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1. INTRODUCTION 

A switched system is a dynamical system that consists of 
finite or infinite number of subsystems and a logical rule that 
orchestrates switching between these subsystems. 
Mathematically, these subsystems are usually described by a 
collection of indexed differential or difference equations. One 
convenient way to classify switched systems is based on the 
dynamics of their subsystems, for example continuous-time 
or discrete-time, linear or nonlinear and so on (Lin and 
Antsaklis, 2009). In the recent years many researchers have 
been investigated on stability of switching systems. Lin and 
Antsaklis  reviewed some results on stability and 
stabilizability of switched linear systems. They outlined 
briefly some necessary and sufficient conditions for the 
asymptotic stability of switched linear systems under 
arbitrary switching then they explored necessary and 
sufficient condition for the switching stabilizability of 
continuous-time switched linear systems. 
Also they proved a necessary and sufficient condition for 
asymptotic stabilizability of switched linear systems (Lin and 
Antsaklis, 2009). Cheban et al. proposed absolute asymptotic 
stability of discrete linear inclusions in Banach (both finite 
and infinite dimensional) space also they established the 
relation between absolute asymptotic stability, asymptotic 
stability, uniform asymptotic stability and uniform 
exponential stability. They proved that for asymptotical 
compact discrete linear inclusions the concepts of asymptotic 
stability and uniform exponential stability are equivalent 
(Cheban and Mammana, 2005). 
(Muller et al., 2010) considered the concept of state-norm 
estimators for switched nonlinear systems under average 
dwell-time switching signals. State-norm estimators are 
closely related to the concept of input/output-to-state stability 
(IOSS). They showed that if the average dwell-time is large 
enough, there exists a nonswitched state-norm estimator for a 

switched system which each of its constituent subsystems is 
IOSS (Muller et al., 2010). (Liberzon et al., 2009) studied 
linear switched differential algebraic equations (DAEs), i.e., 
systems defined by a finite family of linear DAE subsystems 
and a switching signal that governs the switching between 
them. They showed by examples that switching between 
stable subsystems may lead to instability and that the 
presence of algebraic constraints lead to a larger variety of 
possible instability mechanisms compared to those observed 
in switched systems described by ordinary differential 
equations (ODEs). They prove two sufficient conditions for 
stability of switched DAEs based on the existence of suitable 
Lyapunov functions (Liberzon et al., 2009). 

(Agrachev et al., 2010) presented new sufficient conditions 
for exponential stability of switched linear systems under 
arbitrary switching, which involve the commutator (Lie 
brackets) among the given matrices generating the switched 
system. Their proposed stability criteria was robust with 
respect to small perturbations of the system parameters. They 
investigated both disctere and continuous switched linear 
systems (Agrachev et al., 2010). (Hien et al., 2009) 
investigated the problem of exponential stability and 
stabilization of switched linear time-delay systems which the 
system parameter uncertainties was time-varying and 
unknown but they was norm-bounded. The delay in the 
system states was also time-varying. They designed a 
switching rule for the exponential stability and stabilization 
By using an improved Lyapunov–Krasovskii functional by 
using of the solution of Riccati-type equations (Hien et al., 
2009). (Raouf et al., 2009) proposed a new sufficient 
condition that guarantees global exponential stability of 
switched linear systems based on Lyapunov-Metzler 
inequalities. The condition relies on the solution of a set of 
bilinear matrix inequalities (BMI) (Raouf et al., 2009). 

(Hante et al., 2011) considered switched systems on Banach 
and Hilbert spaces governed by strongly continuous one-
parameter semi groups of linear evolution operators. They 
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provided necessary and sufficient conditions for their global 
exponential stability, uniform with respect to the switching 
signal with arbitrary switching, in terms of the existence of a 
Lyapunov function common to all modes (Hante et al., 
2011). 

(Du et al., 2009) proposed finite-time stability and 
stabilization problems for switched linear systems. They 
extended the concept of finite-time stability to switched 
linear systems, and then they represented a necessary and 
sufficient condition for finite-time stability of switched linear 
systems based on the state transition matrix of the system. 
They designed state feedback controllers and a class of 
switching signals with average dwell-time to stabilize the 
switched linear control systems (Du et al., 2009). 

(Zhai et al., 2007) studied stability and L  gain properties for 
a class of switched systems that are composed of normal 
discrete-time subsystems. Thay showed that When all 
subsystems are Schur stable, a common quadratic Lyapunov 
function exists for all subsystems and then the switched 
normal system is exponentially stable under arbitrary 
switching. 

As regards L  gain analysis, they introduced an expanded 
matrix including each subsystem’s coefficient matrices, and 
they showed that if the expanded matrix is normal and Schur 
stable so that each subsystem is Schur stable and has unity L  
gain, then the switched normal system also has unity L  gain 
under arbitrary switching (Zhai et al., 2007). 

(Santarelli et al., 2010) designed a switched feedback 
controller for second order switched systems and then 
developed the switched state feedback control law for the 
stabilization of LTI systems of arbitrary dimension. They 
proposed switched state feedback control law by examining 
relevant geometric properties of the phase portraits in the 
case of two-dimensional systems for the stabilization of LTI 
systems of arbitrary dimension. The control law operates by 
switching between two static gain vectors in such a way that 
the state trajectory is driven onto a stable (n-1) dimensional 
hyper plane (where n represents the system dimension) then 
they derived a necessary and sufficient conditions to ensure 
stabilizability of the resulting switched system and they 
applied their new control condition to the problem of 
minimizing the maximal Lyapunov exponent of the 
corresponding closed-loop state trajectories (Santarelli et al., 
2010). 

(Zhai et al., 2010) proposed a unified approach to stability 
analysis for switched linear descriptor systems under 
arbitrary switching in both continuous-time and discrete-time 
domains. The approach is based on common quadratic 
Lyapunov functions incorporated with Linear Matrix 
Inequalities (LMIs). They show that if there exists a common 
quadratic Lyapunov function for the stability of all 
subsystems, then the switched system is stable under 
arbitrary switching (Zhai et al., 2010). 

In (Araghi et al., 2009) the authors investigated the stability 
of switched linear systems then proposed three methods for 
existence of a common quadratic Lyapunov function for 
robust stability analysis of fuzzy Elman neural network. 

These methods have been considered using stabilizing state 
feedback control in closed loop switching system. 

In (Suratgar et al., 2002; Suratgar et al., 2003) the authors 
proposed some theorems for stability analysis of TSK and 
linguistic fuzzy models. (Guo et al., 2012) investigated the 
stability of a class of switched linear systems and they 
proposed a novel analysis method by using the 2-norm 
technique. Their proposed method guarantees the stability of 
the systems under arbitrary switching, and also provides an 
algorithm to find the minimum dwell time (MDT) with which 
switches make the switched systems stable (Guo et al., 2012). 
In (Ratchagit et al., 2012)  proposed a switching design for 
the asymptotic stability of switched linear discrete-time 
systems with interval time-varying delays and he designed a 
switching rule for the asymptotic stability for the switched 
system via linear matrix inequalities. The system which he 
concerned was with the delay with a fast time-varying 
function and the lower bound was not restricted to zero. 
(Wang et al., 2012) investigated the finite-time stability 
problem for a class of discrete-time switched linear systems 
with impulse effects. They established a sufficient condition 
which ensures that the state trajectory of the system remains 
in a bounded region of the state space over a pre-specified 
finite time interval. They showed that the total activation time 
of unstable subsystems can be greater than that of stable 
subsystems. In addition, the finite-time stability degree may 
be also greater than one (Wang et al., 2012). (Su et al., 2012) 
established a stability result for a class of linear switched 
systems involving Kronecker product. This problem is 
interesting in that the system matrix does not have to be 
Hurwitz at any time instant. As applications of this stability 
result, they proposed the solvability conditions for both the 
leaderless and the leader-following consensus problem for 
general marginally stable linear multi-agent systems under 
switching network topology. Their results only assume that 
the dynamic graph is uniformly connected (Su et al., 2012). 
(Liu et al., 2012) concerned with the stability problem of 
discrete-time positive switched linear systems with delays. 
The states of the systems under consideration are confined in 
the positive orthant, and the delays can be time-varying and 
not necessarily bounded. They established a delay 
independent stability criterion for switched linear systems 
with delays systems (Liu et al., 2012). (Kermani et al., 2012) 
investigated new stability conditions for discrete-time 
switched linear systems based on overvaluing systems built 
on vector norms and the application of Borne-Gentina 
criterion. This stability conditions issued from vector norms 
correspond to a vector Lyapunov function. In fact, the 
switched system to be controlled will be represented in the 
Companion form. A comparison system relative to a regular 
vector norm was used in order to get the simple arrow form 
of the state matrix that yields to a suitable use of Borne-
Gentina criterion for the establishment of sufficient 
conditions for global asymptotic stability (Kermani et al., 
2012). Also they studied the stability and stabilization 
problems for continuous-time switched linear systems and 
they stablished a new stability conditions based on the 
comparison, the overvaluing principle, the application of 
Borne-Gentina criterion and the Kotelyanski conditions 
(Kermani et al., 2012). In (Cimochowski et al., 2012) studied 
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the positive switched discrete-time linear systems. He 
eslablished a new necessary and sufficient conditions for 
asymptotic stability of the positive linear discrete-time 
switched systems with delays in states. The result of his 
proposal was that asymptotic stability of the switched system 
is equivalent to asymptotic stability of the corresponding 
positive discrete-time switched system without delays. 

In the recent years there are many articles about stability of 
systems with finite number of switching but in this paper 
stability analysis of discrete-time switched linear systems 
with infinite number of switching is investigated. 

2. PROBLEM STATEMENT 
 
Consider a set Σ of matrices A   and pick an initial point x , 
at t = 0. A switched linear system is a dynamical system of 
the type: x   = A  x   , A  ∈ Σ, i ∈ I, k ∈ ℤ                                  (1) 
                                                                    
Where Ι is an infinite index set, i  is switching law and the 
state x ∈ ℝ  and A  ∈ ℝ × .  
This notation means that at every instant, the matrix A   
defining the evolution of the system can be replaced by 
another one from of the set Σ. 

The stability of switched system when there is no restriction 
on the switching signals is usually called stability analysis 
under arbitrary switching. For this analysis, it is necessary 
that all the subsystems are asymptotically stable. However, 
even when all the subsystems of a switched system are 
exponentially stable, it is still possible to construct a 
divergent trajectory from any initial condition. Therefore, in 
general, the assumption of subsystems’ stability is not 
sufficient to assure stability of switched systems under 
arbitrary switching, except for some special cases, such as 
pairwise commutative systems, symmetric or normal systems 
(all subsystems). Consequently, if there exists a common 
Lyapunov function for all the subsystems, then the stability 
of the switched system is guaranteed under arbitrary 
switching (Lin and Antsaklis, 2009).  

Let us recall the following definition and lemma that will be 
helpful through the rest of the paper. 

Definition 1. The linear switched system (1) is globally 
uniformly asymptotically stable (GUAS) if for any initial 
condition x ∈ ℝ  and any switching law i , (Monovich  et 
al., 2011). lim →∞ x = 0, ∀(i )  
As this is supposed to hold for any initial vector x , it is 
equivalent to saying that all matrix products taken from Σ 
converge to the zero matrix, i.e., lim →∞A  A    … A  = 0,  ∀(i ) 

The GUAS problem is closely related to determining the joint 
spectral radius (JSR) of the set of matrices Σ = {A , … , A },  
 

denoted by  (Σ) (Monovich  et al., 2011). 

The formal definition of the joint spectral radius was first 
introduced by Rota and Strang in the 60's. In the 90's, 
Daubechies & Lagarias definened the generalized spectral 
radius, and Berger & Wang proved later these two values to 
be equal for bounded sets of matrices (Jungers et al., 2008). 

The joint spectral radius characterizes the maximal 
asymptotic growth rate of a point submitted to a switching 
linear system in descrete time. The maximal growth rate one 
can ensure the stability of the system, provided that this 
growth rate is less than one (Jungers et al., 2008). 

Let ‖. ‖:ℝ → ℝ  denote the Euclidean vector norm and 
denote (Hartfiel, 2002)   (Σ) = max  A  A  … A     , i ∈ {0, 1, … ,  } .             (2)                                                                                                   

Then the joint spectral radius is defined as, 

  (Σ) = lim →∞   (Σ). 

And let,    (Σ) = sup  ρ(A  A  … A  )  , i ∈ {0, 1, … ,  } . 
The generalized spectral radius is defined as,   (Σ) = lim →     (Σ). 

For bounded set of matrices the joint spectral radius and the 
generalized spectral radius are equal. 

In general (Hartfiel, 2002),    (Σ)  ≤   (Σ) ≤  (Σ) ≤   (Σ)   

The switched system (1) is GUAS if and only if  (Σ) < 1 
(Monovich  et al., 2011). 

Some results show that computing or even approximating the 
JSR is extremely hard (Jungers et al., 2008). In this paper we 
propose matrix structure for the subsystems in switched 
linear systems that the stability of switched system is 
guaranteed. 

Through the rest of the paper, the discrete-time switched 
linear system is considered as follow: x(k + 1) = Σ  x(k), k = 1, 2, …                                        (3) 
                                                                                                                       
where Σ ∈ Σ, Σ = {Σ , Σ , … } such that, 

 Σ =  A B 0 C                                                                      (4)  

                                                                                                                             
and k is an infinite index set, k = 1,2, … , [A ] ∈ R  ×   , [B ] ∈ R  ×    and  [C ] ∈ R  ×  , the state x ∈ ℝ , Σ ∈ℝ × . 

If the joint spectral radius of system (3), ρ(Σ) < 1 , then the 
dynamical system is stable, because x = Σ x , where 
Σ ≜ {Σ … Σ } and so ‖x ‖ ≤  Σ  |x | → 0 (Jungers et al., 
2008). 
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First we prove the following lemma. 

Lemma 1. Let {A } ∈ℕ be a set of square matrices. If there 
exist α < 1 such that for all k ∈ ℕ, ‖A ‖ ≤ α, Then, lim →∞ A A   … A = 0. 

Proof: 
From the submultiplicity property of norms, ‖AB‖ ≤ ‖A‖‖B‖ 

the following equation is correct: ‖A A   … A ‖ ≤ ‖A ‖‖A   ‖…‖A ‖ 
 
Since,∀ k ∈ ℕ, ‖A ‖ ≤ α, therefore, lim →∞‖A ‖‖A   ‖…‖A ‖ ≤ lim →∞α → 0 

And consequently, lim →∞‖A A   … A ‖ → 0  then lim →∞ A A   … A → 0 

3. INFINITE PRODUCT OF MATRICES 

Theorem1. Let (Σ ) ∈ℕ be a sequence of Matrices of the form 
(4) and let there exist two numbers   and   such that γ < 1, 
α < 1 and ‖A ‖ ≤ α, ‖C ‖ ≤   for some matrix norm ‖. ‖. 
The sequence P = Σ Σ … Σ  (infinite product of matrices) 
converges to zero if and only if A A … A   B (I − C )   converges to zero. 
Proof: 
To prove the sufficient condition, by construction P  from Σ  
as follow: P = Σ Σ …Σ , Σ ∈ Σ, k ∈ ℕ 

 P =  A A … A X 0 C C … C                                              (5)                                                                                                                      

Where X = A A … A   B + A A … A   B   C +A A … A   B   C   C + ⋯                                             (6)                                           

By hypothesis of the theorem and the Lemma1 since ‖A ‖ ≤ α < 1 , ‖C ‖ ≤  < 1, lim →∞ A A … A = lim →∞ C C … C = 0. 

Therefore lim →∞   = 0 implies that lim →∞X → 0 and 
therefore, lim →∞ X − X   = 0                                                        (7)                                                                                                                             
By some calculations, between X  and X   , the following 
relation is achieved:  X = X   C + A A … A   B   

By substraction X   , the above equation is:                                                                                X − X   = X   C + A A … A   B − X    = X   (C − I) + A A … A   B  

Because of ‖C ‖ ≤  < 1, therefore |C − I| ≠ 0 and (C − I) is invertible. So,  (X − X   )(C − I)  = X   + A A … A   B (C − I)   

(X − X   )(I − C )  = A A … A   B (I − C )  − X   
              (8)                                                                              

From (7) and (8); lim →∞X = lim →∞ A A … A   B (I − C )   

and concequently,  lim →∞   =  0 lim →∞ A A … A   B (I − C )  0 0    
Namlely;    converges to zero if A A … A   B (I − C )   
converges to zero. 

To prove the necessary condition of the theorem, it must be 
proved that if lim →∞ A A … A   B (I − C )   converges to 
zero then lim →∞ P = 0. 

To prove this, first it must be proved that: lim →∞‖  ‖ = lim →∞‖A A … A   B (I − C )  ‖  

By defining    as the difference between    in (6) and A A … A   B (I − C )  ,   =   − A A … A   B (I − C )  ;   ∈ ℕ                    (9)                                                                                                 

and by defining    as: 
   = A A … A B   (I − C   )  − A A … A   B (I −Ck−1                                                                                  (10)                                                                   

From (9) and (10) it is obtained that,     =     − A A … A B   (I − C   )  = (D −Y )C                                     

and thus, ‖    ‖ ≤ (‖D ‖ + ‖Y ‖)‖C   ‖,  such that ‖C ‖ ≤  , 

So,   ‖    ‖ ≤ (‖D ‖ + ‖Y ‖) , ‖  ‖ ≤ (‖D   ‖ + ‖Y   ‖) , ‖    ‖ ≤ (‖D     ‖ + ‖Y     ‖) , 
By repeating the above inequalities it is obtained: ‖  ‖≤ ‖D   ‖  + ‖Y   ‖  + ‖Y     ‖    + ⋯+ ‖Y   ‖   

and as a result,  ‖  ‖ ≤ ‖D ‖    + ∑ ‖Y   ‖        , i = 1, 2, … , k − 1  

Therefore, lim →∞‖  ‖ ≤ lim →∞∑ ‖Y   ‖        , 0 ≤  < 1                (11) 

Because of lim →∞‖D ‖    = 0.                                                                                                  
By considering  = lim sup →∞‖  ‖ < ∞  and since lim →∞Y = 0, and  therefore,  lim sup →∞‖  ‖ ≤ lim sup →∞∑ ‖Y   ‖        , 
and consequently,  ≤ 0 ⟹  = 0. 
The above equation means that, lim →∞  = 0 and from (9), 
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 lim →∞X = lim →∞A A … A   B (I − C )  , ∈ ℕ 

As a result if lim →∞‖A A … A   B (I − C )  ‖ = 0 then lim →∞‖  ‖ = 0 also By hypothesis of the theorem and the 
lemma1, lim →∞ A A … A = lim →∞ C C … C = 0, 

Therefore, 

 lim →∞ P = 0. 
 
So it completes the proof. 

4. STABILITY OF SWITCHED LINEAR WITH INFINITE 
NUMBER OF SUBSYSTEM 

Theorem 2. Let (Σ ) ∈ℕ be a sequence of switching system of 
the form (4) with,‖A ‖ ≤ α < 1, ‖C ‖ ≤  < 1. The discrete 
time switched linear system (3) with infinite number of 
switching system is GUAS under arbitrary switching if  lim → A A … A   B (I − C )  = 0. 

Arbitrary switching refers to switched systems that there are 
no restrictions on the discrete event dynamics. 

Proof: By definition1 and theorem1, any infinite product of 
this kind of switched linear system under these conditions 
converges to 0 so  (Σ) < 1 and the switches linear system is 
GUAS. 

Lemma2. Suppose the discrete-time switched linear system 
(3) where B = 0. The discrete-time switched linear system 
(3) is GUAS if and only if {A , A , … A , … } 
,{C , C , … C , … } are GUAS. 

Proof.  Let {Σ } be of the form  A 00 C   where [A ] ∈R  ×   and [C ] ∈ R  ×  . 

Then, P = Σ Σ …Σ =  A A … A 00 C C … C     
that the state x ∈ ℝ , Σ ∈ ℝ × . So  lim →∞P → 0 if and only if,  lim →∞A A … A → 0 and   lim     →∞C C … C → 0. 
So in fact the discrete- time switched linear system (3) with B = 0 is GUAS if and only if {A , A , … A , … },{C , C , … C , … } are GUAS.  

Result1. The discrete time switched linear system (3) with 
infinite number of switching system with the form (4) is 
GUAS under arbitrary switching if there exist two numbers   
and   such that, ‖A ‖ ≤ α < 1, ‖C ‖ ≤ γ < 1 and ‖Bi‖ ≤
β < ∞ is bounded. 

Result2. Because of  ρ(. ) ≤ ‖. ‖, the discrete time switched 
linear system (3) with infinite number of switching system  
 
 
 
 

with the form (4) is GUAS under arbitrary switching if 
ρ(Ai) < 1, ρ(Ci) < 1 and ‖Bi‖ is bounded. 

Example1. Consider switched linear system (3) with two 
subsystems of the form (4) and let: 

Σk =   −.1 . 3 5−.5 . 1 2
0 0 . 8

 ,  −.4 −.2 4−.5 . 3   5
0 0 . 2

  , = 1, 2.  
Because of ‖A1‖ =  −.1 . 3−.5 . 1 < 1,‖A2‖ =  −.4 −.2−.5 . 3  < 1; ‖C1‖ = ‖. 8‖ < 1, ‖C2‖ = ‖. 2‖ < 1 and ‖B1‖ =  5

2 < ∞,‖B2‖ =  4
5 < ∞,  

the switched linear system under arbitrary switching is 
GUAS. 

Figure 1, shows simulation result of example 1. 

 
Fig. 1. Phase portrait of switched linear system with two 
subsystems. 

Example2. Consider a discrete time switched linear system of 
the form 4 that,  

Σk =
⎩⎪⎨
⎪⎧
⎣⎢⎢
⎢⎢⎡

1
3k

cos (k) 4. 5 1
4k

3sin (k)
0 0

1
2k ⎦⎥⎥

⎥⎥⎤
⎭⎪⎬
⎪⎫ ,  = 1, 2, . .. 

According to the result2 this infinite switched system is 
stable because  

 (  ) = ρ  13k cos(k). 5 14k   < 1, 
 ρ      < 1,  43sin (k) < ∞,      = 1,2, …  .  
So limk→∞ A1A2 … Ak 1Bk(I − Ck) 1 = 0 for all   ∈ ℕ and 
switch linear system is GUAS under arbitrary switching.  
Figure 2 shows some simulation results for k=10, 100, 1000 
and 2000 subsystems that switch. 
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         a) K=10 

 
b) K=100 

 
      c) K=1000 

 
         d) K=2000 

Fig. 2. Phase portrait and switching surfaces with 10, 100, 
1000, 2000 subsystems 

5. CONCLUSIONS 

This paper proposed a new analytic method for globally 
uniformly asymptotically stability analysis of the linear 

switched systems with infinite number of switching. A 
sufficient condition based on the GUAS definition was 
established. 
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Appendix A. Stability definitions 

Consider the time-invariant dynamic system ẋ = f(x), x ∈ ℝ                                                              (A.1) 

and let the initial time be t = 0 without loss of generality. 
The origin  ∗ = 0 is said to be a stable equilibrium point of 
(A.1) in the sense of Lyapunov, if for any ε > 0 there exists a δ > 0 such that ‖x(0)‖ ≤ δ ⇒ ‖x(t)‖ ≤ ε ,∀t ≥ 0                                  (A.2) 

In this case it also will be said simply that the system (A.1) is 
stable. Lyapunov stability does not require that trajectories 
starting close to the origin tend to the origin asymptotically.   
The system (A.1) is called asymptotically stable if it is stable 
and δ can be chosen so that ‖x(0)‖ ≤ δ ⇒ x(t) → 0  as  t → ∞                                  (A.3) 

The set of all initial states from which the trajectories 
converge to the origin is called the region of attraction. If the 
condition (A.3) holds for all δ, i.e., if the origin is a stable 
equilibrium and its region of attraction is the entire state 
space, then the system (A.l) is called globally asymptotically 
stable. 

If the system is not necessarily stable but has the property 
that all solutions with initial conditions in some 
neighborhood of the origin converge to the origin, then it is 
called locally attractive. 

The system (A.1) is globally attractive if its solutions 
converge to the origin from all initial conditions. 

Uniform stability is a concept which guarantees that the 
equilibrium pont is not losing stability. 

Uniform asymptotic stability of the system (A.1) requires that  ∗ = 0 is uniformely stable and the convergence in equation 
(A.3) holds and is uniform. 

The system (A.1) is called exponentially stable if there exist 
positive constants δ, c, and λ such that all solutions of ẋ = f (x) with |x(0)| ≤ δ satisfy the inequality |x(t)| ≤ c|x(0)|e   ,   ∀t ≥ 0                                         (A.4) 

If this exponential decay estimate holds for all δ, the system 
is said to be globally exponentially stable. The constant λ in 
(A.4) is occasionally referred to as a stability margin 
(Liberzon, 2003). 
 
 

 


