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Abstract: In this paper a method for neural network sliding mode control design (NNS) is proposed for 
the robust tracking control of the electrically-driven two-links robot manipulators. The aim of this study 
is to overcome some shortcomings of the standard sliding mode controller (SMC) such as the produced 
higher amplitude of chattering, due to the higher switching gain required in the presence of large 
uncertainties. In the proposed NNS, the sliding mode control with a boundary layer approach is combined 
with the neural network (NN) to control the electrically-driven two-links robot. The NN is used for the 
prediction of the model unknown parts and hence it enables a lower switching gain to be used in the 
presence of large uncertainties. The stability is shown by the Lyapunov Theory and the control action 
used did not exhibit any chattering behavior. As a result, a high-precision position tracking performance 
is obtained without any oscillatory behavior. The effectiveness of the designed NNS is illustrated by 
simulations. 
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1. INTRODUCTION 

The robot manipulator is a complex nonlinear system, whose 
dynamic parameters are difficult to forecast precisely. In fact, 
it is almost impossible to obtain exact dynamic models as the 
system is described by a nominal model with large 
uncertainties. To deal with parameters uncertainties, various 
methods have been proposed, including the Sliding Mode 
Control (Slotine, 1984;Utkin, 1992), and the neural network 
based controls (Patino et al, 2002; Hussain and Ho, 2004; Liu 
et al, 2003). The SMC is a nonlinear control strategy that is 
well known for its strong robustness and accuracy. The main 
feature of this method is to drive the system states on a user-
specified surface in the state space (switching surface), and to 
maintain the states on the surface for all subsequent time. 
However, in the presence of large uncertainties, the controller 
has a higher switching gain and produces higher amplitude of 
chattering. As a result, it is impossible to achieve in practical 
systems. One possible method to eliminate this chattering 
problem is based on the boundary layer solution (Slotine and 
Sastry, 1983; Slotine, 1984). Though, this method can resolve 
the problem for systems with small uncertainties only. 

The NN-based controls (Ciliz, 2005; Sun et al, 2011; Sun et 
al, 2000) have been closely scoped out in the NN applications 
in robot tracking control. Most of the papers get the results 
that the tracking errors can be uniformly ultimately bounded 
as in (Sun et al, 2000) or asymptotically converge to zero as  

 

in (Ciliz, 2005; Sun et al, 2011). However, the considered 
uncertainties are small or some gains parameters are 
sufficiently large in the case of large uncertainties, which 
lead to the oscillatory behaviour. In this paper, a neural 
network structure is proposed to estimate the unknown parts 
of the two-links robot model, so that the system uncertainties 
can be kept small and hence enable a lower switching gain to 
be used. The network weights are adjusted during the online 
implementation by using the gradient descent method (GD) 
(Rumelhart et al, 1986). The proposed control consists of the 
so-called equivalent control added to robust control term, the 
NN predicted terms are incorporated in the equivalent control 
component, enabling the robust component to be used with a 
small gain which is responsible of compensating only the 
network errors prediction. As a result, the responses will be 
fast and smooth without any oscillatory behaviour. The 
stability is shown by using the Lyapunov theory. 
The rest of the paper is divided into five sections. In Section 
2, the system model is presented. In Section 3, the proposed 
neural network sliding mode controller is shown. Section 4 
presents the simulations results. Finally, a conclusion is given 
in section 5.  

2. SYSTEM MODEL OF THE ELECTRICALLY-DRIVEN 
TWO-LINKS ROBOT 

The dynamic model of the electrically-driven two-links robot 
control may be expressed as follows (Dawson et al, 1992): 
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where qqq ,,  denote respectively the joints position, which is 

the controlled output of the system, velocity, and acceleration 
vectors. 

  is the torque and the considered control law is the current 
i  applied to the servo motors. 
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J, B and E are constant, positive definite and diagonal 
matrices. 

The system model can be written as the following state-space 
form: 
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3. NEURAL NETWORK SLIDING MODES CONTROL 
DESIGN 

3.1 Controller Design 

Let’s define some variables as: 
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This represents the unknown parts of the system. 
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 is the output tracking error with: 
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The control problem is to find a current control law so that 

the state )(tq  can track the desired trajectory
d

q . 

The relative degree 3r , then the sliding variable can be 
defined as:  
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 ,  are diagonal matrices defined as follows: 
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  and   are selected such that the roots of the following 

characteristic polynomial are specified in the open left half of 
the complex plane :    
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The sliding variable derivative is: 
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To ensure that a sliding mode exists on a switching surface 
and that this switching surface can be reached in finite time, 
the condition given below has to be satisfied: 

0STS                                                                                (8) 

The control law that satisfies (8) is given by (Alaoui et al, 
2007): 
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where sign(.) is the sign function given by: 
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The positive switching gain to compensate the uncertainties 
is : k  which is designed as: 

kB                                                                                   (10) 

with B as  the upper bound of the uncertainties given by: 

Btx ),(                                                                        (11) 

To eliminate the chattering effect caused by the 
discontinuous control law, the boundary layer approach can 
be used. The control becomes as follows: 
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Where sat is the saturation function, given by: 
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with  is the boundary layer thickness. 

This method can resolve the problem for systems with small 
uncertainties. For systems with large uncertainties, we 
propose in this study the use neural networks to model the 
unknown parts of the two-links robot nonlinear functions 
given in (3), so that the system uncertainties can be kept 
small. 

Let’s denote the prediction of the unknown non linear 
functions parts as:  
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outputs given in a later section. 
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where * is the upper bound of the network error prediction. 

Theorem: Consider the robot manipulator modelled by (2) in 
the presence of large uncertainties. If the system control is 
designed as: 
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with k*  

The trajectory tracking errors will converge, in finite time, to 

the vicinity of S = 0 as S , with  is the small 

boundary layer thickness. 

Proof. Consider the candidate Lyapunov function: 
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By replacing the expression of u given in the theorem we 
get: 
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By choosing  k* , with k  as a small gain, which is 
responsible only for compensating the network errors 
prediction, we get: 

For any small 0 , if S , )()( SsignSsat  , the 

function 0)*(  SkV  . However, in a small  -

vicinty of the origin (boundary layer), 


S
Ssat )( is 

continuous, the system trajectories are confined to a boundary 
layer of a sliding mode manifold 0S , then the high 

tracking precision S is obtained . 

 
 
Fig. 1. NNS controller scheme. 

3.2 Neural Network Design 

In this paper, we consider a NN with two layers of adjustable 

weights (Lewis et al, 1999) (Fig. 1). x : is the state input 

variables and the output variables are: 
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Fig. 2. The architecture of a multilayer neural network for the 
prediction of uncertain parts. 
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where: 
(.) represents the hidden-layer activation function  

 

considered as a sigmoid function given by: 
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 TjNjjj wwwW ...21 are respectively the 

interconnection weights between the hidden and the output 
layers and between the input and the hidden layers.  

The actual output )(xydk  (desired output which is the 

difference between the actual and nominal functions) is: 

)()()( xxyxy kkdk                                                  (19) 

Where: )(xk  is the NN approximation error. 

Remark: Before incorporating the networks into the 
proposed sliding mode control strategy, the networks were 
trained offline. The objective of offline training is to let the 
networks learn the functional nonlinearities to a certain 
degree of accuracy before implementing into the controller, 
and thus can give faster online adaptation as needed. After 
the pre-training step, we would have reasonably good initial 
values of the network weights. 

The network weights are adjusted during the online 
implementation. The method used is based on the gradient 
descent method (GD), which is a simple and fast method for 
online adaptation.  

The essence of the GD consists of iteratively adjusting the 
weights in the direction opposite to the gradient of E, so as to 
reduce the discrepancy according to: 
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Where 0k  is the usual learning rate. The gradient terms 
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 can be derived using the backpropagation algorithm 

(Rumelhart et al, 1986). The cost function E is defined as the 
error index and the least square error criterion is often chosen 
as follows:  
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4. SIMULATION RESULTS 
 
In this section, we test the proposed control algorithm on a 
two-links robot described by the model (2). The control 
objective is to maintain the system in order to track the 
desired angle trajectory: 
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The parameters are considered to be 6.0
1
m  and  

4.0
2
m . 

The considered sampling period is 0.01s. 

The considered uncertainties are a vector random noise with 
the magnitude equal to unity. 
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Fig. 3. Two-links robot manipulator. 

 
From figures 4 and 7, it can be seen that the tracking 
performance is obtained without any oscillatory behaviour 
even in the presence of large uncertainties. The 
corresponding control current signals are given in Fig. 5 and 
8.  The figures 6 and 9 show the adjusted torques of joints 1 
and 2. 

 

Fig. 4. Angle response 
1

x and desired trajectory 
d

x
1

. 

 
Fig. 5. Control 

1
u (input current of join actuator 1). 

 

 
Fig. 6. Torque of joint 1 (N-m). 

 

 

Fig. 7. Angle response 
4

x and desired trajectory 
d

x
4

. 
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Fig. 8. Control 

2
u (input current of join actuator 2). 

 

 
Fig. 9. Torque of joint 2 (N-m). 

5. CONCLUSIONS 

This paper addressed the robust trajectory tracking problem 
for a robot manipulator in the presence of large uncertainties 
without any chattering behaviour. The designed method is a 
combination of the sliding mode control with a boundary 
layer approach and the neural network employed to 
approximate the nonlinear model functions unknown parts 
with online adaptation of parameters. Simulation results have 
shown a good performance of the proposed method to track 
the desired trajectory without any oscillatory behaviour. 
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