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Abstract: This paper proposes a control problem statement in the framework of 
supervisory control technique for a class of discrete event systems with cyclic working. 
A desired behaviour of such a discrete dynamic event system is analysed. This 
behaviour is cyclic and the linguistic properties for the existence of a supervisor 
ensuring the desired closed loop specifications are verified. Next, a systematic design 
procedure of such a supervisor is presented. An example is also provided and solved by 
using a software tool implemented in Java. 
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1. INTRODUCTION 
 
A discrete event system (DES) is a dynamic 
system with a discrete state space. The state 
transitions of a DES are determined by events, 
which occur at generally unpredictable time 
instants as shown in Ramadge and Wonham, 
(1987). If the timing information is not crucial, 
one can ignore it and consider only the strings of 
events that the system responds at. Such a 
modelling approach leads to the so-called 
logical DES models as in Wonham and 
Ramadge (1987), where the events order 
practically specifies the state trajectory. The set 
of all the physically possible sequences of 
events describes the possible behaviour of the 
discrete event system. This behaviour may be 
modelled with a formal language L; 

consequently , a DES may be modelled as an 
automaton, G, generator of the language L. 
 
The control problem for DES consists in 
executing a pre-planned process, taking into 
account the mutual exclusion, the concurrence 
of tasks and the cyclic usage of resources. In the 
supervisory control theory, proposed by 
Wonham and his collaborators in (Ramadge and 
Wonham, 1987), (Wonham and Ramadge, 
1987), (Ramadge and Wonham, 1989), the 
control role is played by the supervisor, which is 
an automaton connected with the controlled 
DES – i.e. the “plant” in the traditional control 
terminology – to form a closed loop system (Fig. 
1). The supervisor must achieve a prescribed 
language for the system equipped with the 
supervisor. 
 



CONTROL ENGINEERING AND APPLIED INFORMATICS    33 

To control a DES consists essentially in 
disabling certain events (i.e. preventing from 
occurring), which is somehow different from the 
classical control philosophy. The set of events, 
denoted by Σ, is thus partitioned into 
controllable and uncontrollable, i.e. Σ=Σc∪Σu. 
 
 
 

 
 

Fig. 1. Structure of a controlled DES 
 
 
The events in Σc can be disabled at any time, 
they are subject to the control action, while 
those in Σu model events over which the control 
agent has no influence. 
As shown in Fig. 1, a supervisor is a “controller” 
that decides in every state of the process which 
controllable event has to be enabled, and which 
has to be prevented from occurring in order to 
achieve the prescribed behaviour. The state 
transitions are generated by discrete events, and 
an entry signal for such a system is considered 
to be the string of events denoted by w in Fig.1. 
 
A supervisor S is a pair S=(S,Ψ), where S is an 
automaton equipped with a command function, 
Ψ. The command function has to establish for 
every state of the process which controllable 
event has to be disabled (because all the 
uncontrollable events are enabled by the control 
function). The supervisor does not act directly 
on the process, the action of disabling 
controllable events is done by the “filter for the 
controllable events” (situated on a lower control 
level), as shown in Fig. 1. 
 
The supervisory control problem is fully solved 
when a supervisor forcing the closed loop 
specifications to be met exists and it is 
constructible. Generally, the existence of the 
supervisor is guaranteed if two conditions 
concerning some linguistic properties of 
language L are met, as it was proved in the paper 
Ramadge and Wonham, (1989). 
 
The case study for the systematic design 
procedure proposed in this paper is a 

communication protocol conversion problem. 
This problem is justified by a lack of 
standardization in this domain. A model for the 
communication protocol conversion problem 
used for the supervisory control theory is 
proposed in (Kumar, et al. 1997) and in (Kumar 
1991),. For example, the heterogeneity of the 
existing computer networks does not allow 
direct and consistent communication, leading to 
mismatch of protocols. In this paper this 
problem is solved through a modeling analogy 
with another discrete event system with cyclic 
behaviour: an assembly workstation, in order to 
use some previous theoretical results from 
Mînzu and Cernega (1999) and Cernega (2002). 
 
The rest of the paper is structured as follows. In 
the next section, the supervisor control problem 
for a class of DES with cyclic working is stated 
and a systematic design procedure is proposed. 
In section 3 a DES model is deduced for the 
communication between two devices using two 
different protocols, by means of a converter and 
the supervisory control problem for such a 
system is solved. To illustrate the effectiveness 
of the approach, an application example is 
presented in section 4, which is solved by using 
a software program implemented in Java. 
Section 5 is dedicated to conclusions and ends 
this paper. 
 

2.   DESIGN OF THE DISCRETE EVENT 
SUPERVISOR 

 
 
2.1 Supervisory control problem statement 
 
In order to design a supervisor for a discrete 
event system the appropriate model to be used is 
the automaton or, equivalent the language 
recognized by this automaton. 
 
Definition 1. An automaton G can be defined as 
follows: 
 
G = (Q, Σ, δ, q0, Qm),           (1) 
 
where: 

Q is the set of states; 
Σ is a finite set of symbols referred to as event 

labels; 
δ: Q×Σ → Q is (the partial) transition 

function; 
q0 is the initial state ; 
Qm ⊆ Q is the subset of marked states. 

γ = Ψ(x) 
(control function) 

w∈Σ* 

PLANT 
q (state) 

SUPERVISOR (S) 
(S,Ψ)     x (state) 

q 

Filter for 
controllable 

events 
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Let Lm(G) be the set of strings leading to marked 
states; it represents the marked behaviour of G. 
 
Usually a controlled DES has the non-blocking 
property, i.e. )()( GG LLm =  where ( )mL G  
denotes the prefix closure of the marked 
language, Lm(G), defined as follows: 

( ) {  , such that ( )}m mL u v uv L∗= ∃ ∈ Σ ∈G G . 
 
A large class of DES from different domains 
may be modeled by automata having a unique 
marked state. Consequently, this class may be 
modeled by a single type of automaton, defined 
in Mînzu and Cernega (2002) and called AWM 
(Assembly Workstation Model). 
 
Definition 2. An automaton M defined by: 

 

M = (Q, Σ, δ, q0, Qm),           (2) 

 
is called AWM iff: 
– each state of set Q is accessible and co-
accessible (i.e. each state is accessible through a 
string which can be continued to the marked 
state); 

– it has a unique marked state (Qm={qm}), 
identical with the initial state (qm≡q0); 

– each minimal cyclic sequence contains all 
the events from Σ; 

– any cycle contains the initial state. 
 
There exists a supervisor to ensure the closed 
loop admissible behaviour described by the 
formal language K⊂Lm(G) if and only if (as 
stated in the general existence theorem in 
Ramadge and Wonham, (1987)): 

– K is Lm-closed (i.e. K ∩Lm(G)=K, where K  
is the prefix closure of K); 

– K is controllable (i.e. Σu∩L(G)⊆ K ). 
 
In the paper Mînzu and Cernega, (1999) a 
criterion for the Lm-closure of an admissible 
behaviour described by the formal language K in 
the case of an AWM automaton was proposed. 
The statement of the criterion requires some 
definitions. 
 
Definition 3. A cyclic sequence is a string of 
events σ, having the property  

δr(σ,qm)=qm. 

Definition 4. A cyclic sequence is called 
minimal if any event appears at most once. 
 

Lemma 1: A sequence σ which satisfies the 
equality δr(σ,qm)=qm, such that any intermediary 
state is different from qm, is a minimal cyclic 
sequence. 
 
The proof is based upon the fact that any 
transition is firable at most once between two 
passages through the marker state. 
 
Definition 5. A language K⊆L is cyclic  when 
each element is a juxtaposition of cyclic 
sequences. 
 
Lemma 2. For a given cyclic marked language, 
Lm, any language K⊆L m is cyclic. 
 
Proof: For any σ∈K, it holds that σ∈Lm. Hence, 
the automaton passes through the marker state m 
times (m≥ 1). Applying lemma 1, it holds: 

σ = s1s2 …sm, (3) 
where si, i=1,2,…n, are minimal cyclic 
sequences. Hence, K is cyclic. � 
 
Definition 6. A cyclic language K⊆L is cyclic 
prefix closed if for any σ∈K, any prefix of σ 
which is a cyclic sequence belongs to K. 
 
A necessary and sufficient condition for the Lm-
closure of K is given hereafter. 
 
Theorem 2. ∀ K⊆Lm, K is Lm-closed iff K is 
cyclic prefix closed. 
The proof of this theorem is in the paper 
Cernega and Mînzu (2002). 
 
If the closed loop desired language, K, is Lm-
closed, it only remains to verify its 
controllability. If the admissible language K is 
not controllable, then it will be computed the 
largest controllable language included in K, 
which is called the supremal controllable 
language (supC(K)) of K. 
 
 
2.2. Algorithm for Computing the Supremal 
Controllable Language of a Given Admissible 
Language 
 
Before listing the steps of the algorithm, two 
definitions are needed. 
 
Definition 7. Automaton B=(Σ, XB, ξB, x0, Xm) is 
called the restriction of automaton A=(Σ, XA, ξA, 
x0, Xm) if the following two conditions are met: 

a) XB⊂XA, 
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b) ξB(σ,x)=ξA(σ,x), ∀ x∈XB and ∀ σ∈Σ for 
which ξA(σ,x) is defined. 
 
Definition 8. Let A=(Σ, XA, ξ, x0, Xm) and 
B=(Σ, XB, ξ, x0, Xm) be two automata, such that 
automaton B is a restriction of automaton A. A 
state x∈ XB from automaton B is called 
uncontrollable  state of automaton B in relation 
with automaton A if the following condition is 
met: 

∃ u∈Σu for which ξΑ (u,x) ∈ XA–XB. 

 
Remark : If automaton A represents the 
physically possible behaviour of a DES and B 
represents the admissible behaviour, an 
uncontrollable state is a state from which the 
admissible behaviour can be exceeded when an 
uncontrollable event occurs. Hence, an 
uncontrollable state corresponds to the case in 
which the constraints’ violation cannot be 
prevented from occurring using control action. 
 
Given an AWM type automaton, G, the possible 
behaviour, L(G), the marked behaviour, Lm(G), 
and the admissible language, K, the algorithm 
for computing the supremal controllable 
language of K is presented next. 
 
 
Algorithm SCAWM  (Supremal Controllable 
for AWM type automata) 
 
Step 0. Let S0 be the automaton which is the 
recognizer of the language L(G) (identical with 
G): 

S0 = (Σ, X0, ξ0, qm, {qm}), 

where X0≡Q,, ξ0 ≡ δ. 
 
Step 1. It is constructed the recognizer S1 for the 
language K⊂Lm(G), defined by: 

S1 = (Σ, X1, ξ1, qm, {qm}). 

 
Step 2. i=1. 
 
Step 3. It is computed the set of uncontrollable 
states of Si in relation with Si-1, denoted by iC . 

If iC ≠∅, then go to Step 4, 
 else S=Si and STOP. 
 
Step 4. It is constructed automaton Si+1 by 
removing from Si the uncontrollable states and 
the transitions to them. Automaton Si+1 is 
defined by: 

Si+1 = (Σ, Xi+1, ξi+1 , qm, {qm}), 

where Xi+1= Xi– iC . 
Automaton Si+1 is a restriction of Si. 

 
Step 5. If Xi+1≠∅, 
then i=i+1 and go to Step 3, 
 else STOP. 
 
Remarks: 
1. If language K is controllable, then the 
algorithm stops at Step 1. 
2. Every automaton Si+1 is a restriction of 
automaton Si computed at the previous iteration; 
therefore, Si+1 is a restriction of S0. 
 
3. If the algorithm stops at Step 5, then there is 
no controllable language included in K. 
 
Theorem 3 (in Cernega and Mînzu (2002)). For 
the AWM type automaton G and a given 
language K⊂Lm(G), automaton S resulted from 
algorithm SCAWM  is the recogniser of the 
supremal controllable language of K, supC(K). 
 
Proof (in Cernega and Mînzu (2002)) The 
automaton S is proved to be the recogniser for 
the supremal controllable language included in 
K0 in two stages: 
- first, it is shown that language K recognised by 
automaton S is a controllable language; 
- then, it is shown that K is the supremal 
controllable language of K0. 
 
2.3. Systematic procedure of supervisor design 
 
Given a discrete event system and a set of 
specifications, the systematic procedure to 
obtain the supervisor  ensuring the desired 
behaviour consists in the following steps. 
 
Step 0. The construction of the automaton model 
G for the discrete event system. 
 
Step 1. If automaton G is of AWM type then 
Step 2, otherwise STOP. 
 
Step 2. The specifications for the process G lead 
to the admissible language, K. 
 
For the supervisor existence, the admissible 
language, K, has to be Lm-closed and 
controllable. 
Step 3. The Lm-closure criterion for AWM 
automaton. If the admissible language, K, is Lm-
closed, then Step 4, otherwise Step 2. 
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Step 4. SCAWM  algorithm for K. If automaton 
S, which recognizes the supremal controllable 
language contained in K, result of algorithm 
SCAWM , is nonempty, then Step 5, otherwise 
STOP. 
 
Step 5. The supervisor S. The command 
function, Ψ, is added to automaton S, in order to 
guarantee that the closed loop system does not 
exceed the admissible language. The supervisor 
is the pair S = (S, Ψ). 
 

3.   CASE STUDY. THE PROTOCOL   
CONVERSION PROBLEM 

 
3.1. General Description 
 
Generally, a protocol P consists of sending end 
protocol P0 and the receiving end protocol P1. 
Similarly, the protocol Q is composed of Q0 and 
Q1. 
 
A protocol mismatch occurs when the sending 
end protocol P0 of P tries to communicate with 
the receiving end protocol Q1 of Q, and similarly 
when Q0 tries to communicate with P1. In Fig. 2 
it is assumed that P0 is the composition of the 
sender protocol and the sender’s channel Pc, 
whereas the receiving end Q1 consists of only 
the receiver protocol Qr. For solving the 
protocol mismatch, a protocol converter, C, is 
interposed, for example, between P0 and Q1. 
 
The events occurring at various interfaces for 
the example presented in Fig. 2 are the external 
events accept (acc) and deliver (dlv). The 
internal events occurring at the sender/receiver 
end are identified by lower/upper case letters. 
 

Fig. 2. A typical protocol conversion system 
 
An event label has a negative/positive sign as its 
prefix denotes an event of sending/receiving. 
Since the converter is interposed between the 
channel and the receiver protocol, this 
convention identifies the events that occur at the 
converter interface. Thus, for instance, –di 

represents the event of sending a data packet 
with label i (where i=0,1) at the sender protocol 
(and the event of receiving the same data at the 
channel), whereas –A represents the event of 
sending an acknowledgement at the receiver 
protocol (and the event of receiving the same 
acknowledgement at the converter). Other 
events are the timeout (tm) and the channel loss 
(ls). 
 
 
3.2. Systematic Supervisor Design Procedure 
for the Protocol Conversion Problem 
 
The DES modeling of the above described 
communication system concerns its 
representation as an automaton. 
 
Step 0 
In Fig. 3. is represented the automaton G which 
models the mismatched protocols and the 
transmission channel; it is the “plant” that the 
supervisor must be coupled with. 
 

 
 

Fig. 3. Automaton G as model of the protocol 
conversion 

 
In relation to Fig. 2, note that event –ai has been 
re-noted by a and event +D has been re-noted 
by b. 
 
Step1 
For the automaton G in Fig. 3: Q={0,1,2,3,4,5}, 
Σ={a,b,acc,dlv}, q0={0}. One can note the 
cyclic working of G. It may be considered that G 
has a single marked state, which is identical to 
the initial one: Qm={q0≡0}. The elements of the 
marked language, Lm(G), are the strings of 
events which determine transitions from the 
marked state to the marked state. Such a string is 
a cyclic sequence. A cyclic sequence containing 
every transition at most once is a minimal cyclic 
sequence. 
 
Obviously, automaton G is of AWM type 
because all states are accessible and co-
accessible. It has a unique marked state, 0, 
which is also the initial state. The minimal 
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cyclic sequences are: s1 = acc b dlv b a, s2 = acc 
a b dlv b, and s3 = b dlv b acc a, and they 
contain all the events from Σ. Finally, all the 
state trajectories corresponding to these cyclic 
sequences contain the initial state. 
 
Step 2 
The supervisory controlled system has to 
transmit data through the channel, and this is 
possible if the events acc and dlv alternate. Also, 
it must satisfy a certain progress property, which 
requires that the external events be not blocked 
in the service specification. 
 
The desired closed loop behaviour for this 
process (derived from a refined version of the 
service specification by synchronization with G  
as shown in Kumar, et al. (1997)) consists in the 
fact that the event acc is never blocked. This 
means that a new transmission must not be 
initiated until the channel becomes available. In 
terms of formal languages, this means that the 
sequence acc a acc must be prevented from 
occurring. The controllable events for this 
process are the converter output events (Fig. 2), 
Σc={–ai,+D}≡{a,b}, while all the other events 
are uncontrollable. 
 
In Fig. 4 is represented the desired language K, 
which models the desired closed loop behaviour. 
 

 
 

Fig. 4. Language K, modeling the desired closed loop 
behaviour 

 
Step 3 
 
For the problem of the protocol converter, the 
admissible language recognized by the 
automaton represented in Fig. 4 is Lm-closed 
because it is cyclic prefix closed (as stated by 
the Lm-closure criterion): all the strings leading 
to the marked state (0) are cyclic sequences 
s1s2…., s1s1…., s2s2…. or s2s1…., where s1, s2 are 
the minimal cyclic sequences s1=acc b dlv b a, 
and s2=acc a b dlv b, containing all the events at 
least once.  
 
If the closed loop desired language, K, is Lm-
closed, it only remains to verify its 

controllability. If the admissible language K is 
not controllable, then it will be computed the 
largest controllable language included in K, 
which is called the supremal controllable 
language (supC(K)) of K. 
 
Step4 
For the communication system modelled as a 
DES by automaton G from Fig. 3, having as 
desired (admissible) closed loop behaviour the 
one described by language K from Fig. 4, 
algorithm SCAWM  provides automaton S 
shown in Fig. 5. 
 
 

 
 

Fig. 5. Automaton S resulted from algorithm 
SCAWM for the protocol conversion problem 

 
One can note that state 0’ in K is uncontrollable, 
because from this state event acc may occur, 
which is uncontrollable and it is not possible to 
be disabled by control action. 
 
Step 5 
 
For the supervisor design, the command 
function, Ψ, is added to automaton S, result of 
the SCAWM  algorithm. The command function 
is important in state 0, where it is possible for 
the process to make a transition in state 0’, and 
the controllable event a has to be disabled: Ψ(a, 
1)=0. 
The command function for all the other states 
enables all the controllable events and this is the 
reason why it does not need to be specified. 
 

4. IMPLEMENTATION 
 
The described algorithms are implemented in a 
Java based software named SYCDES, which 
runs in command mode and has some graphic 
facilities. The main types of objects used are 
DES and supervisor. The latter inherits the 
structure of the DES type and has as specific 
feature the command function. 
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Starting SYCDES has as effect the opening of 
the command window, from which a menu is 
also available. The functioning of SYCDES is 
next illustrated on the protocol conversion 
problem discussed above. 
 
To initialise a new variable of DES type, for 
example ProcessG, one must type the 
command newdes(ProcessG) in the 
command window. Next, the edit window must 
be selected from the menu, which allows 
introducing the number of states, the table of 
transitions (in the form initial state  – event – 
final state ), the marked states, the admissible 
states and the initial states. Such a window is 
presented in Fig. 6, for automaton G from Fig. 3 
(texts are in Romanian, the authors’ native 
language). 
The initialisation of a DES type variable can be 
also performed in command mode. The edit 
window serves only to visualize the content of 
an existent DES variable. 
 
The specifications can be introduced in the same 
manner, that is, as the corresponding 
recognizing automaton. For example, the 
command newdes(AdmK) will allocate 
memory space for a DES type variable, intended 
to contain the description of the automaton 
which recognizes the admissible (desired) 
language. The SYCDES dedicated command for 
a restriction (admissible language) of a given 
process language is AdmK=Res(ProcessG). 
For language K, whose recognizing automaton is 
depicted in Fig. 4, the edit window looks like in 
Fig. 7. 
 
The command Kc=supC(AdmK) further 
provides the supremal controllable language of 
language K in the DES variable Kc (see Fig. 8). 
One can easy check that this corresponds to 
automaton S from Fig. 5. 
SYCDES allows that the DES variables being 
introduced as the graphs representing the 
associated automata, saved in a graphic format. 
The graphical form is next converted into a DES 
variable. 
 

 
 
 

Fig. 6. Edit window for a DES type variable  
 
 

 
 
 

Fig. 7. The content of the DES variable AdmK, 
describing the desired closed loop behaviour 

from Fig. 4 
 

 
 

Fig. 8. The DES variable Kc , corresponding to the 
supremal controllable language of K (variable 

AdmK) 
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5. CONCLUSION 
 
This paper presented a systematic procedure of 
supervising a communication protocol 
conversion modelled as a discrete event system, 
more precisely, as a DES fulfilling some  
properties. This kind of DES model is 
sufficiently general to allow the supervisor 
synthesis in order to meet some required closed 
loop specifications. The proposed procedure was 
implemented in a Java based software. Future 
work will aim at enriching this software with a 
simulation module to validate the supervisor 
effectiveness. 
Also, another research direction is the extension 
of the proposed technique to complex systems, 
using the modular supervision theory or 
decentralized supervisory control when 
disposing of partial observations. 
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