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Abstract: This paper presents the design and the analysis of some multivariable adaptive 
nonlinear control strategies for a class of depollution fermentation processes that are carried out 
in recycle bioreactors. The controller design is based on the input-output linearization technique. 
The resulted control methods are applied in depollution control problem in the case of the 
activated sludge process for which dynamical kinetics are strongly nonlinear and not exactly 
known. More precisely, the problem of adaptive controlling of two reactant concentrations with 
two control inputs is considered and is illustrated by the mentioned process. Simulation results are 
included to evaluate the performances of the designed controllers.  
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1.  INTRODUCTION 

In practice, the control of biotechnological 
processes is an important problem attracting 
wide attention. The main engineering motivation 
in applying control methods to such living 
processes is to improve operational stability and 
production efficiency. But the use of modern 
control for these bioprocesses is still low. Two 
known factors make biotechnological processes 
control particularly difficult. First, these 
processes exhibit large nonlinearities, strongly 
coupled variables and often poorly understood 
dynamics. Second, the real-time monitoring and 
on-line measurements of biological process 
variables, for example, biomass concentration 
and/or product concentrations, which are 
essential for control design, is hampered by the 

lack of cheap and reliable on-line sensors [1]. 
When biotechnology strategies are used in 
wastewater treatment, the two mentioned factors 
require an enhanced modelling effort, modern 
estimation strategies both for the unmeasured 
states and the bioprocess kinetics and advanced 
control strategies. The non-linearity of the 
bioprocesses and the uncertainty of kinetics 
impose the adaptive control strategy as a 
suitable approach [1], [8].  

The difficulties encountered in the measurement 
of the state variables of the bioprocesses impose 
the use of the so-called “software sensors” [1]. 
Note that these software sensors are used not 
only for the estimation of the concentrations but 
also for the estimation of the kinetic parameters. 
The interest for the development of software 
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sensors for bioreactor is proved by the big 
number of the publications and applications in 
this area [4], [8].  

This paper presents the design and the analysis 
of some multivariable adaptive nonlinear control 
strategies capable of dealing with the model 
uncertainties in an adaptive way for a class of 
depollution fermentation processes that are 
carried out in recycle bioreactors. The controller 
is obtained via the input-output linearization 
technique [5]. The resulted control methods are 
applied in depollution control problem in the 
case of a complex biotechnological process, 
namely, the activated sludge process for which 
dynamical kinetics are strongly nonlinear and 
not exactly known. Although for this depollution 
bioprocess were reported some nonlinear and 
adaptive control algorithms [3], [10], in this 
paper, two new multivariable adaptive control 
algorithms are proposed and analyzed. More 
exactly, the problem of adaptive controlling of 
two reactant concentrations with two control 
inputs is considered and is illustrated by the 
mentioned process. The algorithm is based on 
the nonlinear structure of the model. The only 
information required about the process is the 
measurements of the state variables and its 
relative degree. It must be noted that if for the 
analyzed process some state variables are not 
accessible, these will be estimated by using an 
appropriate state observer.                

The paper is organized as follows. In Section 2 
it is presented the dynamical model of the 
activated sludge process. In Section 3 firstly it is 
suggested how to design a multivariable 
adaptive linearizing control scheme for a class 
of nonlinear squared systems. After that two 
new multivariable adaptive control strategies for 
mentioned process are presented. Simulations 
results presented in Section 4 illustrate the 
performances of the proposed control 
algorithms. Concluding remarks finished the 
paper. 
 
 
2.  DYNAMICAL MODEL OF ACTIVATED 
     SLUDGE PROCESS 

The activated sludge process is an aerobic 
process of biological wastewater treatment [1], 
[2]. It is usually operated in at least two 
interconnected tanks, Fig. 1: an aerator in which 
the biological degradation of the pollutants takes 
place and a sedimentation tank (settler) in which 
the liquid is clarified, that is the biomass is 
separated from the treated wastewater. Part of 

the settled biomass is fed back to the bioreactor, 
while the surplus biomass is removed from the 
process.  

 
 
 
 
 
 
 

Fig.1. Schematic view of an activated sludge process 

The reaction in the aerator may be described by 
a simple autocatalytic aerobic microbial growth  
that can be represented by the following scheme: 

←ϕ

→+ XCkSk 21                            (1) 

where S, X and C are respectively the pollutants, 
the biomass and the dissolved oxygen, ϕ  is the 
reaction rate and 1k  and 2k  are the yield 
coefficients. It is worth noting that this reaction 
scheme is a simply qualitative relation and does 
not include stoichio-metric considerations. 

It is often assumed that the settler work 
perfectly, i.e. there is no biomass in the overflow 
of the settler. Then, the dynamics of the plant 
(aerator + settler) is described by the following 
mass balance equations: 

in
inrin S

V
F

S
V

FF
Xk

dt
dS

+
+

−µ−= 1        (2a) 

in
rin QC

V
FF

Xk
dt
dC

+
+

−µ−= 2                (2b) 

r
rrin X

V
F

X
V

FF
X

dt
dX

+
+

−µ=                (2c) 

r
s

wr

s

rinr X
V

FF
X

V
FF

dt
dX +

−
+

=               (2d) 

where inS  is the concentration of influent 
substrate (g/l), inQ  is the oxygen feed rate 
(g/lh), rX  is the concentration of the recycled 
biomass (g/l), rin FF ,  and wF  are the influent, 
recycle and waste flow rates (l/h), respectively, 
V and sV  the aerator and settler volumes (l), 
respectively, and )(⋅µ  is the specific growth rate 
(h-1) of reaction ϕ .  
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If we define by T
rXXCS ][=ξ  the state 

vector of (2), X)(⋅µ=ϕ  the reaction rate, 
T

ininin QSDF ]00[=  the feed rate vector, 
TQ ]0000[=  the gaseous outflow rate vector 

and TkkK ]01[ 21 −−=  the yield coefficient 
matrix, then the dynamical model (2) can be 
compactly written as: 

QFDK −+ξ−ξϕ=ξ )(                     (3) 

This model describes in fact the dynamics of a 
large class of bioprocesses carried out in stirred 
tank bioreactors and is referred as general 
dynamical state-space model of this class of 
bioprocesses [1]. In (3), D  stand for the dilution 
rate matrix and is given by:  
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whose entries are defined as: 
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The oxygen feed rate inQ  is usually set equal to 
the liquid-gas oxygen transfer rate: 

)( CCakQ sLin −⋅=                                (6) 

where akL  is the oxygen mass transfer 
coefficient and sC  the saturation constant. In 
the following, we shall consider that akL  is a 
linear function of the air flow rate W [3]: 

0, 00 >= aWaakL                     (7) 

The most difficult task for the construction of 
the dynamical model (3) is the modelling of the 
reaction kinetic ϕ . The form of kinetics is 
complex, nonlinear and in many cases partial or 
completely unknown. A realistic assumption is 
that a reaction can take place only if all reactants 
are presented in the bioreactor. Therefore, the 
reaction rates are necessarily zero whenever the 
concentration of one of reactants is zero.  
 
 
 
 
 
 
 

3.  CONTROL STRATEGIES 

3.1. Problem statement 

For the class of bioprocesses described by 
general dynamical model (3) we consider the 
problem of controlling 2≥p  outputs, 

)dim(ξ=< np , which are linear combinations 
of the process components ξ  by using p  
control inputs under the following assumptions: 

(i) the p  control inputs are either feed rates or 
dilution rates;  

(ii) the reaction rates  kϕ   are time-varying and 
unknown;  

(iii) the matrix K is known;  
(iv) the vectors F and Q and the matrix D are 

known either by measurement or by user's 
choice;  

(v) the process is minimum phase and the 
relative degree of all the p  equations are 
equal to one.  

Let be py ℜ∈  the output vector defined as 

ξ= Cy                       (8) 

where C is a )( np × - matrix of known 
constants. By using (3) or an appropriately 
reduced order model formulation, the dynamic 
of output y can be written as follows: 

uBAugKfy T )()()()(),,( ξ+θξΦ+ξ=ξ+ξϕ=
              (9) 
where pu ℜ∈  is the control input vector, 

pA ℜ∈ξ)(  is a state dependent vector and 
ppB ×ℜ∈ξ)(  is a quadratic state dependent 

matrix. θ is the unknown parameter vector 
( q=θ)dim( ) which contains the kinetics and/or 
yield coefficients that have been assumed to be 
unknown and )(ξΦT  is the regressor matrix 
( qpT ×=Φ )dim( ). Note that if all the p  
equations in (9) have relative degree equal to 
one (as it has been assumed in (v)), then the 
matrix )(ξB  is nonsingular.  

For the process (9), the control objective is to 
make outputs y  track specified trajectories 
denoted py ℜ∈* . However, the problem is very 
difficult or even impossible to be solved since 
the vector θ  is assumed to be completely 
unknown. 

 Exactly feedback linearizing control. Firstly, 
we consider the ideal case where maximum 
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prior knowledge concerning the process is 
available, that is the vectors )(ξA  and θ  in (9) 
are assumed completely known and all the state 
variables are available for on-line 
measurements. Assume now that for closed loop 
system (process + controller) we wish to have 
the following first order linear stable dynamical 
behavior: 

0)()( ** =−⋅Λ+− yyyy
dt
d                (10) 

with pidiag ii ,...,1,0},{ =>λλ=Λ . Then, 
from (9) and (10) we obtain the following 
multivariable decoupling feedback linearizing 
control law:   

[ ]**1 )()()()( yAyyBu T +θξΦ−ξ−−Λξ= −  
      (11) 

The control law (11) leads to the following 
linear error model:  

tt ee Λ−=                       (12) 

where yyet −= *  represents the tracking error. 
It is clear that if pii ,...,1,0 =>λ , the error 
model (12) has an exponential stable point at 

0=te . Since the order of the system (12) is 
np < , then pn −  other system states are 

associated with the zero dynamics [5]. These 
correspond to unobservable modes. It has been 
shown [11], [12] that if the zero dynamics are 
asymptotically stable, then the system (3) will 
be feedback stabilizable by an input-output 
linearization law of the form (11). A nonlinear 
system with (un)stable zero dynamics is said to 
be (non)minimum phase. Usually, we can obtain 
conditions on the stability of the zero dynamics 
from the zeros of the linear tangent model 
transfer function derived at some equilibrium 
points [3]. 

 Adaptive control. If the parameter vector θ  in 
(9) is assumed to be unknown, in the linearizing 
control law (11) it will be replaced by its 
corresponding on-line estimate, yielding the 
following adaptive control law: 

[ ]**1 ˆ)()()()( yAyyBu T +θξΦ−ξ−−Λξ= −  
         (13) 
Since in (9) the unknown parameter appears 
linearly, the on-line estimate of θ  can be 
performed by using appropriately techniques. It 
must be noted also that if in (11) appear state 
variables that are not accessible, these will be 

replaced either by some auxiliary variables or by 
their estimates performed by using an 
appropriately state observer. 
 
3.2. Adaptive control strategies of activated 
        sludge process 

For the activated sludge process, the main 
control objective is to maintain the wastewater 
degradation at a desired level despite load 
variations and substrate concentration variations. 
As in any aerobic fermentation process, proper 
aeration is crucial to process efficiency; at a 
result an adequate control of dissolved oxygen 
concentration in aerator is very important.  

Then the controlled variables are concentrations 
of pollutant S and dissolved oxygen C inside the 
aerator, that is TCSy ][= . Regarding the input 
control variables we will analyze two cases. 

 Case 1. Consider the case when the 
manipulated variables are the influent flow inF  
and the air flow rate W  that is T

in WFu ][= , 
while the recycle flow rate rF  is maintained 
constant.  

 Case 2. A more realistic case is that when 
both the flow rate and concentration of influent 
substrate are variable, the manipulated variables 
being now the recycle flow rate rF  and the air 
flow rate W , that is T

r WFu ][= .  

Consequently, in both cases, we have a 
multivariable control problem with two inputs 
and two outputs. So, in Case 1: T

in WFu ][1 =  
and TCSy ][= , while in Case 2: T

r WFu ][2 =  
and TCSy ][= , respectively.  

Note. In the following we will use the indexes 1 
and 2 for those elements (vectors and matrices) 
which have different structures for these two 
cases.   

From (2) it can be seen that the relative degrees 
of both controlled variables S  and C, 
respectively are equal to one. Then, the 
expressions of )(ξA , )(ξΦT , θ and )(ξB  in (9) 
corresponding to the two analyzed cases are 
readily obtained from model (2), (4) as: 
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)(1 ξB  is nonsingular and so invertible as long as 
SSin −  and CCs −  are different from zero, and 
)(2 ξB  is nonsingular and so invertible as long 

as S and CCs −  are different from zero. 

For this process we consider that the specific 
growth rate µ  is a Monod-type model, i.e. [10]: 

CK
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⋅
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In the ideal case when the process is completely 
known, it can be shown, after long but rather 
straightforward calculations applied to linear 
approximations of the model (2) that in the both 
cases, the process (2) is minimum phase. Under 
these conditions, the exactly linearizing 
controller (11) with TCSy ][ *** =  is 
particularized as follows: 
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in the Case 2. 

Now we shall develop two adaptive control 
algorithms under the following realistic 
conditions: the specific growth rate )(⋅µ  is time-
varying and unknown, the concentrations of 
biomasses X and rX  are not accessible, and the 
only measurements available on-line are: the 

output pollution level, the dissolved oxygen 
concentration and the influent substrate 
concentration inS . Under these conditions an 
adaptive controller is obtained as follows.  

The unmeasured variables X and rX  can be 
estimated by using an asymptotic state observer 
[2], [10]. For that, let us define the auxiliary 
variables 21, zz  and 3z  as follows: 

SXkz += 11 , CXkz += 22 , rXz =3         (19) 

whose dynamics derived from model (2), (4) are 
independent of the unknown kinetics:  
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                  (20) 
Then, from (19) and (20) the estimates of X  
and rX   are given by: 

22 /)ˆ(ˆ kCzX −= ,  3ˆˆ zX r =                   (21) 

The stability of the state observer (20), (21) 
depends on the sability of the matrix:  
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It can be straightforward shown that if the waste 
flow rate 0≠wF , all the three eigenvalues of the 
matrix (22) have their real parts strictly 
negative. It can be concluded that the state 
observer (20), (21) is asymptoticaly stable. 
The unknown specific growth rate µ  in (16) can 
be rewritten as follows: 

SCCS ⋅θ=µ ),(                      (23) 

where θ  is an unknown positive function of 
process components which will be on-line 
estimated by using an appropriately parameter 
estimator.  

Using (20), (21) and (23), for the Case 1, the 
adaptive version of the controller (17) is given 
by: 
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Using also (20), (21) and (23), for the Case 2, 
the adaptive version of the controller (18) is 
given by: 
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Both in (24) and (25) the variables 1̂z  and 2ẑ  
are calculated via equations (20) and θ̂  is 
updated by using an observer-based parameter 
estimator [8] that here is particularized as 
follows: 

SDSSDSzSCS rinin −−+θ−−= )(ˆ)ˆ(ˆ
1  

       )ˆ(1 SS −ω+                      (26a) 

)(ˆ)ˆ(ˆ
02 CCWaCDCDCzSCC srin −+−−θ−−=  

        )ˆ(2 CC −ω+                    (26b) 

)ˆ)(ˆ()ˆ)(ˆ(ˆ
2211 CCCzSCSSSzSC −−γ−−−γ−=θ

                              (26c) 
where 121 ,, γωω  and 2γ  are positive design 
parameters to control the stability and 
convergence of the estimator. 
To prove the stability and convergence 
properties of the parameter estimator (26a)-(26c) 
we define the estimation errors as 

SSS ˆ~
−= ; CCC ˆ~

−=          (27) 

and the tracking error as 

θ−θ=θ ˆ~           (28) 

It is easy to show that the errors (27) and (28) 
verify the following time varying linear system: 
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Lemma 1. If Ω  is a )( nn × - Hurwitz matrice, Γ  
is a )( nn × - positive definite and symmetric  
matrice so that P−=+ ΓΩΓΩT , where P is a  

)( nn ×  - positive definite and symmetric 
matrice, 0)( =θ t , that is )(tθ  is a very slowly 

time variable function, and if )ˆ(zKH  and 

( ))ˆ(zKH
dt
d  are uniformly bounded, and the 

regressor matrice )ˆ(zKH  is persistently 
exciting, then for the system (29) the point 
( )θ

~,~e  is an exponential stable steady point.  

Definition 1. The )( rn × - dimensional matrice 
)ˆ(zKH  whose entries are bounded and time 

derivable functions is persistently exciting, if 
there exist the positive constants α  and β , so 
that 

( )( )∫
β+

≥∀>α≥τ
t

t
n

T tIdzKHzKH 0,0)ˆ()ˆ(       (31) 

Proof of the Lemma 1. First, we show that: 

0)(~lim =
∞→

te
t

, )0(~e∀          (32) 

Consider the following candidate Lyapunov 
function: 

θθ+=
~~~Γ~ TT eeV          (33) 

The time derivative of V along the systems 
(29a), (29b), in which is used the Lyapunov 
equation defined in Lemma 1, will be: 

( ) ( ) ezKHeeV TTTT ~Γ)ˆ(~~ΓΩΓΩ~ θ++=  

       ( ) ( ) θ−θ+
~)ˆ(Γ~~)ˆ(Γ~ zKHezKHe TT  

       ( ) 0~~~Γ)ˆ(~
≤=θ− ePe-ezKH TTT        (34) 

Using the Basic Lyapunov Theorem [12], from 
(34) one obtains that for the system (29a), (29b) 
the point ( )θ

~,~e  is an uniformly stable steady 
point. Then, from (33) and (34) one derives that 

)(~ te  and )(~ tθ  are uniformly bounded for 

any 0≥t . Now, since )ˆ(zKH  is uniformly 

bounded it follows that )(~ te  is uniformly 

bounded also.  

Since )(tV  is an uniformly bounded decreasing 
function for any 0≥t , then from (34) one 
obtains that: 

∫∫ ττ−=τττ
∞→∞→
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t
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From (35) one obtains that [7]: 
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To prove that 0)(~lim =θ
∞→

t
t

, )0(~
θ∀  one can 

follow the Proposition 5.1 from [8].  

Finally, one can derive that ( )θ
~,~e  is an 

uniformly asymptotic stable steady point of the 
system (29a), (29b). Since this system is a linear 
one, it follows that the point ( )θ

~,~e  is an 
exponential stable steady point.  

A bloc diagram of the multivariable adaptive 
system, in the Case 2, is shown in Fig. 2. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. A bloc diagram of the multivariable  
adaptive system 

 

4. SIMULATION RESULTS 

The performances of the two above 
multivariable adaptive controllers have been 
tested by performing extensive simulation 
experiments.  

The numerical values of the kinetic parameters 
are [10]: =µ0

max  0.2 h-1, =SK  75 mg/l, =CK  2 
mg/l, and the model parameters are: =1k  1.2, 

=2k  0.565, =0a  0.017 m-3, =sC  10 mg/l, V = 
380 m3, =sV  256 m3.  

The gains and the tuning parameters of the two 
adaptive controllers have been set to the 
following values: =λ1  25, =λ2 7.5, =ω=ω 21 -
50, =γ=γ 21  2.0e-6.  

 

 

 

 

The auxiliary variables 321 ,, zzz  and the 
estimated parameter θ  have been initialized as 
follows: =1̂z  9.6 g/l,  =2ẑ  4.5 g/l,  =3ẑ  90 g/l, 

=θ̂  7.5e-4.  

 Case 1. The system’s behavior was analyzed 
assuming that the pollutant concentration inS  
acts as a perturbation of the form presented in 
Fig. 2, and the kinetic coefficient  maxµ  is time-
varying as:  

))11/sin(05.01()( 0
maxmax tt π−µ=µ         (36)  

The behavior of closed-loop system using 
multivariable adaptive controller (24) by 
comparison to the exactly linearizing law (17) 
for =wF  0.25 m3/h and =rF  8 m3/h is presented 
in Figs. 4a-4d. Fig. 4e shows the evolution of 
actual time-varying specific growth rate θ  and 
its estimate θ̂ , respectively.  

From graphics in Figs. 4a-4d it can be seen that 
the behavior of adaptive system is good, being 
very close to the behavior of closed loop system 
in the ideal case when the process model in 
completely known. Note also the regulation 
properties   and   ability   of   the   controller   to 
maintain the controlled outputs S and C close to 
their desired values (low level for *S ) despite 
the time varying parameters and the process 
uncertainties. 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3. Variation of perturbation inS  
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C* = 7.5 mg/l 

Time (h) 

S* = 20 mg/l 

S* = 15 mg/l 

S* = 9 mg/l 

Time (h) 

Time (h) 

θ 

θ̂  

Time (h) 

Time (h) 
Time (h) 

Time (h) 

θ 

θ̂

Time (h) 

C* = 6.8 mg/l

C* = 6 mg/l 

Time (h) 

S* = 8.5 mg/l 

S* = 6.5 mg/l 

S* = 5 mg/l 

Time (h) 

 
 
          
 

      
 

             
 
 
 
 

Fig. 4a. Controlled output S 
 

 

 

 

 

 
 

Fig. 4b. Controlled output C 
 

 

 

 

 

 

 
 

Fig. 4c. Control input Fin 

 

 

 

 

 

 

 
Fig. 4d. Control input W 

 

 

 

 

 

 

 

Fig. 4e. Actual and estimated parameter θ̂  

 

 

 

 

 

 
 

Fig. 5a. Controlled output S 
 

 

 

 

 

 
 

Fig. 5b. Controlled output C 
 

 

 

 

 

 

 
Fig. 5c. Control input Fr 

 

 

 

 

 

 

 
Fig. 5d. Control input W 

 

 

 

 

 

 

 
 

Fig. 5e. Actual and estimated parameter θ̂  
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One can observe a good behaviour both of state 
observer (20), (21) and parameter estimator 
(26). 

 Case 2. The behavior of closed-loop system 
using multivariable adaptive controller (25) by 
comparison to the exactly linearizing law (18) is 
presented in Figs. 5a-5d. The system’s behavior 
was analyzed assuming the same conditions 
both for perturbation inS  and the kinetic 
coefficient maxµ  as in the Case 1.  

Much more, in this case, the influent flow rate 
inF  (m3/h) is also time varying as: 

)80/sin(025.01(40)( ttFin π−⋅=  
))10/cos(025.0 tπ+          (37) 

The graphics in Fig. 5e show the evolution of 
actual time-varying specific growth rate θ  and 
its estimate θ̂ , respectively.  

The graphics in Figs. 5a-5d show a good 
behavior of this  closed  loop  adaptive  system  
by comparison to the behavior of closed loop 
system when the control law is exactly one. 

Note the ability of the adaptive controller (25) to 
maintain the pollutant (controlled output) S at a 
very low level ( =*S  5 mg/l) despite the very 
high load variations, both for inS  and inF , and 
the time variation of the process parameters. 

One can observe also a good behavior both of 
the proposed state observer (20), (21) and 
parameter estimator (26). 
 
 
5. CONCLUSIONS 
 
Two multivariable adaptive nonlinear control 
strategies have been designed and analyzed for a 
class of depollution fermentation processes that 
are carried out in recycle bioreactors. The 
approach has been illustrated on the activated 
sludge process. The stability and the 
convergence properties of the proposed 
parameter estimator were proved through 
Lyapunov’s method. 

Since, in most situations, the kinetic parameters 
are uncertain and time varying and the process 
non-linearities are not exactly known and, much 
more, not all the state variables are on-line 
measurable, it can be concluded that adaptive 
controllers are the only viable alternative.  

The simulation results of applications of the two 
designed multivariable adaptive controllers 
confirm the efficiency of the two control 
schemes, especially in the second case.  
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