
CEAI, Vol.16, No.4 pp. 61-72, 2014 Printed in Romania

Energy-Efficient Authentication and Anti-Replay Security Protocol
for Wireless Sensor Networks

R. Rughiniș*, L. Gheorghe**

* Faculty of Automatic Control and Computers, University Politehnica of Bucharest, Bucharest, Romania.
(Tel: +40 722 302 269; E-mail: razvan.rughinis@cs.pub.ro)

** Faculty of Automatic Control and Computers, University Politehnica of Bucharest, Bucharest, Romania.
(E-mail: laura.gheorghe@cs.pub.ro)

Abstract: This article discusses a security solution for Wireless Sensor Networks that provides strong
mutual authentication, anti-replay protection, confidentiality, integrity, and semantic security, while
being reliable and energy-efficient: the Energy-efficient Authentication and Anti-Replay Security
Protocol (EAASP). Mutual authentication is performed during a three-step handshake that establishes an
authenticated connection. The protocol includes an anti-replay mechanism that binds packets to their
context so that they cannot be re-used by attackers. Reliability is warranted by a packet recovery
mechanism using negative acknowledgements. The security protocol has been implemented in TinyOS
using nesC components and its functionality was evaluated using TOSSIM. An extensive comparative
evaluation of five solutions recommends EAASP for critical applications in military, industrial and
medical utilization.

Keywords: wireless sensor network; security; authentication; anti-replay; integrity; energy efficiency



1. INTRODUCTION

Wireless Sensor Networks employ embedded devices with
low power, limited resources, low cost, and small
dimensions, which self-organize into a network in order to
collect data about the environment and to relay it towards a
central device identified as the base station (Zheng et al.,
2009). Applications that run on top of sensor networks can be
divided into monitoring and tracking applications (Yick et al.,
2008). Monitoring applications include environmental
monitoring, health care, industrial process control, disaster
detection, and many others. Sensor networks can also be used
to track animals, humans or objects.

Depending on the application, sensor networks are designed
to meet a set of variable priority requirements, including
security, reliability, robustness, self healing, and scalability
(Westhoff et al., 2006). Low energy consumption is a crucial
constraint for sensor networks (Walters et al., 2006; Akyildiz
et al., 2002), particularly for WSNs including devices that are
difficult to replace – such as sensors situated in hard to reach
environments, or inside the human body.

Wireless Sensor Networks are used in critical applications in
fields such as military, health, and habitat monitoring.
Attackers may intercept traffic, may inject malicious packets
into the network or may otherwise interfere with network
devices, in order to obtain data or to disrupt normal network
functionalities (Kavitha et al., 2010). Still, traditional security
methods cannot be directly applied to Wireless Sensor
Networks because of the limited resources available on
sensor nodes (Walters et al., 2006; Pathan et al., 2006).

Therefore, dedicated security solutions must be designed to
address the required security profiles.

The article discusses the Energy-efficient Authentication and
Anti-replay Security Protocol (EAASP), a security solution
that provides mutual authentication, anti-replay protection,
integrity, confidentiality, semantic security and reliability.
Development versions of the protocol were presented in
Gheorghe et al. (2010a, 2010b) and in Gheorghe et al. (2011).
The EAASP protocol jointly optimizes protection and energy
efficiency for critical uses such as military, law enforcement,
security, industrial control and medical applications.

The paper is structured as follows: section 2 introduces a
range of alternative solutions that address a comparable
security profile; section 3 presents the main protocol features;
section 4 discusses EAASP implementation; section 5
presents test results; section 6 includes a comprehensive
comparative evaluation of EAASP performance on multiple
metrics, section 7 discusses the practicability of EAASP for a
variety of application domains with specific security profiles,
and section 8 concludes the article.

2. RELATED WORK

Each application has a specific profile of security
requirements, which must be taken into consideration in the
design of a security solution. The main requirements to be
taken into account when implementing a WSN are:
authenticity, integrity, confidentiality, non repudiation,
freshness, availability, intrusion detection, and key
management (Zheng et al., 2009; Wang et al., 2006). Other
requirements that should be taken into consideration when
developing a security protocol for WSNs are: reliability,

62 CONTROL ENGINEERING AND APPLIED INFORMATICS

resiliency, flexibility, scalability, fault-tolerance, self-healing,
assurance, transmission time, delay, and, last but not least,
energy consumption (Wang et al., 2006; Karlof et al., 2004;
Anastasi et al., 2009).

This paper addresses the following attacks which are relevant
for our comparative evaluation of EAASP, starting from their
presentation in Wang et al. (2006): packet injection and
alteration (including the Sybil attack), packet replay
(including the wormhole attacks), selective forwarding,
Sinkhole, Blackhole, de-synchronization, and flood attacks.
These attacks occur in the network and transport layers.
Other important attacks may take place in the link and
physical layers: jamming, tampering, eavesdropping, node
capturing, collision, exhaustion, and unfairness.

Significant dedicated state-of-the-art security solutions for
Wireless Sensor Networks include SPINS (Perrig et al.,
2002), TinySec (Karlof et al., 2004), MiniSec (Luk et al.,
2007), and CLIFFs (Sharma et al., 2011).

2.1 SPINS

SPINS was developed in 2002 by Perrig et al., and it consists
of two building blocks: SNEP and μTESLA (Perrig et al.,
2002; Boyle et al., 2008). SNEP provides confidentiality,
authentication, integrity and freshness. μTESLA provides
authenticated broadcast and emulates asymmetry by a
delayed disclosure of symmetric keys. SPINS was
implemented in TinyOS.

2.2 TinySec

TinySec is a link layer security architecture, developed in
2004 by Karlof et al., which provides confidentiality,
authentication, integrity and semantic security (Karlof et al.,
2004; Boyle et al., 2008). The authors chose not to include
anti replay protection, deeming that it should be implemented
at higher layers of the communication stack.

TinySec allows for two different security options: TinySec-
Auth, which provides only authentication and TinySec-AE,
which assures authenticated encryption. TinySec was
designed to replace SNEP, and it is included in the TinyOS
distribution.

2.3 MiniSec

MiniSec is a security solution developed by Luk et al. in
2007, which aims at high security while being energy-
efficient (Luk et al., 2007). The security requirements it
addresses are authentication, confidentiality and anti-replay
protection. It has two modes of operation: single-source
unicast communication – MiniSec-U, and multi-source
broadcast communication – MiniSec-B.

2.4 CLIFFs

The Cross Layer Integrated Framework for Security
(CLIFFs) for WSNs has been developed by Sharma and
Ghose in 2011 (Sharma et al., 2011). CLIFFs includes an
adaptive security protocol that dynamically adjusts its

functionality to the security level that is required by the
current network state.

3. ENERGY-EFFICIENT AUTHENTICATION AND
ANTI-REPLAY SECURITY PROTOCOL

The three main sources of security vulnerabilities in WSNs
are their limited energy resources, unreliable communication,
and unattended operation (Walters et al., 2006). The Energy-
efficient Authentication and Anti-Replay Security Protocol
(EAASP) is a security protocol that provides strong, mutual
authentication and reliability, ensuring anti-replay protection
and message confidentiality, integrity and semantic security,
with low energy and latency costs. Its security profile is
designed to efficiently prevent attacks from external
malicious nodes.

3.1 Data confidentiality

In EAASP, data confidentiality is provided by encrypting the
packet payload using lightweight block cipher and operation
mode. The payload is first concatenated with the sequence
number and then encrypted, as represented in formula (1), in
order to provide semantic security.

௜݀ܽ݋݈ݕܽܲ ൌ ݏܯ,ܭሺܧ ௜݃||ܵ݁ݍሻ																																																		 (1)

3.2 Authentication, integrity and anti-replay protection

EAASP uses a single Message Authentication Code (MAC)
in order to provide authentication and anti-replay protection.

The paper discusses an anti-replay method that consists in
computing a MAC based on the contents of the previous
message sent between the same source and destination and
including this MAC in the current packet, as in formula (2).
This way, we build chains of packets. We call this method
‘binding the packet to its context’. If a packet is replayed, the
MAC computed at the destination considering the previous
packet is not equal to the MAC found in the packet, so the
packet is dropped.

௜ܥܣܯ ൌ ௜ିଵሻ (2)݃ݏܯ,ܭሺܥܣܯ

The most efficient method to prevent packet alteration is to
include in each packet a MAC computed as a function of the
contents of the current packet itself. The attacker cannot re-
compute a valid MAC after altering the packet because it
does not know the secret key. The destination node computes
the MAC based on the current packet contents and compares
it with the one found in the packet. If the packet has been
altered, the MACs are not equal and the packet is dropped.

In order to combine the anti-replay and the integrity
protection methods, the MAC is computed based on the
contents of both the previous and current packets. We also
include the sequence number in the computation of the MAC
in order to provide semantic security, as represented in
formula (3).

௜ܥܣܯ ൌ ,ܭሺܥܣܯ (3) (ݍ݁ܵ	||௜ିଵ݀ܽ݋݈ݕܽܲ	||	௜݀ܽ݋݈ݕܽܲ

Therefore, packet i includes the MAC computed using
message i-1 and message i, as represented in Figure 1. When

CONTROL ENGINEERING AND APPLIED INFORMATICS 63

receiving packet from node X, node Y computes the MAC
based on the previous packet received from X and the current
packet to verify the MAC found in the packet.

Fig. 1. EAASP anti-replay method.
This approach provides anti-replay protection since any
replayed packet is rejected at the destination because of its
invalid MAC. It provides integrity because altered messages
are dropped at the destination. The method also provides
authentication by using the secret key shared between source
and destination in the MAC computation.

However, the first packet between source and destination is
always accepted even if it is malicious. The solution we
propose for addressing this problem is to perform mutual
authentication prior to sending data packets.

3.3 Mutual authentication

Mutual authentication is completed by a 3-step handshake
that establishes an authenticated connection, and it is required
before any data packets can be exchanged. The handshake is
represented in Figure 2. Node X initiates the connection by
sending a H1 packet containing a random Challenge1. Node
Y sends a H2 packet containing a random Challenge2 and the
MAC computed from Challenge1 in order to authenticate
itself. Node X also authenticates itself by sending the MAC
computed from Challenge2.

When the mutual authentication is completed, the
authenticated connection is established and data packets can
be exchanged in both directions. The handshake and data
packets include the MAC computed using formula (3).

Fig. 2. Mutual authentication in EAASP.

During the mutual authentication process, if the other node
does not respond for a predefined period of time, decided by
the network administrator, the authentication fails and must
be re-initiated. This provides protection against Denial of
Service attacks based on open connections.

After mutual authentication is performed, a connection is
created between the two nodes. The connection times out
after a predefined period of time in which no packet is sent in
any direction, and mutual authentication must be re-iterated
when the two nodes want to communicate with each other.

The predefined timeout depends on the network dimension
and the application and should be determined experimentally
by the network administrator.

3.4 Communication Reliability

Packet loss is a common problem in WSNs, and it affects the
security protocol because it de synchronizes the anti-replay
mechanism. If packets are lost, the destination drops the
subsequent packets because the MAC of the previous packet
expected by the destination does not match the one found in
the received packets.

EAASP accommodates two methods for providing reliability:
positive and negative acknowledgements. However, for a
more energy-efficient implementation of EAASP the use of
negative acknowledgements is recommendable.

Positive acknowledgements (ACK) are used to announce that
one or more packets have been received at the destination
node. If the ACK is timely received, the next packet is sent. If
not, the respective packets are marked as “lost” and they are
resent; the procedure is then repeated.

Negative acknowledgements (NACK) are used when the
destination detects packet loss. The destination detects a lost
packet when it receives a packet with a sequence number
greater than the expected one. The out-of-order packet is not
dropped by the destination, but it is stored in order to be
checked and used after the recovery of the lost packets.

When choosing between the two solutions, one must take into
consideration energy consumption, reliability, and delay
criteria. An evaluation of the energy efficiency of positive
versus negative acknowledgments depends on the rate of
packet loss; with low packet loss rates positive ACKs
consume more energy than negative ACKs, while high packet
loss causes the opposite effect.

As regards reliability, positive ACKs track the status of each
packet or packet sets. Negative ACKs start tracking packet
status only when packet loss is detected, and thus a large
number of packets can be lost before the destination notices.

The delay introduced by the retransmission method depends
on the number of lost packets. In the case of low packet loss,
positive ACKs introduce a greater delay because they are sent
more frequently and the source node has to wait for them. In
the event that many consecutive packets are lost, negative
ACKs can introduce a greater delay because the destination
does not trigger the recovery action until it becomes aware of
the packet loss.

In the next paragraphs EAASP with negative ACKs is
discussed for efficiency reasons regarding energy
consumption and delay in networks with low rates of packet
loss. However, for a network with high packet loss, the use of
positive ACKs is recommendable.

X Y

MAC(K, Payloadi-1, Payloadi,Seq), Payloadi

MAC(K, Payloadi, Payloadi+1,Seq), Payloadi+1

64 CONTROL ENGINEERING AND APPLIED INFORMATICS

The payload of a NACK packet contains the sequence
number of the lost packet L_Seq, and the sequence number of
the received out-of-order packet R_Seq, as represented in
Table 1.

Table 1. NACK packet structure

EAASP Header Payload

MAC Type Seq L_Seq R_Seq

The source node receives the NACK and resends the packet
with the sequence number that is equal to L_Seq, and it does
not resend the packet with the sequence number equal to
R_Seq.

When the destination node receives a lost packet, it performs
the integrity and anti-replay check and, if the packet passes
the test, it sends it to the upper layers. The same process is
repeated for the out-of-order packet in storage.

3.5 EAASP message format

The EAASP payload contains the initial encrypted data. The
payload is represented in formula (3).

 The EAASP message header contains the following fields:
MAC (4 bytes), Type (1 byte) and Sequence (1 byte), as
presented in Table 2.

Table 2. Header structure

Header structure
EAASP Header

MAC Type Seq

Number of bytes 4 1 1

The MAC field contains a Message Authentication Code that
is computed from the contents of the previous packet, the
contents of the current packet, the secret key and the
sequence number, as represented in formula (4).

The Sequence number is used to detect lost packets and
request them from the source node.

The Type field contains several other fields: Auth, Resent,
H1/H2/H3/Data/NACK, and QoS, as represented in Table 3.

Table 3. Type field structure

Type
field

structure

Type field

Auth Resent H1/H2/H3/Data/NACK QoS

Number
of bits

1 1 3 3

The Auth field is 0 during the authentication handshake and 1
after the handshake; therefore, it indicates that the source and
destination have successfully performed mutual
authentication.

The Resent field is set to 1 only when the packet is re-sent
through the packet recovery method. This field is used to
mark packets that are transmitted in the recovery process.

According to EAASP design, a packet can be a handshake
packet (H1, H2, H3), a Data packet or a NACK. This
information is encoded on 3 bits.

The QoS field can be used to implement a QoS mechanism.
The priority is represented on 3 bits; therefore, the
administrator may define 8 levels of priority. For example,
control packets, such as handshake, NACK, and Re-sent
packets can receive greater priority than Data packets.

3.6 Collision resistance analysis

A collision attack occurs when a malicious message is
generated with the same MAC as a legitimate message. The
probability of having two different blocks of data with the
same hash is 1 in 2n, where n is the hash length. Therefore,
the probability decreases exponentially with increasing hash
length.

EAASP uses the HMAC method to compute 32-bit hashes.
Therefore, the attacker should send packets with random
MACs, on average, 232 times before forging a valid MAC.
As the authors of TinySec state, it would take 20 months to
send so many packets using a 19.2 kbps rate (Karlof et al.,
2004). Therefore, EAASP is based on the consideration that a
4-byte MAC is sufficient for a resource constrained
communication network. However, some critical applications
may require a higher security level and hence a smaller
collision probability, which can be provided by an 8-byte
MAC.

4. EAASP IMPLEMENTATION

The Energy-efficient Authentication and Anti-Replay
Security Protocol (EAASP) has been implemented in the
communication stack of TinyOS, an open source, component
based operating system that was especially developed for
Wireless Sensor Networks (Levis et al., 2004).

The implementation was done using nesC components that
have been connected with default TinyOS components, as
represented in Figure 3.

Fig. 3. EAASP implementation.

4.1 MAC Layer

The Message Authentication Code (MAC) Layer is
implemented using the Communication System Hooks (CSH)
that we placed between the Active Message layer and the
AMReceiver and AMSender components.

CSH contain two main components: HookSender and
HookReceiver. The HookSender component is able to
analyze and alter any packet before it is sent by the current

ActiveMessage

MACLayerReceiver MACLayerSender

AMSender AMReceiver

Application

AuthenticationLayer

EAASP
components

TinyOS
default
components

CONTROL ENGINEERING AND APPLIED INFORMATICS 65

node. The HookReceiver is able to inspect and modify any
received packet received by the current node before reaching
the Application layer. 4.1.1 MACLayerSender

In the HookSender component, packets are received from the
AMSender component which is used by the Application layer
to send packets to the destination. In the protocol
implementation, the HookSender is designated as
MACLayerSender, as observed in Figure 3.

When it receives a packet from the AMSender component, it
first encrypts the payload. Then it computes a Message
Authentication Code from the current payload, the payload of
the previous packet, the secret key and the sequence number.

The current payload is then stored in this component in order
to be used when sending the next packet.

After the MAC is computed and placed into the
corresponding field, the packet is sent to the ActiveMessage
component.

4.2 MACLayerReceiver

The HookReceiver component receives all packets that have
as destination the current node from the ActiveMessage layer
and sends them to the AMReceiver component. In the
EAASP implementation, the HookReceiver is designated as
MACLayerReceiver.

When a packet is received from the ActiveMessage layer, the
validity of the MAC value and the sequence number
contained in the packet are checked.

If the MAC is invalid and the sequence number is lower than
or equal to the expected one, the packet is dropped. This way,
the component rejects replayed and invalid packets.

If the MAC is invalid but the sequence number is greater than
the expected one, the packet might be an out-of-order packet.
This packet is stored in the component and it is checked and
delivered to the upper layer after the expected packets are
received.

If the MAC is valid and the sequence number is the expected
one, the payload is decrypted and the packet is sent to the
AMReceiver component. The payload of the current packet is
stored in order to be used when verifying the MAC of the
next packet.

The component maintains in a variable the sequence number
of the last received valid message from each source node.
This variable is used in order to detect the out-of-order
packets.

4.3 Authentication Layer

The AuthenticationLayer performs the authentication
handshake, keeps track of sequence numbers, buffers packets
and sends ACK/NACK packets. It is placed between the
Application and the AMSender/AMReceiver components.

When the Application wants to send packets, the
AuthenticationLayer initiates the three step handshake with
the destination. After the handshake has been performed and

the authenticated connection has been established, the data
packets can be delivered.

When an out-of-order packet is received, the Authentication
layer builds and sends a NACK packet that contains the
sequence number of the expected packet, as well as the
sequence number of the out-of-order received packet.

When the AuthenticationLayer receives a NACK packet, it
starts resending all the packets with a sequence number
greater and equal to the expected value, but less than the out-
of-order sequence number.

After all those packets are delivered to the
AuthenticationLayer at the destination, the
MACLayerReceiver checks and delivers the out-of-order
packet.

The source node stores a predefined number of packets in a
buffer, providing the opportunity for packet retrieval when
packets are lost. When receiving a NACK packet, which
requests a sequence number of a packet that is not in the
buffer anymore, the missing packet cannot be retrieved and
delivered to the destination any longer. At that moment the
connection is closed and re-initiated, because it has been de-
synchronized.

The AuthenticationLayer is responsible for creating and
closing the authenticated connection, for requesting lost
packets, and for storing sent packets and retrieving and
delivering them upon request.

4.4 Cryptographic primitives

The MAC can be implemented by using a cryptographic hash
function, for example HMAC, by using a block cipher
algorithm, for instance CBC-MAC and CMAC, or by using
universal hashing, such as UMAC and VMAC. Lee et al.
compare several MAC methods and conclude that HMAC is
the most efficient from the point of view of energy
consumption and memory occupation (Lee et al., 2010).
Therefore, HMAC was chosen, in this paper, for
implementing the MAC in EAASP security protocol, for
efficiency reasons.

Some of the most well-known block ciphers are AES, DES,
RC5 and Skipjack. Lee et al. determined experimentally that
Skipjack is the most efficient block cipher as regards energy
consumption, RAM, encryption and decryption time (Lee et
al., 2010). Skipjack is also the default algorithm used in
TinySec and MiniSec. Karlof et al. consider that both RC5
and Skipjack are appropriate for sensor networks but they
prefer Skipjack for its low key setup cost, and because RC5 is
patented (Karlof et al., 2004).

The National Institute for Standards and Technology (NIST)
recommends the following operation modes: Electronic
codebook (ECB), Cipher-block chaining (CBC), Cipher
feedback (CFB), Output feedback (OFB), and Counter
(CTR). Lee et al. determined experimentally that CBC, OFB,
and CFB are the most energy-efficient operation modes. CBC
and CFB have the advantage of tolerating repeatable
Initialization Vectors (IVs). However, CBC has the
disadvantage of producing an output larger than the input and

66 CONTROL ENGINEERING AND APPLIED INFORMATICS

has a decryption cost that is much higher than the encryption
cost (Lee et al., 2010). Therefore, Skipjack was chosen in this
work as the default block cipher and CFB as its operation
mode, in order to efficiently encrypt data while minimizing
energy costs.

5. EXPERIMENTAL EVALUATION

The Energy-efficient Authentication and Anti-Replay
Security Protocol has been tested with TOSSIM, a simulator
for TinyOS applications (Levis et al., 2003). Initial
development versions of the protocol were evaluated in
Gheorghe et al. (2010a, 2010b) and Gheorghe et al. (2011).

A single hop example of TOSSIM output for EAASP
functioning is presented in Figure 4. Each line has the
following format: The ID of the node, the component that
generates the output, the type of packet sent or received, the
fields, the source and destination of the packet. In Figure 4
the authentication handshake takes place, and a data packet is
sent by node 3 and received by node 1. As it can be observed
in the output, the Authentication layer is responsible for
performing the handshake and building the authenticated
connection. Afterwards, the Application layer is responsible
for sending and receiving data.

Fig. 4. Handshake and data packets.

Figure 5 demonstrates communication reliability.

Fig. 5. Response to lost data packets.

A packet with the sequence number equal to 11 is lost and the
next packet is received by the destination. It is detected as an
out-of-order packet and a NACK is built and delivered to the
source node. The NACK is received by the source node,
which retrieves and then delivers the lost data packet. The
out-of-order data packet is also delivered by the MACLayer
to the application. Afterwards, traffic continues normally; the
packet with the sequence number equal to 13 is correctly
delivered to the destination.

6. COMPARATIVE EVALUATION

This section compares EAASP with several other security
solutions, taking into consideration security, energy
consumption, delay, and control overhead. Four security
solutions that provide comparable services were included in
the evaluation: SPINS (Perrig et al., 2002), TinySec with its
two versions TinySec-Auth and TinySec-AE (Karlof et al.,
2004), MiniSec (Luk et al., 2007) and CLIFFs (Sharma et al.
2011). SPINS and TinySec are the most mature solutions for
sensor networks, having been extensively tested in the
academic environment and in industrial applications.
Alternatively, MiniSec and CLIFFs are more recent
solutions, but are more efficient and incorporating additional
functionalities. Therefore, the analysis includes these
solutions in the EAASP comparative evaluation, based on
their similar security profiles and because they have variable
maturity levels and diverse features.

In sensor networks there is always a trade-off between
security and energy efficiency. For this reason, the first
comparison refers to security metrics for analyzed solutions,
and the second comparison refers to their energy
consumption.

6.1 Security analysis

As Wang et al. propose in their survey, security should be
evaluated using a number of requirements: authentication,
integrity, freshness, confidentiality, non-repudiation,
availability (Wang et al., 2006). Semantic security is included
in this list, as it is implemented in several selected security
protocols. An overview of the evaluation is presented in
Table 4.

6.1.1 Authentication

SNEP is a component of SPINS that provides one way
authentication through computing a Message Authentication
Code (Perrig et al., 2002). The MAC has 8 bytes and is
computed using the CBC-MAC method. The key used in the
computation is generated from the Master Key that is pre-
provisioned on the nodes and shared with the base station.
The MAC is built from the encrypted packet concatenated
with a counter.

Both TinySec-Auth and TinySec-AE use a MAC to provide
one way authentication (Karlof et al., 2004). The same
method, CBC-MAC, is used, but the result is 4 bytes in
length.

(3): ApplicationC: Data packet sent [payload=1243 type=32 seq=11 (3 -
>1)]

(3): ApplicationC: Data packet sent [payload=1244 type=32 seq=12 (3 -
>1)]

(1): AuthenticationLayer: Out of order packet received [payload=1244
type=48 seq=12 (3 ->1)]

(1): AuthenticationLayer: NACK packet sent [payload=11 type=40
seq=2 (1 ->3)]

(3): AuthenticationLayer: NACK packet received [payload=11 type=40
seq=2 0 (1 ->3)]

(3): AuthenticationLayer: Data packet resent [payload=1243 type=92
seq=11 (3 ->1)]

(1): ApplicationC: Data packet received [payload=1243 type=92 seq=11
(3 ->1)]

(1): ApplicationC: Data packet received [payload=1244 type=32 seq=12
(3 ->1)]

(3): ApplicationC: Data packet sent [payload=1245 type=32 seq=13 (3 -
>1)]

(1): ApplicationC: Data packet received [payload=1245 type=32 seq=13
(3 ->1)]

(3): AuthenticationLayer: H1 packet sent [payload=234 type=8 seq=1 (3
->1)]
(1): AuthenticationLayer: H2 packet sent [payload=57195 type=16 seq=1
(1 ->3)]
(3): AuthenticationLayer: H3 packet sent [payload=56185 type=24 seq=2
(3- >1)]
(3): AuthenticationLayer: Managed to authenticate myself to node 1
(1): AuthenticationLayer: Managed to authenticate myself to node 3
(3): ApplicationC: Data packet sent [payload=1235 type=32 seq=3 (3 -
>1)]
(1): ApplicationC: Data packet received [payload=1235 type=32 seq=3
(3 ->1)]

CONTROL ENGINEERING AND APPLIED INFORMATICS 67

MiniSec-U is the unicast communication component of
MiniSec and uses OCB method to provide one-way
authentication (Luk et al., 2007). OCB computes a ciphertext
from the initial message, key, and nonce. It also generates a
4-byte tag that is verified by the destination after decrypting
the text. The tag provides the possibility to verify the
authenticity of the packet.

CLIFFs assures data authentication through the use of a 4-
byte MAC (Sharma et al. 2011). However, the authors do not
specify the method used to compute this MAC.

EAASP provides authentication through the use of a 4-byte
MAC, computed by the HMAC method. In order to
strengthen the authentication and anti-replay protection, an
authenticated connection is established by a 3-step handshake
performing mutual authentication. The connection includes
the flow of packets that are bound together. A packet cannot
be injected or replayed in an already established connection,
and the connection cannot be established until both sides
have authenticated themselves.

6.1.2 Integrity

A CRC or MAC can be used to check the integrity of a
message. The original TinyOS packet contains a two-byte
CRC. SNEP, TinySec-Auth, TinySec-AE, CLIFFs, and
EAASP use the MAC to verify message integrity. MiniSec-U
uses the OCB tag to provide data integrity.

6.1.3 Freshness

Freshness is usually provided by using a counter or sequence
number in cryptographic operations. SNEP provides weak
freshness because it includes a counter in the MAC
computation. The counter is not included in the message but
it is known and incremented by both sides. However, this can
cause de-synchronization problems when packets are lost.
The authors use a protocol to synchronize the counters on
both sides.

Neither TinySec-Auth, nor TinySec-AE provides any
freshness because the authors decided that it should be
implemented at higher levels. This decision makes TinySec
more lightweight but less secure. CLIFFs does not specify
any anti-replay protection either.

MiniSec-U provides weak freshness by including a counter in
the OCB computation. The counter is kept synchronized by
both the sender and the receiver. The receiver accepts only
messages with a higher counter; therefore, it assures anti-
replay protection.

EAASP provides anti-replay protection and weak freshness
by binding the message to its context: it computes the MAC
based on the contents of the previous packet sent between the
same source and destination in a certain authenticated
connection, based on the sequence number of the current
packet and based on the contents of the current packet. This
makes it very difficult for an attacker to find a packet with a

valid MAC in order to replay it in the current conversation.

6.1.4 Confidentiality

The standard way to provide confidentiality is through
encryption. Two cryptographic primitives used in the
encryption process are the encryption algorithm and the
operation mode.

SNEP provides confidentiality with the RC5 encryption
method. However, this basic confidentiality is not sufficient
in a context with repeated values, in which an attacker can
easily map plaintext with the equivalent ciphertext.
Therefore, semantic security is needed for sensor networks.
Semantic security is provided by using the block cipher in
counter mode (CTR mode) and a counter that is shared
between the sender and the receiver. The counter is
incremented after each message, and therefore the encryption
of the same value is different every time. For security
reasons, the key that is used for encryption is different from
the key used for computing the MAC. This key is also
derived from the Master key. A different key and counter are
used for each communication direction.

TinySec-AE uses Skipjack as the default block cipher
because, although RC5 is faster, Skipjack is more energy-
efficient, has a lower memory footprint, and is not patented.
The authors have chosen the CBC operation mode because it
is more appropriate for block ciphers. They have slightly
modified the functionality of the CBC by encrypting the IV
before performing the actual encryption. Semantic security is
assured through the use of non-repeating IVs. TinySec-Auth
does not provide confidentiality or semantic security.

MiniSec-U also uses Skipjack as the underlying block cipher.
OCB is a block cipher operation mode that provides
authenticated encryption. The ciphertext is obtained from the
message payload, counter, and secret key. The counter is
used as non-repeating nonce and provides semantic security.

EAASP also uses Skipjack as the underlying block cipher
and the CFB operation mode because of their high efficiency
and performance. The protocol provides semantic security by
using the sequence number when encrypting the payload and
when computing the MAC.

CLIFFs uses four methods for providing confidentiality,
associated with the four levels of security specified by the
authors: Simple XOR, RC5/80/4, RC5/40/8 and RC5/40/12.
The encryption algorithm is RC5, the key size is 80 bytes,
and the number of rounds is 4, 8 or 12, depending on the
security level. A larger number of rounds imply a higher
security level.

6.1.5 Non-repudiation

Non-repudiation is usually provided by digital signatures or
trusted third party (TTP). These security methods are not
appropriate for low power devices, so they were not
implemented in any of the selected protocols.

68 CONTROL ENGINEERING AND APPLIED INFORMATICS

6.1.6 Availability

A large range of attacks target the availability of the sensor
network, such as selective forwarding, Sinkhole attacks,
Blackhole attacks, flood attacks, malicious data injection,
radio jamming, etc.

Sinkhole, Sybil, alteration, and injection attacks are mitigated
by every solution included in the evaluation. Replay and
Wormhole attacks are blocked only by SNEP, MiniSec-U and
EAASP. Blackhole attacks, selective forwarding and de-
synchronization attacks are mitigated only by EAASP. Flood,
jamming, tampering, collision and exhaustion attacks are not
addressed by any of the compared protocols.

EAASP provides a high level of service availability by its
authentication and integrity mechanisms, anti-replay
protection, and packet recovery mechanism.

6.1.7 Other security metrics

Other metrics that are useful for comparing security protocols
are: reliability, resiliency, flexibility, scalability, fault-
tolerance, self-healing, assurance and energy efficiency.

SPINS, TinySec-Auth, TinySec-AE and CLIFFs do not
provide any kind of reliability. The authors of MiniSec
provide a possibility for counter re-synchronization that uses
acknowledgements and packet recovery. EAASP implements
packet loss detection and recovery in order to avoid de-
synchronization, using negative acknowledgements.

Resiliency mainly depends on key management. If one single
secret key is used for securing communications in the entire
network, the protocol is not resilient to node capturing.
However, if only the end nodes (source and destination)
know the secret key used to secure the traffic between them,

the security protocol is resilient to such attacks. SNEP uses a
master key which is shared between the source and
destination nodes and which is used to derive the encryption
key and the MAC key. TinySec-Auth, TinySec-AE, MiniSec-
U and EAASP use symmetrical keys that are shared between
the source and destination nodes. CLIFFs uses 4 types of
keys: Buddy key (Kb), My-Own-Key (Ko), Network key
(Kn) and Broadcast key (Kbro). Therefore, all selected
security protocols are resilient to compromised nodes.

None of the selected protocols depend on the network
topology or other context factors, therefore they provide
flexibility. For all selected security protocols, including
EAASP, the number of hops does not influence the degree to
which security requirements are satisfied by the protocol.

Both energy consumption, which is mainly determined by
transmission costs, and latency depend linearly on the
number of hops. Therefore, the selected protocols are
scalable.

EAASP is fault-tolerant when packets are lost or altered by
hardware, software, or transmission faults, because of its
packet recovery, authentication, and integrity mechanisms.
MiniSec authors recommend the use of packet recovery
based on negative acknowledgments but this is not actually
integrated into the protocol.

All selected protocols are tolerant to packet altering caused
by transmission faults. SNEP includes a counter
synchronization protocol used in case of packet loss which
re-configures the counters. The authors of MiniSec suggest
that a packet recovery mechanism can be used to recover
from packet loss. CLIFFs includes a re-election mechanism
that is performed when a current cluster head is out of
energy.

Table 4. Protocol comparison on security requirements

Metrics SNEP (SPINS) TinySec-Auth TinySec-AE MiniSec-U CLIFFs EAASP

Security
Requirements

Authentication One way,
CBC-MAC, 8
bytes

One way,
CBC-MAC, 4
bytes

One way,
CBC-MAC, 4
bytes

One-way, OCB
tag, 4 bytes

One-way,
MAC

Mutual,
HMAC, 4 bytes,
authenticated
connection

Integrity MAC MAC MAC OCB tag MAC MAC
Freshness Counter No No Counter No Previous packet,

sequence
number

Confidentiality Encryption,
RC5, CTR

No Encryption,
Skipjack, CBC

Encryption,
Skipjack, OCB

Encryption, RC5 Encryption,
Skipjack, CFB

Semantic
Security

CTR, Counter No Random IVs Counter No Sequence
number

Non-repudiation No No No No No No

Availability Partial Partial Partial Partial Partial Partial

Other
Requirements

Reliability No No No Possible No Yes
Resiliency Yes Yes Yes Yes Yes Yes
Flexibility Yes Yes Yes Yes Yes Yes

Scalability Yes Yes Yes Yes Yes Yes
Fault -tolerance Altered packets Altered packets Altered packets Altered packets Altered packets Lost and altered

packets
Self-healing Counter

synchronization
protocol

No No No Re-election of
cluster head

Packet recovery,
connection re-
establishment

Assurance No No No No Yes No

Energy-
efficiency

 Low Good Low Medium Medium Medium

CONTROL ENGINEERING AND APPLIED INFORMATICS 69

TinySec does not include re-configuration mechanisms. In
EAASP, if a node loses the information regarding its
authenticated connection, it re-initiates the 3-step handshake
to perform mutual authentication and re-establish the
connection. In our protocol, packet loss is handled using a
packet recovery mechanism.

Only CLIFFs includes adaptive security services adjustable
as regards security requirements, thus providing assurance.
None of the other protocols accommodate diverse user
preferences.

6.1.8 Attack mitigation

The comparative evaluation considers several frequent
attacks presented above, following Wang et al.: packet
injection and alteration, replay attack, selective forwarding,
Blackhole attack, Sinkhole attack, Sybil attack, Wormhole
attack, de-synchronization attack, flood attack, and physical
and link layer attacks. An overview of the comparison is
included in Table 5.

All selected protocols are able to mitigate packet injection
and alteration. Defense is accomplished by authentication and
integrity mechanisms: SNEP, TinySec, CLIFFs and EAFASP
use MACs, while MiniSec-U uses the OCB tag for packet
verification. The protocols use authentication and integrity
mechanisms to mitigate Sybil attacks when they are
generated by external attackers. All selected protocols can
address the Sinkhole attack produced by a malicious node by
the authentication of routing control packets.

Replay attacks, including Wormhole attacks, are mitigated by
SNEP and MiniSec-U by authentication and freshness
mechanisms: the MAC and OCB tag that are computed using
a counter and the secret key shared between source and
destination. EAASP uses a sequence number and the contents
of the previous packet in the MAC computation to mitigate
replay attacks. EAASP provides protection against Wormhole
attacks by mutual authentication between source and
destination and the anti-replay mechanism. TinySec and
CLIFFs do not provide any protection against replay attacks.

Selective forwarding and Blackhole attacks cannot be
mitigated by the selected protocols, except for EAASP,
which addresses them by its packet recovery mechanism.
When a packet is lost or dropped by a malicious node, it is re-
sent by the destination. However, if the packet takes the same
route, there is a possibility to be dropped again by the
malicious node. A routing protocol should be used to take
into consideration route failure and re-route the traffic in such
instances.

EAASP protects effectively against a Denial of Service attack
based on open connections by using time-outs. However,
none of the selected protocols, including EAASP, is designed
to mitigate flooding attacks. The problem can be easily
solved for EAASP by including a Storm Control Mechanism
in the MAC Layer (Rughinis and Gheorghe, 2010).

EAASP is the only one to establish a security connection
between the source and destination nodes. A connection in
EAASP can be terminated only when no messages are

exchanged by the involved nodes. Therefore, other nodes
cannot disrupt an already established connection, so EAASP
mitigates de-synchronization attacks.

Table 5. Protocol comparison on attack mitigation

A
tt

ac
k

L

ay
er

M
it

ig
at

ed

A
tt

ac
k

s

S
N

E
P

(S

P
IN

S
)

T
in

yS
ec

M
in

iS
ec

-U

C
L

IF
F

s

E
A

A
S

P

Network
and
transport
layers

Packet
Injection

Yes Yes Yes Yes Yes

Packet
Alteration

Yes Yes Yes Yes Yes

Sinkhole
Attack

Yes Yes Yes Yes Yes

Sybil Attack Yes Yes Yes Yes Yes

Replay Attack Yes No Yes No Yes

Wormhole
Attack

Yes No Yes No Yes

Selective
Forwarding

No No No No Yes

Blackhole
Attack

No No No No Yes

De-
synchronization
Attack

No No No No Yes

Flood Attack No No No No No

Link
and
physical
layers

Collision
Attack

No No No No No

Jamming No No No No No

Tampering No No No No No

Exhaustion No No No No No

The selected protocols do not target protection against
jamming, tampering, collision and exhaustion. Mechanisms
against such threats should be implemented in hardware or at
the low level of the operating system (Wang et al., 2006).

As discussed in section 6.2 on energy consumption, SPINS
and TinySec-AE provide low efficiency, TinySec-Auth
provides good efficiency and MiniSec-U, CLIFFs and
EAASP provide medium efficiency. However, the good
efficiency of TinySec-Auth comes with the price of not
providing confidentiality and semantic security.

6.2 Energy consumption, delay, and control overhead
analysis

The following section analyzes the selected protocols in
terms of control overhead, transmission-related energy
consumption, transmission time, and delay (see Table 6 for
an overview). For energy evaluation the results of Amiri
(2010) are used, who determined that each received or sent
byte consumes 0.12mJ on the Tmote Sky/TelosB. Thus,
comparison requires first the determination of the protocol
overhead in terms of number of bytes, and then the
transformation of this value into energy.

70 CONTROL ENGINEERING AND APPLIED INFORMATICS

The authors of TinySec use the byte time concept to evaluate
the overhead of their protocol (Karlof et al., 2004). The byte
time is the duration of transmission of a single byte over the
radio, for example, amounting to 0.42 ms on Mica 2.
Following this practice, the comparison relies on the
conversion of protocol overhead in byte time to estimate the
delay introduced by the protocols. The value for Tmote
Sky/TelosB is used, which has a rate of 250 kpbs, so the byte
time is 0.004 ms.

The first step of the analysis consists in determining the
control overhead of the selected protocols. The authors of
TinySec use TinyOS packets with a 24-byte payload and a
39-byte packet overhead that includes headers (7 bytes) and
media access control information (a 28-byte start symbol and
additional synchronization bytes). The default TinyOS packet
contains a group address (1 byte) and CRC (2 bytes), which
are removed in the implementation of TinySec, MiniSec, and
EAASP, because they are not used.

TinySec-Auth adds only a MAC of 4 bytes, while TinySec-
AE adds Src (2 bytes), Ctr (2 bytes) and MAC (4 bytes). The
difference between TinySec-Auth and the default TinyOS
packet is only 1 byte, while for Tiny-AE the difference is 5
bytes.

SPINS adds an 8-byte MAC so it does not need the CRC
field, therefore the overhead is 6 bytes, as implemented by
the authors.

MiniSec adds a SrcAddr (2 bytes) and a MIC (4 bytes). The
difference between MiniSec and the default TinyOS packet is
3 bytes.

EAASP introduces the fields Type (1 byte), Seq (1 byte) and
MAC (4 bytes). Therefore, EAASP introduces 3 additional
bytes, when compared with the default TinyOS packet.

CLIFFs header has the following format: Dst (1 byte), Src (1
byte), Ctr (1 byte), MAC (4 bytes), while removing the 2-
byte Dst and 2-byte CRC from the TinyOS packet and
keeping the 1-byte AM and 1-byte Len fields. The difference
between CLIFFs and the default TinyOS packet is 3 byes.

Table 6 presents the protocol overhead (bytes), total packet
overhead (bytes), total packet size (bytes), the total energy
(mJ), the protocol overhead (mJ, %), the total transmission
time (ms) and latency (ms) for each compared protocol. The
default packet overhead is considered to be 39 bytes.

The conclusion of this comparison is that TinySec-Auth is
the most energy-efficient protocol and introduces the least
delay. The next protocols in order of efficiency are MiniSec,
EAASP and CLIFFs. They are followed by TinySec-AE and
SNEP.

While TinySec-Auth has the lowest costs in terms of energy
and time, it provides neither confidentiality, nor anti-replay
protection. MiniSec and EAASP are efficient and provide
both confidentiality and anti-replay. CLIFFs is efficient and
includes adaptive security.

TinySec-AE is more efficient than SNEP, providing
confidentiality, but not anti-replay protection. The least

efficient protocol is SNEP, mostly because it uses an 8-byte
MAC.

Table 6. Energy consumption, latency and protocol
overhead introduced by the compared protocols

 S
ec

u
ri

ty
 P

ro
to

co
l

P
ro

to
co

l O
ve

rh
ea

d

(b
yt

es
)

T
ot

al
 P

ac
k

et

O
ve

rh
ea

d
 (

b
yt

es
)

T
ot

al
 P

ac
k

et
 S

iz
e

(b
yt

es
)

T
ot

al
 E

n
er

gy
 (

m
J)

P
ro

to
co

l O
ve

rh
ea

d

(m
J)

P
ro

to
co

l O
ve

rh
ea

d

T
ot

al
 T

ra
n

sm
is

si
on

T

im
e

(m
s)

L
at

en
cy

 (
m

s)

No
protocol

- 39 63 7.56 - - 0.252 -

TinySec-
Auth

1 40 64 7.68 0.12 1.58% 0.256 0.004

MiniSec 3 42 66 7.92 0.36 4.76% 0.264 0.012
EAASP 3 42 66 7.92 0.36 4.76% 0.264 0.012
CLIFFs 3 42 66 7.92 0.36 4.76% 0.264 0.012
TinySec-
AE

5 44 68 8.16 0.60 7.93% 0.272 0.020

SNEP 6 45 69 8.28 0.72 9.52% 0.276 0.024

If the cryptographic operations involved in the security
protocol are also considered, the evaluation conclusions do
not change because processing operations consume much less
energy than packet transmission. SNEP and CLIFFs use RC5,
while MiniSec, EAASP and TinySec-AE use Skipjack as
block ciphers. For encrypting 64 bytes, Skipjack consumes
0.026 mJ and RC5 consumes 0.114 mJ according to Lee et al.
(Lee et al., 2010). Although there is a significant efficiency
difference between the two block ciphers, neither of them
influences the previous efficiency classification.

7. DISCUSSION

Relying on Law and Havinga’s work which systematically
specifies security threats associated with each application
domain (Law et al., 2005), it is possible to evaluate how
appropriate EAASP is for specific application areas. Military,
law enforcement and other security applications need to be
protected against attacks that target service availability,
confidentiality, integrity and authenticity: Denial of Service
attacks, eavesdropping of classified information, injection of
misleading information. Arora et al. add reliability and
energy-efficiency as requirements for intrusion detection
applications (Arora et al., 2004). EAASP meets the security
profile of military, law enforcement, and security
applications, and it is more adequate than the other selected
protocols because it provides protection against selective
forwarding and Blackhole attacks, which are critical Denial
of Service attacks.

Industrial applications require service availability,
confidentiality and integrity for protection against
eavesdropping on commercial secrets, disruption of the
manufacturing process, and misleading sensor readings. In
some cases, such as sensors attached to workers that monitor
the radiation level to which they are exposed, workers’
privacy must also be assured. EAASP is adequate for the
security profile of industrial applications because it provides
protection against a large range of attacks that could affect
the industrial process.

CONTROL ENGINEERING AND APPLIED INFORMATICS 71

Disaster detection and relief, agricultural, and environmental
monitoring applications require data authenticity and
integrity. Their security requirements are met by simple and
more energy-efficient security protocols, such as TinySec-
Auth, and do not require a higher level of protection such as
the one provided by EAASP.

Medical applications have a security profile that includes
authenticity and integrity in order to assure valid sensor
readings. They also require reliability, patient privacy, and
energy efficiency. Reliability ensures that the data about the
patient is delivered to the medical personnel, patient privacy
protects against disclosure of personal information to other
recipients than the specialized personnel, and energy
efficiency is particularly necessary when devices are
implanted inside a patient’s body and batteries cannot be
changed without surgery. EAASP is the most appropriate
protocol for such applications within the range of the
evaluated solutions, because it completely meets the security
profile of such applications.

8. CONCLUSIONS

This paper discusses and evaluates an efficient security
solution for Wireless Sensor Networks, the Energy-efficient
Authentication and Anti-replay Security Protocol (EAASP),
which economically provides high protection against
specialized WSN attacks in the network and transport layers.

The comparative evaluation of EAASP in relation to four
alternative solutions, SPINS, TinySec, MiniSec, and CLIFFs,
indicates that it sustains a comparatively high security level
by mutual authentication, anti-replay protection,
confidentiality, integrity, semantic security and reliability,
with significant efficiency in terms of energy consumption,
latency and protocol overhead. Its comparative advantages
consist in strong authentication, anti-replay protection, and
reliability, as well as specific attack mitigation. Therefore
EAASP is a protocol of choice for applications with
concurrent high security demands and efficiency
requirements.

EAASP provides protection against external malicious nodes,
and it is not efficient against internal malicious or faulty
nodes. EAASP may be integrated with a trust management
solution in order to extend its security profile.

Future work will address a QoS mechanism that uses the
reserved bytes in the protocol header. The mechanism could
be used to give priority to critical data, control packets, or re-
sent data packets. It is also possible to modify the EAASP
solution so that it can take into consideration several local
factors, including energy levels, in order to situationally
adapt its security performance. When the energy level is high,
the protocol would provide the maximum level of protection;
the security level would be decreased as a function of
available energy levels. Security could also be increased
when threats are identified by an integrated intrusion
detection system.

ACKNOWLEDGEMENTS

This work was supported by the research program “EXCEL –
Excellence in research by postdoctoral programs in priority
domains of a knowledge-based society” (“Excelenta in
cercetare prin programe postdoctorale in domenii prioritare
ale societatii bazate pe cunoastere”), Contract no.
POSDRU/89/1.5/S/62557 and by the Sectoral Operational
Programme Human Resources Development 2007-2013 of
the Ministry of European Funds through the Financial
Agreement POSDRU/159/1.5/S/134398.

We are grateful for the attentive and valuable comments
received from the two anonymous referees.

REFERENCES

Akyildiz, I.F., Su, W., Sankarasubramaniam, Y., and Cayirci,
E. (2002). Wireless sensor networks: a survey, Computer
Networks, vol. 38, pp. 393–422.

Amiri, M. (2011). Wireless Sensor Networks: Evaluation of
Power Consumption and Lifetime Bounds, LAP Lambert
Academic Publishing, pp. 1-60.

Anastasi, G., Conti, M., Di Francesco, M., and Passarella, A.
(2009). Energy conservation in Wireless Sensor
Networks: A survey, Ad Hoc Networks, vol. 7, pp. 537-
568.

Arora A. et al. (2004) A line in the sand: A wireless sensor
network for target detection, classification, and tracking,
Computer Networks, vol. 46, pp. 605–634.

Boyle D., and Newe, T. (2008). Securing wireless sensor
networks: Security architectures, Journal of Networks,
vol. 3, pp. 65-77.

Gheorghe, L., Rughiniş, R., Deaconescu, R. and Ţăpuş, N.
(2010a). Authentication and Anti-replay Security Protocol
for Wireless Sensor Networks, 5th International
Conference on Systems and Networks Communications,
(ICSNC 2010), pp. 7-13.

Gheorghe, L., Rughiniş, R., Deaconescu, R., and Ţăpuş, N.
(2010b). Reliable Authentication and Anti-replay Security
Protocol for Wireless Sensor Networks, 2nd International
Conferences on Advanced Service Computing, pp. 208-
214.

Gheorghe, L., Rughinis, R., and Tapus, N. (2011) Energy-
efficient Optimizations of the Authentication and Anti-
replay Security Protocol for Wireless Sensor Networks,
The 7-th International Conference on Networking and
Services (ICNS 2011), pp. 201-207

Karlof, C., Sastry, N., and Wagner D. (2004). TinySec: a link
layer security architecture for wireless sensor networks,
Proceedings of the 2nd International Conference on
Embedded Networked Sensor Systems (SenSys ’04), pp.
162-175.

Kavitha, T, and Sridharan, D. (2010). Security Vulnerabilities
In Wireless Sensor Networks: A Survey, Journal of
Information Assurance and Security, vol. 5, pp. 31-44.

Law, Y.W., and Havinga, P.J.M. (2005). How to Secure a
Wireless Sensor Network, International Conference on
Intelligent Sensors, Sensor Networks and Information
Processing, pp. 89-95.

72 CONTROL ENGINEERING AND APPLIED INFORMATICS

Lee, J., Kapitanova, K., and Son, S.H. (2010). The price of
security in wireless sensor networks,” Computer
Networks, vol. 54, pp. 2967-2978.

Levis, P., Lee, N., Welsh, M., and Culler, D. (2003).
TOSSIM: accurate and scalable simulation of entire
TinyOS applications, Proceedings of the first
international conference on Embedded networked sensor
systems (SenSys 2003), pp. 126-137.

Levis P. et al. (2004). TinyOS: An operating system for
sensor networks, Ambient Intelligence, W. Weber, J. M.
Rabaey, E. Aarts (Eds), pp. 115-148.

Luk, M., Mezzour, G., Perrig, A., and Gligor, V. (2007).
MiniSec: A Secure Sensor Network Communication
Architecture, 6th International Symposium on
Information Processing in Sensor Networks, pp. 479-488.

Padmavathi G. and Shanmugapriya D. (2009). A Survey of
Attacks, Security Mechanisms and Challenges in Wireless
Sensor Networks, International Journal of Computer
Science and Information Security, vol. 4, pp. 117-25.

Pathan, A.-S.K., Lee, H.-W. and Hong, C.S. (2006). Security
in Wireless Sensor Networks: Issues and Challenges,
Proceedings of 8th IEEE International Conference on
Advanced Communications Technology (ICACT), vol. 2,
pp. 1043-1048.

Perrig, A. Szewczyk, R. Tygar, J. Wen, V. and Culler, D.E.
(2002). SPINS: Security protocols for sensor networks,
Wireless Networks, vol. 8, pp. 521-534.

Rughinis, R., and Gheorghe, G. (2010), Storm Control
Mechanism in Wireless Sensor Networks, 9th RoEduNet
IEEE International Conference, pp. 430–435.

Sharma K., and Ghose, M.K. (2011). Cross Layer Security
Framework for Wireless Sensor Networks, International
Journal of Security and its Applications, vol. 5, pp. 39-52.

Walters, J.P., Liang, Z., Shi, W. and Chaudhary, V. (2006).
Wireless sensor network security: A survey, Security in
Distributed, Grid, and Pervasive Computing, Y. Xiao, Ed.
Auerbach Publications, CRC Press, pp. 1-50.

Wang, Y., Attebury, G. and Ramamurthy, B. (2006) A
survey of security issues in wireless sensor networks,
IEEE Communications Surveys and Tutorials, vol. 8, pp.
2-23.

Westhoff, D., Girao, J., and Sarma, A. (2006) Security
Solutions for Wireless Sensor Networks, NEC Technical
Journal, vol. 1, pp. 2-6.

Yick, J., Mukherjee, B,. and Ghosal, D. (2008). Wireless
sensor network survey, Computer Networks, vol. 52, pp.
2292-2330.

Zheng, J. and Jamalipour A. (2009). Wireless Sensor
Networks: A Networking Perspective, Wiley-IEEE Press.

