
CEAI, Vol. 7, No. 3, pp. 32-39, 2005 Printed in Romania

SUPERVISOR DESIGN
FOR A CLASS OF DISCRETE EVENT SYSTEMS

Daniela Cristina CERNEGA

 “Dunarea de Jos” University of Galati,
Str. Domneasca nr. 111, 800021 Galati, Romania

e-mail Daniela.Cernega@ugal.ro

Abstract: This paper proposes a control problem statement in the framework of
supervisory control technique for a class of discrete event systems with cyclic working.
A desired behaviour of such a discrete dynamic event system is analysed. This
behaviour is cyclic and the linguistic properties for the existence of a supervisor
ensuring the desired closed loop specifications are verified. Next, a systematic design
procedure of such a supervisor is presented. An example is also provided and solved by
using a software tool implemented in Java.

Keywords: discrete event systems, supervisory control

1. INTRODUCTION

A discrete event system (DES) is a dynamic
system with a discrete state space. The state
transitions of a DES are determined by events,
which occur at generally unpredictable time
instants as shown in Ramadge and Wonham,
(1987). If the timing information is not crucial,
one can ignore it and consider only the strings of
events that the system responds at. Such a
modelling approach leads to the so-called
logical DES models as in Wonham and
Ramadge (1987), where the events order
practically specifies the state trajectory. The set
of all the physically possible sequences of
events describes the possible behaviour of the
discrete event system. This behaviour may be
modelled with a formal language L;

consequently , a DES may be modelled as an
automaton, G, generator of the language L.

The control problem for DES consists in
executing a pre-planned process, taking into
account the mutual exclusion, the concurrence
of tasks and the cyclic usage of resources. In the
supervisory control theory, proposed by
Wonham and his collaborators in (Ramadge and
Wonham, 1987), (Wonham and Ramadge,
1987), (Ramadge and Wonham, 1989), the
control role is played by the supervisor, which is
an automaton connected with the controlled
DES – i.e. the “plant” in the traditional control
terminology – to form a closed loop system (Fig.
1). The supervisor must achieve a prescribed
language for the system equipped with the
supervisor.

CONTROL ENGINEERING AND APPLIED INFORMATICS 33

To control a DES consists essentially in
disabling certain events (i.e. preventing from
occurring), which is somehow different from the
classical control philosophy. The set of events,
denoted by Σ, is thus partitioned into
controllable and uncontrollable, i.e. Σ=Σc∪Σu.

Fig. 1. Structure of a controlled DES

The events in Σc can be disabled at any time,
they are subject to the control action, while
those in Σu model events over which the control
agent has no influence.
As shown in Fig. 1, a supervisor is a “controller”
that decides in every state of the process which
controllable event has to be enabled, and which
has to be prevented from occurring in order to
achieve the prescribed behaviour. The state
transitions are generated by discrete events, and
an entry signal for such a system is considered
to be the string of events denoted by w in Fig.1.

A supervisor S is a pair S=(S,Ψ), where S is an
automaton equipped with a command function,
Ψ. The command function has to establish for
every state of the process which controllable
event has to be disabled (because all the
uncontrollable events are enabled by the control
function). The supervisor does not act directly
on the process, the action of disabling
controllable events is done by the “filter for the
controllable events” (situated on a lower control
level), as shown in Fig. 1.

The supervisory control problem is fully solved
when a supervisor forcing the closed loop
specifications to be met exists and it is
constructible. Generally, the existence of the
supervisor is guaranteed if two conditions
concerning some linguistic properties of
language L are met, as it was proved in the paper
Ramadge and Wonham, (1989).

The case study for the systematic design
procedure proposed in this paper is a

communication protocol conversion problem.
This problem is justified by a lack of
standardization in this domain. A model for the
communication protocol conversion problem
used for the supervisory control theory is
proposed in (Kumar, et al. 1997) and in (Kumar
1991),. For example, the heterogeneity of the
existing computer networks does not allow
direct and consistent communication, leading to
mismatch of protocols. In this paper this
problem is solved through a modeling analogy
with another discrete event system with cyclic
behaviour: an assembly workstation, in order to
use some previous theoretical results from
Mînzu and Cernega (1999) and Cernega (2002).

The rest of the paper is structured as follows. In
the next section, the supervisor control problem
for a class of DES with cyclic working is stated
and a systematic design procedure is proposed.
In section 3 a DES model is deduced for the
communication between two devices using two
different protocols, by means of a converter and
the supervisory control problem for such a
system is solved. To illustrate the effectiveness
of the approach, an application example is
presented in section 4, which is solved by using
a software program implemented in Java.
Section 5 is dedicated to conclusions and ends
this paper.

2. DESIGN OF THE DISCRETE EVENT
SUPERVISOR

2.1 Supervisory control problem statement

In order to design a supervisor for a discrete
event system the appropriate model to be used is
the automaton or, equivalent the language
recognized by this automaton.

Definition 1. An automaton G can be defined as
follows:

G = (Q, Σ, δ, q0, Qm), (1)

where:

Q is the set of states;
Σ is a finite set of symbols referred to as event

labels;
δ: Q×Σ → Q is (the partial) transition

function;
q0 is the initial state ;
Qm ⊆ Q is the subset of marked states.

γ = Ψ(x)
(control function)

w∈Σ*

PLANT
q (state)

SUPERVISOR (S)
(S,Ψ) x (state)

q

Filter for
controllable

events

 CONTROL ENGINEERING AND APPLIED INFORMATICS

34

Let Lm(G) be the set of strings leading to marked
states; it represents the marked behaviour of G.

Usually a controlled DES has the non-blocking
property, i.e.)()(GG LLm = where ()mL G
denotes the prefix closure of the marked
language, Lm(G), defined as follows:

() { , such that ()}m mL u v uv L∗= ∃ ∈ Σ ∈G G .

A large class of DES from different domains
may be modeled by automata having a unique
marked state. Consequently, this class may be
modeled by a single type of automaton, defined
in Mînzu and Cernega (2002) and called AWM
(Assembly Workstation Model).

Definition 2. An automaton M defined by:

M = (Q, Σ, δ, q0, Qm), (2)

is called AWM iff:
– each state of set Q is accessible and co-
accessible (i.e. each state is accessible through a
string which can be continued to the marked
state);

– it has a unique marked state (Qm={qm}),
identical with the initial state (qm≡q0);

– each minimal cyclic sequence contains all
the events from Σ;

– any cycle contains the initial state.

There exists a supervisor to ensure the closed
loop admissible behaviour described by the
formal language K⊂Lm(G) if and only if (as
stated in the general existence theorem in
Ramadge and Wonham, (1987)):

– K is Lm-closed (i.e. K ∩Lm(G)=K, where K
is the prefix closure of K);

– K is controllable (i.e. Σu∩L(G)⊆ K).

In the paper Mînzu and Cernega, (1999) a
criterion for the Lm-closure of an admissible
behaviour described by the formal language K in
the case of an AWM automaton was proposed.
The statement of the criterion requires some
definitions.

Definition 3. A cyclic sequence is a string of
events σ, having the property

δr(σ,qm)=qm.

Definition 4. A cyclic sequence is called
minimal if any event appears at most once.

Lemma 1: A sequence σ which satisfies the
equality δr(σ,qm)=qm, such that any intermediary
state is different from qm, is a minimal cyclic
sequence.

The proof is based upon the fact that any
transition is firable at most once between two
passages through the marker state.

Definition 5. A language K⊆L is cyclic when
each element is a juxtaposition of cyclic
sequences.

Lemma 2. For a given cyclic marked language,
Lm, any language K⊆L m is cyclic.

Proof: For any σ∈K, it holds that σ∈Lm. Hence,
the automaton passes through the marker state m
times (m≥ 1). Applying lemma 1, it holds:

σ = s1s2 …sm, (3)
where si, i=1,2,…n, are minimal cyclic
sequences. Hence, K is cyclic. �

Definition 6. A cyclic language K⊆L is cyclic
prefix closed if for any σ∈K, any prefix of σ
which is a cyclic sequence belongs to K.

A necessary and sufficient condition for the Lm-
closure of K is given hereafter.

Theorem 2. ∀ K⊆Lm, K is Lm-closed iff K is
cyclic prefix closed.
The proof of this theorem is in the paper
Cernega and Mînzu (2002).

If the closed loop desired language, K, is Lm-
closed, it only remains to verify its
controllability. If the admissible language K is
not controllable, then it will be computed the
largest controllable language included in K,
which is called the supremal controllable
language (supC(K)) of K.

2.2. Algorithm for Computing the Supremal
Controllable Language of a Given Admissible
Language

Before listing the steps of the algorithm, two
definitions are needed.

Definition 7. Automaton B=(Σ, XB, ξB, x0, Xm) is
called the restriction of automaton A=(Σ, XA, ξA,
x0, Xm) if the following two conditions are met:

a) XB⊂XA,

CONTROL ENGINEERING AND APPLIED INFORMATICS 35

b) ξB(σ,x)=ξA(σ,x), ∀ x∈XB and ∀ σ∈Σ for
which ξA(σ,x) is defined.

Definition 8. Let A=(Σ, XA, ξ, x0, Xm) and
B=(Σ, XB, ξ, x0, Xm) be two automata, such that
automaton B is a restriction of automaton A. A
state x∈ XB from automaton B is called
uncontrollable state of automaton B in relation
with automaton A if the following condition is
met:

∃ u∈Σu for which ξΑ (u,x) ∈ XA–XB.

Remark : If automaton A represents the
physically possible behaviour of a DES and B
represents the admissible behaviour, an
uncontrollable state is a state from which the
admissible behaviour can be exceeded when an
uncontrollable event occurs. Hence, an
uncontrollable state corresponds to the case in
which the constraints’ violation cannot be
prevented from occurring using control action.

Given an AWM type automaton, G, the possible
behaviour, L(G), the marked behaviour, Lm(G),
and the admissible language, K, the algorithm
for computing the supremal controllable
language of K is presented next.

Algorithm SCAWM (Supremal Controllable
for AWM type automata)

Step 0. Let S0 be the automaton which is the
recognizer of the language L(G) (identical with
G):

S0 = (Σ, X0, ξ0, qm, {qm}),

where X0≡Q,, ξ0 ≡ δ.

Step 1. It is constructed the recognizer S1 for the
language K⊂Lm(G), defined by:

S1 = (Σ, X1, ξ1, qm, {qm}).

Step 2. i=1.

Step 3. It is computed the set of uncontrollable
states of Si in relation with Si-1, denoted by iC .

If iC ≠∅, then go to Step 4,
 else S=Si and STOP.

Step 4. It is constructed automaton Si+1 by
removing from Si the uncontrollable states and
the transitions to them. Automaton Si+1 is
defined by:

Si+1 = (Σ, Xi+1, ξi+1 , qm, {qm}),

where Xi+1= Xi– iC .
Automaton Si+1 is a restriction of Si.

Step 5. If Xi+1≠∅,
then i=i+1 and go to Step 3,
 else STOP.

Remarks:
1. If language K is controllable, then the
algorithm stops at Step 1.
2. Every automaton Si+1 is a restriction of
automaton Si computed at the previous iteration;
therefore, Si+1 is a restriction of S0.

3. If the algorithm stops at Step 5, then there is
no controllable language included in K.

Theorem 3 (in Cernega and Mînzu (2002)). For
the AWM type automaton G and a given
language K⊂Lm(G), automaton S resulted from
algorithm SCAWM is the recogniser of the
supremal controllable language of K, supC(K).

Proof (in Cernega and Mînzu (2002)) The
automaton S is proved to be the recogniser for
the supremal controllable language included in
K0 in two stages:
- first, it is shown that language K recognised by
automaton S is a controllable language;
- then, it is shown that K is the supremal
controllable language of K0.

2.3. Systematic procedure of supervisor design

Given a discrete event system and a set of
specifications, the systematic procedure to
obtain the supervisor ensuring the desired
behaviour consists in the following steps.

Step 0. The construction of the automaton model
G for the discrete event system.

Step 1. If automaton G is of AWM type then
Step 2, otherwise STOP.

Step 2. The specifications for the process G lead
to the admissible language, K.

For the supervisor existence, the admissible
language, K, has to be Lm-closed and
controllable.
Step 3. The Lm-closure criterion for AWM
automaton. If the admissible language, K, is Lm-
closed, then Step 4, otherwise Step 2.

 CONTROL ENGINEERING AND APPLIED INFORMATICS

36

Step 4. SCAWM algorithm for K. If automaton
S, which recognizes the supremal controllable
language contained in K, result of algorithm
SCAWM , is nonempty, then Step 5, otherwise
STOP.

Step 5. The supervisor S. The command
function, Ψ, is added to automaton S, in order to
guarantee that the closed loop system does not
exceed the admissible language. The supervisor
is the pair S = (S, Ψ).

3. CASE STUDY. THE PROTOCOL
CONVERSION PROBLEM

3.1. General Description

Generally, a protocol P consists of sending end
protocol P0 and the receiving end protocol P1.
Similarly, the protocol Q is composed of Q0 and
Q1.

A protocol mismatch occurs when the sending
end protocol P0 of P tries to communicate with
the receiving end protocol Q1 of Q, and similarly
when Q0 tries to communicate with P1. In Fig. 2
it is assumed that P0 is the composition of the
sender protocol and the sender’s channel Pc,
whereas the receiving end Q1 consists of only
the receiver protocol Qr. For solving the
protocol mismatch, a protocol converter, C, is
interposed, for example, between P0 and Q1.

The events occurring at various interfaces for
the example presented in Fig. 2 are the external
events accept (acc) and deliver (dlv). The
internal events occurring at the sender/receiver
end are identified by lower/upper case letters.

Fig. 2. A typical protocol conversion system

An event label has a negative/positive sign as its
prefix denotes an event of sending/receiving.
Since the converter is interposed between the
channel and the receiver protocol, this
convention identifies the events that occur at the
converter interface. Thus, for instance, –di

represents the event of sending a data packet
with label i (where i=0,1) at the sender protocol
(and the event of receiving the same data at the
channel), whereas –A represents the event of
sending an acknowledgement at the receiver
protocol (and the event of receiving the same
acknowledgement at the converter). Other
events are the timeout (tm) and the channel loss
(ls).

3.2. Systematic Supervisor Design Procedure
for the Protocol Conversion Problem

The DES modeling of the above described
communication system concerns its
representation as an automaton.

Step 0
In Fig. 3. is represented the automaton G which
models the mismatched protocols and the
transmission channel; it is the “plant” that the
supervisor must be coupled with.

Fig. 3. Automaton G as model of the protocol
conversion

In relation to Fig. 2, note that event –ai has been
re-noted by a and event +D has been re-noted
by b.

Step1
For the automaton G in Fig. 3: Q={0,1,2,3,4,5},
Σ={a,b,acc,dlv}, q0={0}. One can note the
cyclic working of G. It may be considered that G
has a single marked state, which is identical to
the initial one: Qm={q0≡0}. The elements of the
marked language, Lm(G), are the strings of
events which determine transitions from the
marked state to the marked state. Such a string is
a cyclic sequence. A cyclic sequence containing
every transition at most once is a minimal cyclic
sequence.

Obviously, automaton G is of AWM type
because all states are accessible and co-
accessible. It has a unique marked state, 0,
which is also the initial state. The minimal

–ai

+di

+ai

–di

Ps

C

Qr

dlv acc

Pc

tm ls

+D

–A
P0 Q1

dlv dlv

acc

a

b

b

b

b

G

0
1

2

3 4

5

CONTROL ENGINEERING AND APPLIED INFORMATICS 37

cyclic sequences are: s1 = acc b dlv b a, s2 = acc
a b dlv b, and s3 = b dlv b acc a, and they
contain all the events from Σ. Finally, all the
state trajectories corresponding to these cyclic
sequences contain the initial state.

Step 2
The supervisory controlled system has to
transmit data through the channel, and this is
possible if the events acc and dlv alternate. Also,
it must satisfy a certain progress property, which
requires that the external events be not blocked
in the service specification.

The desired closed loop behaviour for this
process (derived from a refined version of the
service specification by synchronization with G
as shown in Kumar, et al. (1997)) consists in the
fact that the event acc is never blocked. This
means that a new transmission must not be
initiated until the channel becomes available. In
terms of formal languages, this means that the
sequence acc a acc must be prevented from
occurring. The controllable events for this
process are the converter output events (Fig. 2),
Σc={–ai,+D}≡{a,b}, while all the other events
are uncontrollable.

In Fig. 4 is represented the desired language K,
which models the desired closed loop behaviour.

Fig. 4. Language K, modeling the desired closed loop
behaviour

Step 3

For the problem of the protocol converter, the
admissible language recognized by the
automaton represented in Fig. 4 is Lm-closed
because it is cyclic prefix closed (as stated by
the Lm-closure criterion): all the strings leading
to the marked state (0) are cyclic sequences
s1s2…., s1s1…., s2s2…. or s2s1…., where s1, s2 are
the minimal cyclic sequences s1=acc b dlv b a,
and s2=acc a b dlv b, containing all the events at
least once.

If the closed loop desired language, K, is Lm-
closed, it only remains to verify its

controllability. If the admissible language K is
not controllable, then it will be computed the
largest controllable language included in K,
which is called the supremal controllable
language (supC(K)) of K.

Step4
For the communication system modelled as a
DES by automaton G from Fig. 3, having as
desired (admissible) closed loop behaviour the
one described by language K from Fig. 4,
algorithm SCAWM provides automaton S
shown in Fig. 5.

Fig. 5. Automaton S resulted from algorithm
SCAWM for the protocol conversion problem

One can note that state 0’ in K is uncontrollable,
because from this state event acc may occur,
which is uncontrollable and it is not possible to
be disabled by control action.

Step 5

For the supervisor design, the command
function, Ψ, is added to automaton S, result of
the SCAWM algorithm. The command function
is important in state 0, where it is possible for
the process to make a transition in state 0’, and
the controllable event a has to be disabled: Ψ(a,
1)=0.
The command function for all the other states
enables all the controllable events and this is the
reason why it does not need to be specified.

4. IMPLEMENTATION

The described algorithms are implemented in a
Java based software named SYCDES, which
runs in command mode and has some graphic
facilities. The main types of objects used are
DES and supervisor. The latter inherits the
structure of the DES type and has as specific
feature the command function.

dlv

1 2 0’

b

b

b

b dlv

a

a

acc

K 0

3 5

1’ 4

S

a

acc

b dlv

b

0

2

1’

1

3

 CONTROL ENGINEERING AND APPLIED INFORMATICS

38

Starting SYCDES has as effect the opening of
the command window, from which a menu is
also available. The functioning of SYCDES is
next illustrated on the protocol conversion
problem discussed above.

To initialise a new variable of DES type, for
example ProcessG, one must type the
command newdes(ProcessG) in the
command window. Next, the edit window must
be selected from the menu, which allows
introducing the number of states, the table of
transitions (in the form initial state – event –
final state), the marked states, the admissible
states and the initial states. Such a window is
presented in Fig. 6, for automaton G from Fig. 3
(texts are in Romanian, the authors’ native
language).
The initialisation of a DES type variable can be
also performed in command mode. The edit
window serves only to visualize the content of
an existent DES variable.

The specifications can be introduced in the same
manner, that is, as the corresponding
recognizing automaton. For example, the
command newdes(AdmK) will allocate
memory space for a DES type variable, intended
to contain the description of the automaton
which recognizes the admissible (desired)
language. The SYCDES dedicated command for
a restriction (admissible language) of a given
process language is AdmK=Res(ProcessG).
For language K, whose recognizing automaton is
depicted in Fig. 4, the edit window looks like in
Fig. 7.

The command Kc=supC(AdmK) further
provides the supremal controllable language of
language K in the DES variable Kc (see Fig. 8).
One can easy check that this corresponds to
automaton S from Fig. 5.
SYCDES allows that the DES variables being
introduced as the graphs representing the
associated automata, saved in a graphic format.
The graphical form is next converted into a DES
variable.

Fig. 6. Edit window for a DES type variable

Fig. 7. The content of the DES variable AdmK,
describing the desired closed loop behaviour

from Fig. 4

Fig. 8. The DES variable Kc , corresponding to the
supremal controllable language of K (variable

AdmK)

CONTROL ENGINEERING AND APPLIED INFORMATICS 39

5. CONCLUSION

This paper presented a systematic procedure of
supervising a communication protocol
conversion modelled as a discrete event system,
more precisely, as a DES fulfilling some
properties. This kind of DES model is
sufficiently general to allow the supervisor
synthesis in order to meet some required closed
loop specifications. The proposed procedure was
implemented in a Java based software. Future
work will aim at enriching this software with a
simulation module to validate the supervisor
effectiveness.
Also, another research direction is the extension
of the proposed technique to complex systems,
using the modular supervision theory or
decentralized supervisory control when
disposing of partial observations.

REFERENCES

[1] Cernega D. C. and Mînzu V. (2002), The

Computation of the Supremal Controllable
Language for an Assembly Workstation, in
Proceedings of the 9 th IFAC Symposium on
Large Scale Systems: Theory and
Applications – LSS 2001, Elsevier Science
ISBN 0-08-0436919, ISSN 1474-6670, pp.
343-348.

[2] Kumar R. (1991), Supervisory Synthesis
Techniques for Discrete Event Dynamical
Systems, Ph.D. Thesis, Texas University,
Austin, U.S.A..

[3] Kumar R., Nelvagal S. and Marcus S. I.
(1997) , A Discrete Event Approach for
Protocol Conversion, Grant no. T.R. 97–3,
Institute for System Research, University of
Maryland, U.S.A.

 [4] Mînzu V. and Cernega D. C (1999),
Supervisory Control Technique for
Assembly Workstation, in Proceedings of
IEEE International Symposium on Assembly
and Task Planning – ISATP ‘99, July 21–24
1999, Porto, Portugal, pp. 88–93.

[5] Mînzu V., Cernega D.C. and Henrioud J.–
M. (2001), Linguistic Model and a Control
Problem for Assembly Workstation, in
Proceedings of the 2001 IEEE International
Symposium on Assembly and Task Planning
– ISATP 2001, May 28–29 2001, Soft
Research Park, Fukuoka, JAPAN, pp. 381–
386.

[6] Ramadge P. J. and Wonham W. M., (1987),
Supervisory Control of A Class of Discrete
Event Processes, SIAM Journal of Control
& Optimization, vol. 25, no. 1, 1987, pp.
206–230.

[7] Ramadge P. J. and Wonham W. M. (1989),
Modular Feedback Logic for Discrete Event
Systems, SIAM Journal of Control &
Optimization, vol. 25, no. 5, 1989, pp.
1202–1218.

[8] Wonham W. M. and Ramadge P. J. (1987),
On the Supremal Controllable Language of a
Given Language”, SIAM Journal of Control
& Optimization, vol. 25, no. 3, 1987, pp.
637–659.

