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Abstract: A new method based on the LQR approach is proposed for the optimal tuning of the Active 
Disturbance Rejection Control (ADRC). The input-output behavior of a complex system is approximated 
by a low order local model that allows designing PI and PID controllers into the ADRC framework. By 
imposing the condition of guaranteed dominant pole placement, it can be proposed a criterion for 
selecting the Q and R matrices in order to have a desired percentage overshoot and settling time of the 
closed loop response. It is also considered the extension of the method when the local model has a 
general order n, in this case, the controller will be of the PID (n-1) type. Some numerical examples are 
considered to show the effectiveness of the approach. 
Keywords: ADRC, ESO, LQR, PI, PID, PID(n-1). 

1. INTRODUCTION 

Let us consider a Single-Input-Single-Output (SISO) plant 
which can be described exactly in its operating range by the 
following implicit input-output equation     ,  ( ), ( ),  ̇( ), … , ( )    , ( ),  ̇( ), … ,  ( )(  )  = 0, 

 
(1) 

where the derivatives orders satisfy the relation   ≥    and  (⋅) is a sufficiently smooth function of the external 
disturbance  ( ), the input  ( ) and the output  ( ). Assume 
that for some integer n, such that 0 <  ≤   ,  it is verified     ( )( )  ≠ 0. The implicit function theorem yields then 
locally 

 ( )( ) =    , w(t),  ( ),  ̇( ), … ( )(   ), ( )(   ), …… ( )    , ( ),  ̇( ), … , ( )(  ) . 
 
 
(2) 

By setting   (⋅) =  ̅(⋅) +   ( ) in (2), being   a real 
unknown scaling factor of the system that can be 
approximated by   , one has   ( )( ) =  +    ( ), (3) 

where  =  ̅(⋅) + ( −   ) ( ). Finding simple and reliable 
differential equations for describing a particular system is a 
difficult task. In deriving a reasonably mathematical model, it 
is frequently necessary to ignore certain inherent properties 
of the system. In particular, phenomena like frictions, change 
of load, heat effects, aging, dispersions due to mass 
productions, environment and others, are not easy to take into 
account. Because of this, the equation (1) is only partially 
known. 

Active Disturbance Rejection Control (ADRC) (Han, 1998, 
1999, 2009; Gao et al., 2001a) is a method that does not 
require a detailed mathematical description of the system. 
The basic idea is to model the system with an input 
disturbance that represents any difference between the model 
and the actual system, including external disturbances, this 
input is them lumped in the term    in (3). By estimating the 
disturbance in real time, the information is feedback to cancel 
the disturbance using the control law   ( ) = (  ( ) −   )   ⁄ , (4) 

where    is the estimated of the generalized disturbance  . 
Replacing (4) in (3) forces the plant to behave as a desired 
simple plant, a series of cascaded integrators  ( )( ) =   ( ). (5) 

The control law    is chosen in ADRC of the Proportional-
Derivative (PD) type. 

One of the main issues in control is to deal with uncertainties 
including internal (parameter and unmodeled dynamics) and 
external (disturbances). However, most uncertainties are not 
measurable. Hence, how to estimate uncertainties by using 
the control input and output of the system is a significant 
problem. Many approaches such as, disturbance 
accommodation control (DAC) (Johnson, 1971, 1976), the 
unknown input observer (UIO) (Basile and Marro, 1969; 
Hostetter and Meditch, 1973), the disturbance observer 
(DOB) (Profeta et al., 1990; Bickel and Tomizuka, 1999; 
Schrijver and Van Dijk, 2002) and the extended state 
observer (ESO) (Han, 1998, 1999, 2009; Gao et al., 2001a) 
have been proposed to estimate uncertainties from the input-
output data. In DAC, UIO and DOB the external disturbance 
of a linear time-invariant system is estimated and then 
rejected. DAC and UIO can be viewed as a special case of 
DOB (Profeta et al., 1990). The main difference between 
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ESO and DAC, UIO and DOB is that ESO was conceived to 
deal with nonlinear systems with mixed uncertainties (i.e. 
unmodeled dynamics and disturbances). The ADRC 
technique assumes that  f  in (3) can be considered as one of 
the states of the system. An estimate of this state, provided by 
an ESO can be used in the control signal (4) to compensate 
for the real perturbation in the plant. ADRC has been applied 
with success to many practical problems: web tension 
regulation (You et al., 2001), motion control (Gao et al., 
2001b), electric power assist steering system (Dong et al. 
2010), chemical process control (Zheng et al., 2009), 
industrial motion control platform (Tian and Gao, 2009), 
uncertain multivariable system with time delay (Xia et al., 
2007), MEMS gyroscopes (Zheng et al., 2008), and linear 
parameter varying systems (Teppa-Garran and Garcia, 
2013a), to cite few of them. 

The tuning procedure in ADRC was originally proposed in a 
nonlinear form (Han, 1998, 1999, 2009; Gao et al., 2001a), 
but the large number of gains made tuning an art. The 
structure was simplified to its linear form (Gao, 2003) and 
parameterized into a few gains. In its linear form, the tuning 
is essentially a pole-placement technique and the desired 
performance is indirectly achieved through the location of the 
closed-loop poles (controller and ESO). However, the final 
choice of these poles becomes a trial-and-error strategy that 
may be difficult for practicing engineers to fully understand 
and to competently apply to real systems. Linear Quadratic 
Regulator (LQR) (Kwakernaak and Sivan, 1972; Anderson 
and Moore, 1989) is a well-known design technique in 
modern optimal control theory and has been widely used in 
many applications. In contrast with pole-placement, the 
desired performance objectives are directly addressed by 
minimizing a quadratic function of the state and control 
input. On the other hand, one major criticism on LQR design 
is that the selection of matrices Q and R is not clear in order 
to meet the closed-loop performance specifications. 

The main contribution of this this paper is to develop an 
optimal tuning of the ADRC method that guarantees some 
closed-loop specifications by employing the LQR technique 
and a reduced tuning parameters set. The input-output 
behaviour of the system will be approximated by the local 
model (3) considering a derivative order of   = 1 or  = 2. 
This is the case when in (1) it is verified      ( )( )  ≠ 0   for   = 1, 2. Then, for a derivative order   = 1 in (3) it is 
proposed in (5) a Proportional-Integral (PI) control law   ( ) =    ( ) +   ∫  ( )  , 
and for  = 2 a PID control law   ( ) =    ( ) +   ∫  ( )  +     ( )  , 

where  ( ) =  −  ( ) is the tracking error, r is the set point 
and   ,   and    are the usual PID gains. The LQR approach 
is then used to find an optimal PI/PID controller tuning 
algorithm for the ADRC method. It is proposed a criterion for 
selection of the Q and R matrices which lead to the desired 
settling time and percentage overshoot of the closed-loop 
system. Beside considering the use of a low order ADRC 
( = 1 or  = 2) for controlling a complex general plant. It 

is also shown how to extend the optimal tuning method to the 
case of nth order ADRC. For this, the control law must be of 
the PID (n-1) type given by   ( ) =    ( ) +   ∫  ( )  +     ̇ ( ) +     ̈( ) +⋯+      (   )( ). 

The article is organized as follows. Section 2 considers the 
fundamentals of the ADRC theory. In section 3, it is 
employed the LQR method for optimal tuning of the PI/PID - 
ADRC gains and for designed an ESO by the duality 
principle. In section 4 are summarized the results into some 
design algorithms. The extension of the method to the nth 
order ADRC optimal tuning is considered in section 5, where 
it is shown how to select the gains of the PID (n-1) controller 
via the LQR method. Finally, in section 6, some numerical 
examples are considered to show the effectiveness of the 
approach. 

Notation: Capital bold typeface letters denote matrices and 
small bold typeface letters denote vectors.  ̇ =     ⁄ ,  ( ) =       ⁄ ,   =               , ℝ is the set of real 
numbers,   =                     ,   ( ) =          , det( ) =                        .  

2. ADRC FUNDAMENTALS 

By doing    ( ) =   ( ), the plant equation (3) changes to  ( )( ) =  +   ( ). (6) 

Let the state vector be   ( ) = [  ( ),   ( ), … ,  ( )] =  ( ),  ̇( ), … ,  ( )(   )  . 
The state space model of the plant can be written as    ̇( ) =     ( ) +   ( +   ( )) ( ) =     ( )  , (7) 

  = ⎣⎢⎢⎢
⎡0 1 00 0 1⋮ ⋮ ⋮      … 0… 0⋱ ⋮0 0 00 0 0     … 1… 0⎦⎥⎥

⎥⎤
(     )

    = ⎣⎢⎢⎢
⎡00⋮01⎦⎥⎥
⎥⎤

(     )
     

   = [1 0      … 0](     ). 
The ESO regards all factors affecting the plant, including the 
nonlinear dynamics, uncertainties and the external 
disturbances as a generalized disturbance f that will be treated 
as an extended state to be observed. Let      =  , the state 
vector is now   = [ ,   ] ∈ ℝ    and the state space 
model of the plant becomes   ̇( ) =   ( ) +    ( ) +   ̇( ) ( ) =   ( )  , (8) 

 =                      0      (   ) (   )  =         0      (   )   

 = [       0     ]  (   )   =  0     1      (   )  . 

For system (8) the ESO is designed as follows 
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   ̇( ) =   ( ) +    ( ) +  ( ( ) −   ( ))  ( ) =   ( )  , (9) 

where  =    ,    ∈ ℝ    is the estimated of the state vector  ( ) and the generalized perturbation f and  =[  ,  , … ,     ]  is the observer gain vector. As     ( ) → (⋅), it is used to actively cancel   (⋅) in (6) by applying    ( ) =   ( ) −     ( ), (10) 

this reduces the plant to  ( ) = ( −     ) +   ≈   , a unit 
gain integral chain system, allowing a PD type controller to 
be used, that is   ( ) =     −   ( ) −     ( ) −⋯−     ( ). (11) 

The set point r is only present in the proportional term; an 
approximate closed-loop transfer function is computed as  ( ) ( ) =     +       +⋯+   . 
Where  = [  ,  , … ,  ] is the controller gain. The 
configuration of the ADRC is shown in figure 1. 

 

Fig. 1. Standard ADRC configuration. 

The estimation error is   ( ) =  ( ) −  ( ). 

Using (8) and (9) the dynamics of the state estimation error of 
the ESO is given as  ̇( ) = ( −   ) ( ) +   ̇( ). (12) 

Expressing    in (10 - 11) as   ( ) =    − [ 1] ( ), (13) 

and then combining (7), (12) and (13) yields the closed-loop 
ADRC equations    ̇( ) ̇( ) =    −     (    0)  −       ( ) ( )  +     0   +  0   ̇. 

(14) 

From (14), it is straightforward to verify that the eigenvalues 
of the system matrix of the closed-loop ADRC equations are 
given by the eigenvalues of (  −   ) and ( −   ). Since it 
can be shown that the pair (  ,  ) is controllable and the pair ( , ) is observable, the stability of (14) can always be 
ensured by placing the controller and observer poles 
appropriately. Moreover, under the assumption of 
boundedness of  ̇(⋅), the BIBO stability of (14) is assured 
(Zheng et al., 2007). This is the case when  ̇(⋅) = 0 or its rate  

 

of change is small. If the rate of change is not negligible, one 
can design a generalized extended state observer (GESO) of 
pth order (Miklosovic et al., 2006) to estimate the state 
together with  , ,̇  ̈, … , (   ). If  ( ) is negligible, the 
closed-loop ADRC system (14) will be BIBO stable, 
enabling to dealt the problem of fast varying generalized 
perturbation within the ADRC framework. 

3. LQR DESIGN OF THE ADRC 

The idea of ADRC is to divide the process of controller 
design into two parts: one is to compensate for the 
generalized perturbation, which is reconstructed by the input-
output data via an ESO (GESO); the other is to realize the 
desired performance for the compensated system. Moreover, 
ADRC does not set strict mathematical constraints on the 
uncertainties to be estimated. Equation (14) is a result of the 
separation principle for a controller designed using an 
observer and a state-feedback constant-gain. It states, that the 
observer gain and state-feedback gain can be designed 
separately since the overall closed-loop eigenvalues are the 
union of those due to the observer alone and those due to the 
state-feedback controller alone. It can be proved that the 
separation principle holds for dynamic controllers and not 
just constant-gain controllers. 

Theorem 1: In Fig. 1, if the constant-gain controller   =[ 1] is replaced by the dynamic controller C(s) =            then the separation principle still holds. 

Proof: See (Davison et al., 2003).  

Theorem 1 allows to stay in the ADRC framework where one 
first compensate for the generalized perturbation by an ESO 
(the optimal computation of the ESO gain vector will be 
considered further in this section)  and then, it is employed 
the LQR method for optimal tuning the gains of a 
PI/PID/PID(n-1) control law. 

3.1 Optimal PI-ADRC design 

The real plant (1) is approximated continuously by the first 
order equation  ̇( ) =  +   ( ). (15) 

Where f contains the whole structural information of the 
system, in the general case, is a nonlinear time-varying 
function of the variables of the system, including 
disturbances. It should be noted that (15) is a model that is 
used only for the purpose of the controller design. The 
controller, once designed should be applied to the process.  

The extended-state space model of (15) is 

⎩⎨
⎧  ̇ ( ) ̇ ( ) =  0 10 0    ( )  ( ) +  10   ( ) +  01  ̇ ( ) = [1 0]    ( )  ( ) ,   

where [  ( )   ( )] = [ ( )  ]  and the ESO is  
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⎩⎨
⎧  ̇ ( ) ̇ ( ) =  −  1−  0    ( )  ( ) +  10   ( ) +        ( )  = [0 1]    ( )  ( )   
for [  ( )   ( )] = [  ( )   ] .  This ESO is of second 
order and there is a redundancy when the first component of 
the state may be measured directly. To reduce complexity, a 
reduced order ESO (RESO) (Tian, 2007; Zheng et al., 2011, 
Zheng et al., 2012) is employed to estimate   , that is  ̇ ( ) = −    ( ) −     ( ) +    ̇( ), (16) 

where    is the RESO gain. The first derivative of  (t) can 
be approximated from the difference of two neighboring  (t) 
sample values.  However, in order to avoid intensifying 
measurement noise by direct numerical differentiation on 
signal  (t), a RESO without output derivative (Teppa-Garran 
and Garcia, 2013b) can be defined as  ̇̅ ( ) = −   ̅ ( ) −     ( ) −     ( ), (17) 

together with    ( ) =  ̅ ( ) +    ( ). (18) 

Using   ( ) =   ( ) −   ( ) in (15) yields  ̇( ) =   ( ). (19) 

It is defined    as a PI control law   ( ) =   ∫  ( )  +   ( ), 

where  ( ) =  −  ( ), (20) 

is the tracking error. In the case of set-point reference r, (20) 
can be expressed as   ̈( ) = − ̈( ). (21) 

Taking the derivative of (19) and using (21) gives  ̈( ) = − ̇ ( ). (22) 

Let    ( ) =  ( ) and   ( ) =  ̇( ) then (22) can be 
expressed in state-space as  ̇( ) =   ( ) +   ̇ ( ) =  0 10 0  ( ) +  0−1  ̇ ( ). (23) 

In order to have a LQR formulation of the ADRC problem, 
the following quadratic cost is considered  =  ( ( )   ( ) +   ̇  ( )) 

   , (24) 

where Q is a positive semi-definite matrix and  > 0. It is 
well known that the minimization of (24) gives the state-
feedback control  ̇ ( ) = −  ( ) = −   ( ) −    ̇( ) (25) 

where  =        and P is the symmetric positive definite 
solution of the Continuous Algebraic Riccati Equation 
(CARE) given by    +  + −         = 0. (26) 

Taking integration on both sides of (25), the optimal PI-

ADRC is obtained as   ( ) =     ( )  +    ( ), (27) 

that is [    ] = [−  −  ]. 
Now, explicit expressions for the gains    and    are found. 
Substituting  =     (    ) and the symmetric matrix 

  =                 
into the CARE (26) yields  0 01 0               +                0 10 0 +    00     −                  0−1 [0 −1]               = 0. 

(28) 

Its positive definite solution is 

⎩⎪⎨
⎪⎧    =     ,      =  2     +          =        .   (29) 

and   =    [0 −1]                =  −     −      . 
 
(30) 

Remark 1: Because of the structure of matrices F and G in 
(23). The PI controller depends only on p   and p   in (30). 
The choice of a non-diagonal matrix Q in (28) produces the 
same result that a diagonal Q. This is, there is not loss of 
generality in using a diagonal Q. 

In LQR design, the elements of the matrices Q and R are 
usually selected by trial and error, moreover, every different 
value of Q and R will eventually end up with a different 
system response, making the word optimal ambiguous. In 
order to overcome this difficulty, it is now derived a direct 
relationship between the Q matrix and the 2 % settling time 
(Ts) criterion and percentage overshoot (PO) of the closed-
loop system. 

Theorem 2: The closed-loop response of the ADRC system 
(23) with quadratic cost (24) and PI control law (27) has 
desired Ts and PO if and only if the elements of the matrix  = diag(q q ) in (28) are chosen as    =       = 2 (2  − 1)    , (31) 

where  w  is the natural frequency and  ζ is the damping ratio 
of the closed-loop response. 

Proof: From PO = 100e        ⁄  it is obtained the damping 
ratio ζ  and from 2% Ts criterion, the natural frequency is w = 4 ζTs⁄ . By using (23) the characteristic polynomial is 
found as det (s  −  +   ). Imposing the desired 
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characteristic polynomial as the usual second order form  s + 2ζw s + w   , equating coefficients on both sides of the 
previous polynomials and then using (28) establishes the 
theorem.  

Remark 2: The positive-definiteness of Q implies ζ > √2 2⁄  
in (31). 

In Fig. 2, it is shown the optimal PI-ADRC.  

 

Fig. 2. Optimal PI-ADRC configuration. 

3.2 Optimal PID-ADRC design 

The real plant (1) is now continuously approximated by the 
local model   ̈( ) =  +   ( ). (32) 

The extended state-space model of (32) for  =[      ] = [  ̇  ]  is 

⎩⎨
⎧  ̇ ( ) ̇ ( ) ̇ ( ) =  0 1 00 0 10 0 0    ( )  ( )  ( ) +  010   ( ) +  001  ̇ ( ) = [1 0 0] ( )   
It is supposed again that the controlled output y is available 
for feedback; the second–order RESO (Tian, 2007; Zheng et 
al., 2011, Zheng et al., 2012) is then 

   ̇ ( ) ̇ ( ) =  −  1−  0    ( )  ( ) +  10   ( ) +        ̇( )  = [0 1]    ( )  ( )   
where [    ] = [ ̇   ] .  

Remark 3: In order to avoid numerical differentiation in 
computing the second-order RESO it is employed the result 
(Teppa-Garran and Garcia, 2013b)  to express the RESO as   ̇̅  ̇̅  =  −  1−  0   ̅  ̅  +  10   +    −    −       

combined with       =  1 00 1   ̅  ̅  +        . 

The control signal    is now chosen of the PID type   ( ) =     ( )  +   ( ) +    ̇( ) 

Using   =   −    in (32) yields  ̈( ) =   ( ). (33) 

Employing (20) and taking the derivative of (33) results in 

 ⃛( ) = − ̇ ( ). (34) 

Let    ( ) =  ( ),   ( ) =  ̇( ) and   ( ) =  ̈( )  then (34) 
can be expressed in state-space as  ̇( ) =   ( ) +   ̇ ( ) =  0 1 00 0 10 0 0  +  00−1  ̇ . 

(35) 

The minimization of the LQR formulation of the ADRC 
problem (24) gives now the state-feedback control  ̇ ( ) = −  ( ) = −   ( ) −    ̇( ) −    ̈( ). (36) 

Taking integration on both sides of (36) results in the optimal 
PID-ADRC    ( ) =   ∫  ( )  +    ( ) +    ̇( ), (37) 

that is [      ] = [−  −  −  ]. 
Now, explicit expressions for   ,   and    are founf. 
Considering  =     (      ) and the symmetric 
matrix  =                              , 
the optimal state feedback gain is  =       =  −     −     −      . 
This is [      ] =               . (38) 

The closed-loop polynomial is det(  −  +   ) =   +       +      +     . (39) 

The desired closed-loop polynomial is chosen as (s + λζ  )(  + 2    +    )=   + ( + 2)     + (2   + 1)    +       
(40) 

where  ≫     for guaranteed dominant pole placement 
(GDPP). Equating coefficients on both sides of polynomials 
(39) and (40) produces    =  ( + 2)      =  (2   + 1)      =       . 

(41) 

Solving the CARE (26) yields the nonlinear system of 
equations             2   +      +          +    2   +     −                                                     = 0. 

(42) 

Remark 4: Again, there is not loss of generality in the choice 
of a diagonal Q in (42). 
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As the values    ,    and     are already known in (41) one 
has from (42)    =        .    =        .    =        −    . 

(43) 

And the matrix Q becomes  = diag(      ) =          ,      − 2   ,      − 2    . 
Using the closed-loop parameters defined previously in (40) 
allows expressing the matrix Q components as   =         . (44)   =  [1 + 2    (2  − 1)]   .    =  [  (  +4) − 2]   .  

From the above results it can be summarized the procedure in 
the following theorem. 

Theorem 3: The closed-loop response of the ADRC system 
(35) with quadratic cost (24), PID control law (37) and GDPP 
condition in (40) has desired Ts and PO if and only if the 
elements of the matrix Q are chosen as established in (44). 

Remark 5: The positive-definiteness of Q implies again ζ > √2 2⁄ . 

In Fig.3, it is shown the PID-ADRC implementation 

 

Fig. 3. Optimal PID-ADRC implementation. 

3.3 Optimal RESO design 

As stated, ADRC is based on the separation principle; this 
allows treating the unknown dynamic and disturbances in a 
physical process as the generalized disturbance, built an ESO 
to estimate it in real-time, and then cancelling its effect using 
the estimate as part of the control signal.  

In the proposed PID-ADRC method, the second-order RESO 
equations are given by  ̇( ) =   ( ) +    ( ) +  ( ̇−   )  =   ( ) , (45) 

 =  0 10 0 , =  10 , = [1 0],   =       . 
 

where [    ] = [ ̇   ] . The duality principle is now 
employed in order to have a LQR formulation of the RESO 

design. This is easily done by replacing  ←   , ←    and  ←   . The quadratic cost is chosen as  =  ( ( )    ( ) +      ( )) 
   . (46) 

The CARE equation becomes   +    +   −          = 0. (47) 

Substituting   =     (      ) and the symmetric matrix 

  =                , 
into (47) gives 2   +    −      = 0,   −        = 0,   =       .  

(48) 

Its positive definite solution is    =       ,      =  2        +      ,   −        = 0.  

and the optimal RESO gain is found as  =        = [    ] =              . 

The RESO characteristic polynomial is computed as   +    +   =   +       +      , (49) 

and the desired RESO polynomial is imposed as ( +  ) =   + 2   +    , (50) 

where the closed-loop RESO bandwidth    must satisfy the 
relation    ≫  ≫    , (51) 

Equating coefficients of polynomials (49) and (50) yields    = 2    ,   =      .  (52) 

Replacing (52) in (48) allows computing the components of 
the matrix    through    = 2     ,   =      ,  

and the optimal RESO gains are obtained doing   = 2  ,  =    .  (53) 

In the case of PI-ADRC design, it is easy to show that for the 
first order RESO (17-18), one has   =   . (54) 
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Where    must satisfy   ≫    , (55) 

From the above procedure it can be established the following 
theorem. 

Theorem 4: Let a RESO be described as in (16) for PI-
ADRC (resp. (45) for PID-ADRC) with closed-loop 
bandwidth w  that satisfies (55) (resp. (51) for PID-ADRC), 
then the optimal RESO gains that minimizes the quadratic 
cost (46) are given by (54) (resp. (53) for PID-ADRC). 

4. OPTIMAL PI/PID-ADRC ALGORITHMS 

It is summarized the entire development of design in two 
algorithms given in Table 1 for PI-ADRC and in Table 2 for 
the case of PID-ADRC. 

Table 1. Algorithm for Optimal PI-ADRC design. 

Input:   ← Desired closed-loop percent overshoot,    ← desired closed-loop settling time. 
1:  From PO obtain the closed-loop damping ratio as  =  (       ⁄ )    (       ⁄ ) .From Ts obtain the closed-loop 

natural frequency as   = 4    ⁄ . 
2:  Compute    in the RESO from (55). 
3:  Compute the RESO gain    from (54). 
4:  Compute    and    from (31). 
5:  Compute     and     from (29). 
6:  Compute    and    from (30). 
Output: PI parameters    and    and RESO gain    . 

Table 2. Algorithm for Optimal PID-ADRC design. 

Input:    ← Desired closed-loop percent overshoot,    ← desired closed-loop settling time. 
1:  From PO obtain the closed-loop damping ratio as  =  (       ⁄ )    (       ⁄ ) . From Ts obtain the closed-loop 

natural frequency as   = 4    ⁄ . 
2:  Compute    in the RESO from (51). 
3:  Compute the RESO gains    and    from (53). 
4:  Compute   ,   and    from (44). 
5:  Compute    ,      and     from (41). 
6:  Compute   ,    and    from (38). 
Output: PID parameters   ,     and    and RESO gain  = [    ] . 

For ease of reference in Table 3 are given the optimal values 
of the gains of the PI/PID – ADRC. The relation (55), that 
allows to select the RESO bandwidth    depending on the 
desired real part of the closed-loop poles     is fixed as   =      , (56) 

where   ∈ ℝ . In the case of relation (51) it is done   =        , (57) 

with   ∈ ℝ ,  =       and   =    . Some guidelines to 
choose    and    will be given in the next section. 

Table 3. Optimal PI/PID – ADRC gains. 

                
PI  
ADRC 

    2            

PID  
ADRC 

        (2      + 1)    
(     + 2)    

2                    

5.  LQR DESIGN OF THE ADRC: GENERAL CASE 

Now it is shown how to extend the method to the case when 
the real plant (1) is approximated continuously by the nth 
order equation (6). The extended state space model of (6) is 
given by (8). The nth order RESO (Tian, 2007; Zheng et al., 
2011, Zheng et al., 2012) is  

⎣⎢⎢
⎢⎡  ̇  ̇ ⋮ ̇    ̇ ⎦⎥⎥

⎥⎤ = ⎣⎢⎢
⎢⎡   1 0 … 0  ⋮      

0⋮00
1 … 0⋮ ⋱ ⋮0 … 10 … 0⎦⎥⎥

⎥⎤ ⎣⎢⎢⎢
⎡     ⋮      ⎦⎥⎥⎥

⎤
 

+ ⎣⎢⎢⎢
⎡00⋮10⎦⎥⎥
⎥⎤  + ⎣⎢⎢

⎢⎡     ⋮      ⎦⎥⎥
⎥⎤  ̇ 

 
 
 
(58) 

where   = [    …       ] =   ̇  ̈ …   (   )     .  

Remark 6: In order to avoid numerical differentiation in 
computing the nth-order RESO in (58) it is used the result 
(Teppa-Garran and Garcia, 2013b) to express the RESO as 

  ̇( ) = ⎣⎢⎢
⎢⎡ −  1 0 … 0−  ⋮−    −  

0⋮00
1 … 0⋮ ⋱ ⋮0 … 10 … 0⎦⎥⎥

⎥⎤  ( ) 

+ ⎣⎢⎢⎢
⎡00⋮10⎦⎥⎥
⎥⎤  ( ) + ⎣⎢⎢

⎢⎡   −      −     ⋮  −       −    ⎦⎥⎥
⎥⎤ ( ). 

combined with 

     ⋮   =  10⋮0
01⋮0

……⋱…
00⋮1  

 ̅  ̅ ⋮ ̅  +      ⋮    . 

Using   =   −    in (6) yields  ( )( ) =   ( ). (59) 

Employing (20) and taking the derivative of (59) results in  ( )(   ) = − ̇ ( ). (60) 

Doing 

  = [  ,  , … ,   ,    ]  
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=   ,  ̇, … ,  (   ),   ( )       
in (60) gives the state space model  ̇( ) =   ( ) +   ̇ ( ). (61) 

 = ⎣⎢⎢⎢
⎡0 1 00 0 1⋮ ⋮ ⋮      … 0… 0⋱ ⋮0 0 00 0 0     … 1… 0⎦⎥⎥

⎥⎤
(   )  (   )

  = ⎣⎢⎢⎢
⎡ 00⋮0−1⎦⎥⎥

⎥⎤
(   )    

 

The minimization of the LQR formulation of the ADRC 
problem (24) gives  ̇ ( ) = −[  ,  , … ,   ,    ] ( )   (62) 

Taking integration on both sides of (62) results in the optimal 
PID(n-1) – ADRC   ( ) =   ∫  ( )  +    ( ) +     ̇( ) +    ̈( ) + ⋯+       (   ), (63) 

that is         …       =[−  −  −  … −    ]. 
Now, explicit expressions for the controller gains   ,   ,    , … ,       are found. Considering 

  =     (  ,  , … ,     )  
and the symmetric matrix 

 = ⎣⎢⎢
⎢⎡   ,   ,   , …   ,     ,   ,   , …   ,     ,   ,   , …   ,   ⋮       ⋮      ⋮    ⋱     ⋮       ,     ,     ,   …   ,   ⎦⎥⎥

⎥⎤
, 

The optimal feedback gain is  =       =  −   ,    −   ,    … −     ,     , 
that is          …       = −   ,    −   ,    … −     ,     . (64) 

The closed-loop polynomial is computed through det(  −  +   ) =     +     ,      + ⋯+   ,    +   ,     

(65) 

The desired closed-loop polynomial is chosen as ( +     )   (  + 2    +   ), (66) 

where  ≫     for GDPP. Using the binomial theorem, the 
polynomial (66) becomes 

  − 10      +    − 10  2   +   − 11          +    − 10     +   − 11  (2   )(    ) +   − 12  (    )       +    − 11     (    ) +   − 12  (2   )(    ) +   − 13  (    )       +    − 12     (    ) +   − 13  (2   )(    ) +   − 14  (    )       ⋮ +    − 1 − 3    (    )   +   − 1 − 2 (2   )(    )   +   − 1 − 1 (    )       +    − 1 − 2    (    )   +   − 1 − 1 (2   )(    )      +   − 1 − 1    (    )    

 

 

 

 

 

(67) 

where  ≥ 2 and the binomial coefficient for  ≤   is     =  ! !(   )! . Using (64) and equating coefficients on both  
sides of polynomials (65) and (67) give the optimal gains of 
the PID(n-1)-ADRC, that is    =   − 1 − 1    (    )      =   − 1 − 2    (    )   +   − 1 − 1 (2   )(    )       =   − 1 − 3    (    )   +   − 1 − 2 (2   )(    )   +   − 1 − 1 (    )    ⋮      =   − 10     +   − 11  (2   )(    ) +   − 12  (    )       =   − 10  2   +   − 11       

 

 

 

 

(68) 
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Remark 7: As expected, if (68) is evaluated for n = 2 one 
obtains the PID-ADRC gains computed previously. 

The optimal RESO gain  = [  …   ]  in (58) is found 
by minimizing the quadratic cost (46), that is  =        = [  …   ] =       …   ,       . 

Following a similar procedure, it can be obtained   =  ! ! (   )!    ;     = 1, … , . (69) 

If it is considered the presence of measurement noise  ( ) in 
the controlled output  ( ), the estimation error dynamics of 
the ESO (12) takes the form  ̇( ) = ( −   ) ( ) +   ̇( ) −   ( ) . 

It is evident that a large value for L will enhance the effect of 
the measurement noise, since this is usually a high-frequency 
signal. It is needed a compromise between speed of response 
and noise immunity. In PI/PID/PID(n-1)-ADRC, for controller 
design, the requirements of the closed-loop performance in 
time domain (PO and Ts) are converted into a pair of 
conjugate poles   , = − ±    where  =    . When one 
has a derivative order  ≥ 2 in (6) the condition (66) requires 
that the ratio of the real part of any other poles to −  exceeds  . For GDPP, the constant   is usually chosen following the 
rule  = 3    5       (   ) . (70) 

The larger    , the faster the response, the larger the control 
signal and a system more susceptible to noise. For RESO 
design, it can be choosen the bandwidth    by fixing    in 
(56) for  = 1 in (6) or    in (57) for  ≥ 2 in (6). In the 
case of    one fixes   = 2    6       (   ). (71) 

And for    it is used   = 2    6       ( ). (72) 

This ensures the observer errors decay faster than the desired 
closed-loop dynamics allowing the controller poles to 
dominate the total response. If sensor noise if a problem then 
the observer poles may be chosen slower than two times (    or  ). This would yield a system with lower bandwidth, 
more noise smoothing and less control energy expenditure. 

6. SOME EXAMPLES 

In this section, some numerical examples are considered to 
show the effectiveness of the method. In all the computer 
simulations, the values of the controller’s gains predicted by 
the design equations are employed without doing any post 
tuning refinement.  

6.1 Mass-spring system with dynamic friction 

The motion equation of a mass-spring system with dynamic 
friction is adapted from (Fliess et al., 2011) as  ̈ = −6 − 20  − 5 ̇ + 2ℱ( ̇) + 2 . (73) 

Where the dynamic friction is given by ℱ( ̇) =  0.3 + 0.4( ̇ + 0.25) − 5 ̇        ̇ < 0−0.3 − 0.4( ̇ + 0.25) − 5 ̇     ̇ > 0  (74) 

A PI-ADRC is designed for (6) considering   = 0.1,  =4 and   = 5  and a PID-ADRC for (32) when the condition   = 3 is added. The Fig. 4 shows the results for a step set 
point and Fig. 5 the resulting control inputs. In Fig. 6, it is 
added a constant disturbance of amplitude 0.1 applied since  = 10. Finally, in Fig. 7 a zero mean Gaussian white noise 
of variance 0.01 is added at the output for testing the 
robustness property of the design.  It is evident from the 
results, the good performance of both controllers. 

 

Fig. 4. PI/PID-ADRC tracking for a mass-spring system with 
dynamic friction. 

 

Fig. 5. PI/PID-ADRC command inputs for the tracking 
problem of a mass-spring system with dynamic friction. 

 

Fig. 6. PI/PID-ADRC tracking and disturbance rejection for a 
mass-spring system with dynamic friction. 
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Fig. 7. PI/PID-ADRC tracking for a mass-spring system with 
dynamic friction considering a noisy output. 

6.2 Unstable linear system with a large spectrum 

The system is characterized by the transfer function   ( + 10)( + 1)( + 0.1)( − 0.2)( − 2)( − 20) 

A PI-ADRC is designed for   = 0.1,  = 0.4 and   = 5 
when the system is locally described by (6). The Fig. 8 shows 
the effectiveness of the tracking of a square signal of 
amplitude 1 and frequency 0.1 Hz. 

 

Fig. 8. PI-ADRC tracking for an unstable linear system with 
a large spectrum. 

6.3 Inverted pendulum 

The motion equation of the inverted pendulum of Fig. 9 is 
given by   ̈( ) −      [ ( )] +   ̇( ) =  ( ), (75) 

where  ( ) describes the angular deviation from the upright 
position. It is assumed a damping term proportional to the 
angular velocity and that it is possible to affect the pendulum 
by a torque  ( ) at its base. The parameters of the system are 
in Table 4. The controller’s gains computed in the design of 
the mass-spring control system are used for the inverted 
pendulum. The Fig. 10 exhibits the tracking performance of a 
square signal of amplitude 1 and frequency 0.01 Hz. The Fig. 
11 (zoomed) considers the disturbance rejection of a 0.1 
amplitude step signal applied since  = 10 in the output 
channel. The results show that PI-ADRC has a little better 
performance in the case of tracking and PID-ADRC has a 

better one in the case of step disturbance rejection. If it is 
done a post tuning adjustment of the controllers gains or it is 
modified the estimate of the scaling factor   , the results may 
be distinctly different. 

 

Fig. 9. Inverted pendulum. 

 

Fig. 10. PI/PID - ADRC tracking for the inverted pendulum. 

 

Fig. 11. PI/PID - ADRC disturbance rejection for the inverted 
pendulum. 

Table 4. Parameters of the inverted pendulum. 

Symbol Description Value 
m Mass of the 

sphere 
0.1    

g Gravity on the 
surface of the 
earth 

9.8    ⁄  

l Length of the 
rigid rod 

1   

J Moment of the 
inertia 

0.1   .   

7. CONCLUSIONS 

It has been developed a method that allows tuning a 
PI/PID/PID(n-1) controller into the ADRC framework. The 
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method makes use of the LQR approach and by imposing the 
condition of guaranteed dominant pole placement; it is 
defined a criterion for selecting the Q and R matrices in 
order to have a desired percentage overshoot and settling 
time of the closed loop response. Some numerical examples 
are considered to show the effectiveness of the approach. 
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