REFERENCES 

Alrashidi MR, Alhajri MF, Alothman AK, Elnaggar KM 
(2010). Particle Swarm Optimization and Its Applications 
in Power Systems. Computational Intelligence in Power 
Engineering. SCI(302):295–324. 



CONTROL ENGINEERING AND APPLIED INFORMATICS    65 
 

     

 

Ben-Yaakov S, Shvartsas M, Glozman S. Statics and 
dynamics of fluorescent lamps operating at high 
frequency: modeling and simulation. IEEE Trans. 
Applicat. Ind., 38: 1486-1492, Nov/Dec 2002. 

Billing SA, Fakhouri SY (1982). Identification of Systems 
Containing Linear Dynamic and Static Nonlinear 
Elements. Automatica. 18(1):15-26. 

Blanco C, Anton JC, Robles A, Ferrero FJ, Campo JC, 
Ganzalez M, Zissis G (2007).  A Discharge Lamp Model 
Based on Lamp Dynamic Conductance. IEEE 
Transaction On Power Electronics. 22(3):727-734. 

Blanco C, Anton JC, Robles A, Ferrero FJ, Viera JC, Bhosle 
S, Zissis G (2011).Comparison Between Different 
Discharge Lamp Models Based on Lamp Dynamic 
Conductance. IEEE Transaction On industrial 
Applications. 47(4): 1983–1991.  

Clerc M (1999). The Swarm and the Queen: Towards a 
Deterministic and Adaptive Particle Swarm Optimization. 
In Proceeding of Congress on Evolutionary Computation. 
CEC99(3):1951-1957. 

Eberhart R, Shi Y (1998). Comparison between Genetic 
Algorithms and Particle Swarm Optimization. In 
Proceedings of the Seventh Annual Conference on 
Evolutionary Programming. Springer-Verlag. 611-619. 

Erenturk K (2008). Dynamic Characterization of a UV 
Fluorescent Lamp. IEEE transaction on plasma science. 
36(2) :519-523. 

Fukuyama Y, Yoshida H (2001).  A Particle Swarm 
Optimization for Reactive Power and Voltage Control in 
Electric Power Systems. In Proceedings of the IEEE 
Congress on Evolutionary Computation. CEC2001(1). 
87-93. 

Herrick PR (1980). Mathematical models for high-intensity 
discharge lamps. IEEE Transaction on Industry 
Applications. IA16(5):648-654. 

Jiaxiang Z, Kanellakopoulos I (2002). Active identification 
for discrete-time nonlinear control-Part II: Strict-feedback 
systems. IEEE Transaction on Automatic Control. 47(2): 
225-240. 

Kaelo P, Ali MM (2006). A numerical study of some 
modified differential evolution. Europ. J. of Operat. 
Research. 169 (3):1176-1184. 

Kennedy J, Eberhart R (1995). Particle Swarm Optimization. 
In Proceedings of IEEE International Conference on 
Neural Networks. 4:1942-1948. 

Kopernicky J. Electric conductivity model of discharge 
lamps. PhD thesis, l’Université Toulouse III- Paul 
Sabatier et l’Université Technique de Liberec, 2008. 

Lin W, Zhang H, Liu PX (2006). A New Identification 
Method for Hammerstein Model Based on PSO. 
Proceeding of the 2006 IEEE international Conference on 
Mechatronics and Automation. 2184-2188. 

 
 
 
 
 
 
 
 

Lister GG (1992). Low-pressure gas discharge modeling. J. 
of Physics D: Applied physics. 25(12): 1649-1680. 

Liu A, Zahara E (2009). Parameter identification problem 
using particle swarm optimization. Fifth International 
Conference on Natural Computation. ICNC’09:275-278. 

Liu Li, Liu W, Cartes DA (2008). Particle swarm 
optimization-based parameter identification applied to 
PMSM. Proceedings of the 2007 American Control 
Conference.ACC’07:2955-2960. 

Messai Tlili, Abdeljelil Chammam and Anis Sellami, 
“Modeling and control of a low pressure discharge lamp 
used for ultraviolet radiations water disinfection”, The 4th 
International Renewable Energy Congress IREC’2012, 
December 20 - 22, 2012, Sousse – Tunisia. 

Messai Tlili, Abdeljelil Chammam and Anis Sellami, 
“Parameters identification of a low pressure discharge 
lamp based on PSO”, 16th IEEE Mediterrnean 
Electrotechnical Conference MELECON 2012, March 25- 
28, 2012 - Hammamet, Tunisia. 

Panda G, Mohanty D, Majhi B, Sahoo G (2007). 
Identification of Nonlinear Systems using Particle Swarm 
Optimization Technique. IEEE Congress on Evolutionary 
Computation: 3253-3257. 

Perez JR, Basterrechea J (2007). Comparison of Different 
Heuristic Optimization Methods for Near-Field Antenna 
Measurements. IEEE Transactions on Antennas and 
Propagation. 55(3):549-555. 

Schwaab M, Biscaia EC, Monteiro JL, Pinto JC (2008). 
Nonlinear parameter estimation through particle swarm 
optimization. Chemical Engineering Science. 63(6):1542-
1552. 

Stambouli M. Modélisation d’une décharge de Mercure 
Haute Pression: Application a l’analyse des circuits 
électroniques comportant des lampes a décharge. PhD 
thesis, ENSIT, Tunisia 1984. 

Yin JJ, Tang W, Man KF (2010). A Comparison of 
Optimization Algorithms for Biological Neural Network 
Identification. IEEE Transactions on Industrial 
Electronics. 57(3):1127-1131 . 

Zissis G (2005). Light Sources: what evolution for the future? 
In Proceeding ECMS 2005. Electronic, Control, 
Modelling, Measure and Signal. University Paul Sabatier, 
Toulouse. 

Zissis G, Damelincourt JJ (2002). Modelling discharge lamps 
for electronic circuit designers: a review of the existing 
methods. In the 29th IEEE Inteernational Conference on 
Plasma Sciences (ICOPS 2002).318. 

 


