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Abstract: In the opening there is a short overview for the current approaches found in the literature 
regarding the methods and models used for the Common Rail diesel high pressure dynamics 
identification. The local linear Neuro-Fuzzy models are proposed as an alternative to the conventional 
analytical and empirical models. In the following, the diesel Common Rail system structure is presented 
along with the basic physical equations governing the process. A short analysis reveals the main factors 
influencing the fuel pressure behavior inside the Common Rail high pressure system. Finally, it is 
analyzed the feasibility for the high pressure system identification and modeling using a particular 
Neuro-Fuzzy network structure with local linear dynamic models by training its parameters with engine 
measured data. 
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

1. INTRODUCTION 

Modeling complex technological processes in detail using 
theoretical methods and implementing the resulting analytical 
models in a real time computing environment requires an 
elaborate work and it’s time consuming. These aspects are 
most relevant when referring to the automotive industry, 
where the mechanical and thermo-dynamical processes are 
interconnected and the identification methods represent an 
alternative for obtaining empirical process models with 
limited validity regions. In numerous applications, the Neuro 
- Fuzzy networks have demonstrated their capability to 
provide nonlinear models directly from the measured data, 
without necessity for detailed knowledge of the strong 
nonlinear processes (Hafner et al. (2002), p. 402-412).  

1.1 Motivation 

In the past years, the auto industry had seen a considerable 
progress and the biggest automotive manufactures along with 
their technical solutions suppliers had implemented various 
methods and design architectures with the purpose to satisfy 
the customer requirements and reduce development costs. In 
order to get the right picture over the degree of difficulty 
associated with the automotive projects, one needs to 
integrate them into a strong competitive environment with 
tight deadlines which emerged after the 2009 financial crisis. 
The projects related to the Common Rail injection systems 
make no exception and follow the same philosophy: on one 
hand, achieving the emission related objectives (EU6, EU7, 
SULEV), on the other, reducing cost and time to market 
(Continental (2009a)). 

The above outlined aspects impose the need for an open 
system architecture (AUTOSAR - AUTomotive Open 
System ARchitecture), which allows the engine manufactures 
to chose various suppliers for different components which 
minimize the cost vs. performance criteria. The resulted 
systems are characterized by functional complexity and 
inherit new characteristics difficult to be reproduced by the 
already existing models based on analytical equations and/or 
numerical dependencies implemented via look-up tables. 
From the newly raised constraints, emerges the necessity for 
implementing new model structures and appropriate 
identification algorithms capable to adapt the parameters off 
and on-line for the entire engine workspace, with the 
designated purpose to compensate the inaccuracy of old 
models or even replace them. An extra argument for choosing 
an adaptive model structure is represented by the time 
varying characteristics of the systems which lead to a drop in 
the model accuracy over time. A model based control 
structure, without a systematic parameter adaptation, is not 
capable to keep the original system performances over its 
lifetime. 

1.2 Current approaches for Common Rail fuel pressure 
system identification and modeling 

The technical literature doesn’t exceed in publication 
referring to identification methods and numerical models 
used to approximate the fuel pressure behaviour inside the 
Common Rail systems. Continental, Bosch and Delphi, the 
major suppliers of control systems for Common Rail diesel 
injection, had decided to patent the technological solutions  
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without making public the theoretical content of the 
implemented applications. This comes rather logical, taking 
into account that in the past years the three rivals competed 
for reducing the Common Rail diesel engine emissions and 
improving its performances (Continental (2009), Yldiz 
(2009), Delphi (2009)). 

There can be found in the technical literature some papers 
describing analytical methods for identification and modeling 
of the Common Rail fuel pressure behaviour. Lino, Maione 
and (Rizzo (2007)) propose a Common Rail injection system 
model using the state space which is further used for 
designing a sliding mode pressure controller. The resulted 
model is validated against measurements and the control 
structure performances are evaluated using AMESim and 
Matlab. In a different paper (Lino et al. (2008)), a 
parametrical identification method (ARIX) is presented and 
this time for modeling the gas pressure in a modified 
Common Rail natural gas injection system. The identification 
results are crystallized into a model used for predictive 
control of the gas pressure inside the injection system. The 
model validation on an experimental test bench, demonstrates 
the potential of the model based predictive control structure 
versus a conventional one.  

Several papers include detailed observations on different 
components of the high pressure system along with the 
important factors influencing the fuel pressure dynamics. 
(Zeilang Li (2005)) performs an analysis on the high pressure 
fuel pump with the purpose of extracting an analytical model, 
validated experimentally, which approximates the shape of 
the fuel pressure waves generated by the pump. The fuel bulk 
modulus of elasticity (E) used in the calculation represents 
one of the most significant factors for the fuel flow model in 
a common-rail volume V and implicitly has a great influence 
on the fuel pressure (P). 

dV

dP
VE         (1)  

(Seykens et.  al. (2004) and Boudy et. al. (2009)) formulate, 
after summarizing the experiments, conclusions over the 
influence of the biodiesel fuels properties upon the common 
rail fuel pressure systems. Again, the damping of the fuel 
pressure waves is directly linked to the fuel bulk modulus of 
elasticity. In his study, (Kiijarvi (2003)) provides detailed 
analytical models of the fuel flow and pressure for all 
Common-Rail system components.  

The correlation between the high pressure system pressure 
pulsations and the engine rotational angle was investigated by 
(Zhang and Sun (2009)). An angle-varying dynamic model 
was developed to model the system dynamics and especially 
the pressure pulsations introduced by the high pressure pump. 
In order to leverage the periodicity of pulsations in rotational-
angle domain, they designed a piezo driven actuator capable 
to absorb and provide high pressure and high speed flow in 
real time. An internal model-based controller was designed as 
well for the actuator control. 

In conclusion, common rail fuel pressure modeling and 
predictive control are topics of interest among the scientific 
community. There can be found studies where global 

approaches are applied for approximating the behaviour for 
the overall common rail fuel pressure system or studies 
focused on particular aspects of the system but in despite of 
that, there is no solution capable to provide a real time 
prediction of the common rail fuel pressure dynamics with a 
deviation from the real value under 1~2 MPa for the entire 
engine working space. This restrictive constraint calls for an 
alternative approach in designing a model capable to fulfill 
the task of adapting it’s parameters from system data around 
quasi-stationary engine working points and then perform the 
prediction of common rail fuel pressure over a certain time 
horizon. 

The next sections of this paper are focusing on the Common 
Rail fuel pressure system particularities and offer an 
alternative to the classic approaches for identification and 
modeling. In chapter II, the local linear Neuro-Fuzzy models 
are proposed as an alternative to the conventional analytical 
and empirical models. In the following, the diesel Common 
Rail system structure is presented along with the basic 
physical equations governing the process. Chapter III, reveals 
the main factors influencing the fuel pressure behavior inside 
the common rail high pressure system. Chapter IV, presents a  
high pressure system identification and modeling using a 
particular Neuro-Fuzzy network structure with local linear 
dynamic models. The resulted application is designed to 
adapt its parameters and then predict the common rail 
pressure for a specific engine working point. The parameters 
training is performed with engine measured data and the 
simulation results are analyzed. 

2. PROPOSED METHOD FOR SYSTEM MODELING 
AND PARAMETERS IDENTIFICATION 

A. Modeling and identification using local linear Neuro-
Fuzzy networks 

Various approaches on modeling and identification methods 
based on Neuro-Fuzzy network architectures can be found in 
the literature. This paper will focus on a particular 
architecture with local linear dynamic models and the 
associated identification algorithm.   

Starting from an idea initially promoted by (Murray (1994), 
Nelles et al. (1996, 2000)) introduced the LOLIMOT (Local 
Linear Model Tree) concept based on RBF (Radial Basis 
Function) Neuro-Fuzzy networks with local linear models 
(LLMs). The LOLIMOT construction algorithm combines 
the heuristic method of decomposing the input space with the 
local optimization based on the least- squares technique. 
After the input space decomposition in an axis – orthogonal 
manner, the resulted (hyper-) rectangles have centers which 
coincide with the centers of Gaussian membership functions. 
The standard deviation for the membership functions are 
chosen to be proportional with the (hyper-) rectangles 
dimensions, taking into account the varying granularity. In 
this way, explicit nonlinear optimization is avoided and the 
nonlinear parameters are determined heuristically (Nelles et 
al. (2000)). The solution requires a moderate computational 
effort (Nelles (2001)). The concept was tested in the 
automotive field and its potential was demonstrated in several 
multivariable nonlinear applications: feed forward ignition 
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angle control, modeling the charging process of a Diesel 
engine by an exhaust turbocharger (Nelles (2001)). (Jakubek 
and Keuth ((2006)) apply the LOLIMOT concept for 
modeling and parameter optimization of Diesel engine 
combustion process. 

B. Local Linear Neuro-Fuzzy models structure 

(Nelles and Fischer ((1996)) present a practical solution for 
using Neuro – Fuzzy networks in process modeling and 
identification. Dynamic MISO models with r+1 inputs, u1, 
…, ur, y, represented by the NARX structure: 
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can be easily identified using LOLIMOT algorithm. The 
global predicted output ŷpg is determined as a function of the 
input vector u and measured output y. 

Having as objective empirical process modeling for 
predictive control, the Neuro – Fuzzy network architecture 
structured on two levels presented in fig. 1 is considered 
(Nelles (2000)). From a priori expert knowledge of the 
process, the ensemble of input vector u measured output y 
generates after some preliminary operation the neuron’s 
inputs z = [z1, …, znz]

T, and x = [x1, …, xnx]
T. This operation is 

called selection. 

The network structure consists of M neurons (Fig.1) whose 
outputs ŷi, i = 1, …, M, provide the predicted output ŷpg 

according to formula (3). The formula corresponds to a 
Tagaki-Sugeno processing level (Level 1 in Fig. 1a) for 
which the validity functions  zΦi

 bring the rule premise:  

 zΦzxyzzxyy i
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Each term )',(ˆ zxyi
, i =1, …, M from first level, represents 

the output of a local model, LMi which further consist, on the 
second level (Level 2 in Fig. 1b), in n local linear sub-models 
(LLMs) that implement dependencies of the form:  
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Here wi,j () = [wi,0() , wi,j,1(), …, wi,j,nx()] is the vector of 
the weighting operators, and  ''

, zΦ ji  represent the validity 

functions  depending on a third selected input: z’. In equation 
(4), each LM represents also a Tagaki-Sugeno rule. Details 
about the processing are presented further in chapter IV. 
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Fig. 1. Neuro – Fuzzy network structure with local dynamic 
models, having on first level M neurons for nx consequent 
inputs x and nz premise inputs z for the 1st level validity 
functions (fig.1a) and each neuron having a network structure 
with  n local linear models, nx consequent inputs x and a 
premise input z’ for the 2nd level validity functions (fig.1b). 

3. COMMON-RAIL HIGH PRESSURE SYSTEM 

In the following, a 3 piston pump and 4 injectors Piezo 
Common-rail system (PCR) is considered. According to 
(Lino et al. (2007), Continental (2009b) and Wikipedia 
(2012)) the PCR configuration presented in fig. 2 can be 
considered as one of the last generation. The main circuits of 
the hydraulic system are the low pressure circuit (bottom) and 
the high pressure circuit (top). The first circuit contains the 
low pressure pump which lifts the fuel pressure from the 
tank, the internal transfer pump and the fuel return line with 
the fuel temperature sensor, whereas the second one contains 
the high pressure pump the volumetric and pressure control 
valves, the common rail together with the fuel pressure 
sensor and injectors. 
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Fig. 2. PCR Hydraulic System. 

The fuel pressure set point in PCR is realized via two control 
loops (fig. 2 – dash lines) implemented using an electronic 
control unit (ECU) (Continental (2009c)). A first loop, of 
open-loop type, based on the fuel flow model, is acting on the 
volumetric control electro-valve, while the second one, of 
closed loop type, based on the feedback from the fuel 
pressure sensor, is acting on the pressure control electro-
valve. Considering the strong nonlinear characteristics of the 
process, the control strategies are dependent on the system 
working point defined as Λ(P,Q,T) where P represents the 
common-rail pressure, Q represents the fuel flow and T the 
fuel temperature. 

The process in the common rail (fig. 3), having as output the 
common rail pressure P and as control input the flow of fuel 
eliminated from the high pressure common rail QPCV, is 
subject to inherent process disturbances generated by the high 
pressure pump QP, the cumulated flow drop from the injected 
quantity QI, and fuel flow caused by the injector continuous 
leakage Qpl due to injection affecting the common rail high 
pressure system.  

 

Fig. 3. Schematic representation of high pressure closed loop 
control with flow contributions to common rail. 

Considering the four process inputs as completely separable, 
the total fuel flow on PCR,  tQ/ TdtdV , can be expressed  

as an additive combination:  

         tQtQtQtQtQ plIPCVPT  . Consequently, from 

relation (1), we have (Gauthier et al. 2005): 

 )()()()( tQtQtQtQ
V

))E(P(t),T(t

dt

dP
PCVIplP

rail

    (5) 

where Vrail is the rail volume. In (5) each input depends in a 
specific way on more system variables: 

QP(t) = fP(N(t), αCRK (t), φ, VCV (t), ... ), where φ – pump 
mounting angle, αCRK - crankshaft angle, VCV – volumetric 
valve opening [%]; 

Qpl(t) = fpl(P(t),T); 

QI(t) = finjected mass(Ti,P(t)) + fswitch leakage(Ti, P(t), T), where Ti – 
time of injection. 

QPCV(t) = f(PCV), where PCV – pressure valve opening [%] 

It is obvious that the dependencies are more sophisticated 
than they appear at a first glance because P, as argument, 
means an implicit feedback connection. 

Fig. 4a exhibits a characteristic of common rail fuel pressure 
P of the system from Fig. 2 when the PCR works around a 
controlled stationary working point. The shape of P(t) 
cumulates the effect of all inputs represented in Fig. 3, 
mainly due to the High Pressure Pump and the Injectors 
behaviour and the corrective action of the control signal 
QPCV. Fig. 4b illustrates the variation of αCRK (t) during the 
same time interval. The pressure variations P(t) can be 
correlated to αCRK(t) and associated with the main hydraulic 
system events (Continental (2009d)) during  normal engine 
operation. 
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Fig. 4. Measured fuel pressure pattern (a) for a complete engine cycle (720º crankshaft) (b) corresponding to a complete 
revolution of the 3 Piston Pump (360º crankshaft). Engine speed ~ 800 rpm. 

By eliminating time from the dependencies P(t) and αCRK(t), 
the fuel pressure can be expressed as a function of crankshaft 
angle P(αCRK) (fig. 5 - bottom). For a complete engine cycle 
(i.e. αCRK = 720º) corresponding to a complete revolution of 
the 3 pistons pump and to injection realization for all 4 
cylinders, the fuel pressure curve can be more clearly 
correlated with the different hydro-mechanical events (fig. 5 
– middle and top): the increase in pressure corresponds to the 
pump compression time intervals, while the pressure 
decreasing is linked to injection time intervals.  

 

Fig. 5. Idle speed PCR2 characteristic pressure pattern 
determined by the 3 Piston High Pressure Pump and 4 servo-
injectors flow contributions for a full engine cycle (injection 
configuration: Pilot-Main. 

The shapes of the time variations of the disturbances inputs 
are illustrated in fig. 6. Fig. 6a, represents the pump flow and 
pressure increase for one piston delivery. Due to mechanical 
uncertainties, different flow and pressure curves are possible.  

Injection events cause flow and pressure drop at certain 
moments (fig. 6b) while continuous leakage will determine a 
continuous fuel flow and pressure drop during engine 
runtime. 

 

Fig. 6. Theoretical pressure and flow contributions of the 
PCR system disturbances  

After an in-depth quasi-empirical analysis, based on huge 
amount of practical experiments, similar to those presented 
above, we have concluded that:  

The most important measurable factors, influencing the 
common rail fuel pressure (y = P) behavior in the vicinity of 
a steady system working point Λ(P,Q,T), are: r=6, u=[u1 u2 
u3 u4 u5 u6 u7]

T, where u1=αCRK, u2=N, u3=PCV, u4=VCV, 
u5=vinj, u6=T and u7=P. Since Q in common rail is dependent 
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on T, P, N, VCV and vinj, a split of the input space for 
different working points can be realized based on the above 
mentioned variables. 

The selection will consist in the following allocations of the 
variables and preliminary operations: nz=5, z= [ z1 z2 z3 z4 z5]

T 
with z1=T, z2=P, z3=N, z4=VCV, z5=vinj; nx=4, x=[x1 x2 x3 x4] 
with x1=f1(PCV), x2=f2(vinj), x3=f3(VCV,N), x4=f0(P)=-y and 
z’=αCRK. Functions f0, f1, f2 and f3, have the role of 
preprocessing the raw variables. The time variable vinj, 
associated to the injection event and generated by ECU, takes 
into account the time chart and the flow of injections. 

The cyclic system behavior depicted in fig. 5 should be 
separated depending the pump mounting angle into n = 6 
evenly distributed regions, called system phases, 
corresponding to pump and injection events where pressure 
dynamics can be approximated by linear functions. In our 
case, the phase j, j = 1,…,6, covers during a complete 
revolution the range  

)]1(120180)1(12060[  j,jCRK
 . 

In the above mentioned context, the second processing level 
appears as in Fig.7.  
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Fig. 7. Neuron consisting in dynamic local model (LMi) used 
for predicting the common-rail fuel pressure in quasi-
stationary working points and associated validity function. 
The second level realizes the partitioning of the process into 
linear dynamic linear models corresponding to n system 
phases for the complete engine cycle (720º crankshaft – 4 
cylinders, Pump/Engine ratio = 1/2). 

Considering the irregular shape of the disturbances it 
becomes obvious that approximating the fuel pressure 
dynamics for different engine working points is not an easy 
task. Therefore, in order to obtain an accurate model the 
usage of powerful modeling and identification instruments is 
necessary. 

4. APLICATION STUDY: NEURO-FUZZY 
ARCHITECTURE DESIGN FOR MODELING AND 

IDENTIFICATION OF PCR PRESSURE DYNAMICS 

Fulfilling the purpose of common-rail fuel pressure modeling 
and identification, the two level multilayer Neuro-Fuzzy 
network presented in fig. 1 is proposed. The dynamic local 

models on level 1 (Fig. 1a) are in fact Neuro – Fuzzy 
structures themselves as depicted in Fig. 1b and later in Fig. 
7. Each dynamic local model (LMi) consists of n linear local 
models LLMi,j. with j = 1, …, n, n being the number of the 
system phases for a complete engine cycle. The Mn LLMs 
associated to all M dynamic local models and n phases are 
chosen to be local optimal ARX predictors of dynamic order 
m: 
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operators, i.e. the network’s linear parameters, are obtained 
as solutions of the optimization problem discussed in the next 
chapter. 

The ARX predictors (6) are obtained from ARX models: 
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The role of LLMi,j is to predict the dynamic behavior of 
common-rail pressure for a limited region, ”i,j”, of the input 
space defined by z’. By defining the vector of the weighting 
operators wi,j(q

-1) = [wi,j,1(q
-1), …, wi,j,nx-1(q

-1), wi,j,nx(q
-1)] with 

wi,j,l(q
-1) = Bi,j,1(q

-1) (l = 1, ..., nx-1) and wi,j,nx(q
-1) = Ai,j(q

-1), 
equation (6) becomes    kky ji 1ˆ ,

 )()( 1
, kxqw ji

 , where x 

= [x1(k), …, xnx-1(k),  xnx(k)]T. Considering the structure in Fig. 
7, follows: 
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Obviously, the result corresponds to (4). Taking, further, into 
account the global Neuro – Fuzzy architecture from Fig. 1a, 
equation (3) is obtained:  
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The validity functions iΦ  perform a partitioning of the input 

space associated with premise vector z and determine the 
validity regions ”i” for the local models in the vicinity of 
quasi-stationary system working points (ie. idle speed, cruise 
speed etc). 

Some details are now necessary: 

 Coefficients from polynomials Ai,j reproduce the 
natural “low pass” characteristics of the process by 
filtering the measured output signal samples (Nelles, 
2001). As Ai,j(q

-1) and Bi,j(q
-1) are polynomials of 
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order m the global predictor (9) needs m+1 samples 
at the time instants k, k-1, …, k-m.  

 The validity functions Φi,j’(z’), j = 1, …, n 
associated to the LLMi,j, on level 2, to each phase 
provide the trust-weights of the LLMi,j outputs in the 
overall sub-model output to first network level. 
They are dependent on crankshaft position z’ = αCRK 
and are chosen to be mutual exclusive as suggested 
in Fig.8 and equation (10): 

jiΦ ,'

 

Fig. 8. Validity functions level 2 dependent on crankshaft 
position for a complete engine cycle (720º crankshaft – 4 
cylinders, Pump/Engine ratio = 1/2) , j is the index of phases.  
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In equation (9) the validity functions Φi form a partition of 
unity. i.e.: 
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and ci,1, …, ci,nz and σi,1, …, σi,nz are the centers, respectively the 
standard deviation of region ”i”, representing the network’s 
nonlinear parameters (Nelles, 2001). 

 

 

5. OFF-LINE PARAMETERS LEARNIG AND MODEL 
SIMULATION RESULTS 

In the Matlab/Simulink application implementing the neuro-
fuzzy model presented above, each polynomials Ai,j, and 
Bi,j,l is of order m=2, i.e. 2 coefficients. This choise has two  

consequences: i) only the information from the last two 
regressors is used for prediction; ii) (((mnx)n)M = 246M= 
48M coefficients included in weighting operator wi,j(q

-1) 
should be determined. 

In order to determine the model parameters in a real time 
environment, an on-line LLM parameters adaptation 
algorithm was implemented in Matlab / Simulink. The 
coefficients of  1

,
qw ji

 are adapted for each prediction 

sample time k using the recursive least squares algorithm 
(Nelles, 2001): 
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where  kR ji,
 is proportional to the inverse of the covariance 

matrix of the estimated coefficients 
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for LLMi,j and  kx~  represents the normalized extended 

input vector       T
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xl  min and xl max are the minimum and maximum values of 
variable xl. The algorithm’s convergence is considered 
achieved when all LLM errors ei,j(k) < 0.2 %.  

For testing the application’s tuning capabilities of the 
predictor, an idle speed working regime was chosen for an 
experimental vehicle Ford C-max equipped with a 2.0 liter 
Piezo Common-Rail diesel engine with constant fuel 
temperature and injection pattern. The nonlinear parameters 
of the nz=5 membership functions (13) are given in table 1. 
Since the experiment is carried out only for idle speed and 
warm engine and due to small standard deviations for input 
space variables z, we considered M = 1, (only one neuron), 
and, consequently, 48M=48 coefficients and   11 zΦ . 

The measured data taken from the experimental vehicle was 
used for training and validation and contains sufficiently 
excited inputs for the simulation model. The measured 
signals (table 2) had different ranges and acquisition rates. 
They were averaged for a 120º CRK (Pump segment) interval 
to filter out noise and further normalized. Prediction of fuel 
pressure inherent dynamics is aimed for predictive control so 
it’s necessary to have a sufficiently large prediction horizon  
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in order to be able to apply the compensation signal in time. 
Considering for prediction a sample period of 0.025 s, 
equivalent for an engine rotation of αCRK = 120º at N = 800 
rpm, the model is capable of performing a one step ahead 
prediction of the fuel pressure behavior allowing a αCRK = 
120º equivalent time window for the process controller to 
react. The process controller is scheduled to operate with a 
0.01 s recurrence. 

Table 1.  Nonlinear parameters of the membership 
functions (13) for the idle speed warm engine regime 

Membership 
function µi 

Linguistic 
variable z 

Centers ci,j 
Standard 

deviation σi,j 

µ1 z1= T c1,1=40º C σ1,1=0.016 

µ2 z2= P c1,2=32 MPa σ1,2= 0.26 

µ3 z3= N 
c1,3=800 

rpm 
σ1,3= 6.38 

µ4 z4=ΨVCV c1,4=24 [%] σ1,4=0.9961 

µ5 z5= vinj c1,5=0.56 ms σ1,5= 0.032 

Table 2.  Input Variables  

Variable 
name 

Min Max Sampling 
rate  

u1=αCRK = z’ 0 720 0.025 s 

u2=N = z3 
(used for x3) 

800 830 0.025 s 
average 

u3=PCV  
(used for x1) 

16 17 0.025 s 
average 

u4=VCV =z4 

(used for x3) 
23 25 0.025 s 

average 
u5=vinj =z5 
(also used 
for x2) 

0 0.77 
0.025 s 
average 

u6=T = z1 40 41 0.01 s  

u7=P =z2 
(also used 
for x4) 

31 34.5 
0.025 s 
average 

The attribute „average” used in 2 refers to the fact that f0, f1 
and f2 reprezents averaging operators that provide at each 
0.025 s average values for x1, x2 and x4, denoted above as 
x1(k), x2(k) and x4(k), obtained from samples of PCV, vinj and 
P taken during 0.025 s. Function f3 represents a relation 
between 0.025 s average N and VCV samples delayed with 
the time equivalent of 360º CRK with the purpose of 
correlating the fuel flow inside the pump piston during 
suction phase. 

In the following, it is presented a graphical display of 
normalized training data (fig. 9 and 10) used for model 
parameters adaptation. The fuel temperature T (u6) was kept 
constant at 40º C. The parameters evolution during adaptation 
starting from arbitrarily chosen non-zero initial values ]0[ŵ  

is presented in fig. 11 and the model error in fig. 12. For the 
adaptation algorithm, the recurrence was identical to the input 
signals sampling rate. According to figure 11, the estimation  

process stabilizes and the parameters convergence takes place 
at about 13 seconds after the training started. The initial 
values on the diagonal of matrix Ri,j requires special attention 
since the convergence of the adaptation algorithm is 
dependent on those initial values. In case of very high initial 
values the algorithm is divergent and for very small initial 
values, the convergence is very slow. In this experiment, the 
initial values for matrix Ri,j were chosen to be the identity 
matrix I8 multiplied with 0.1. For the forgetting factor λ, 
influencing the algorithm’s convergence speed, the value 
0.98 was chosen.  
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Fig. 9. Normalized training data for LLM parameters 
adaptation.  

For the overall model validation, a comparison between raw 
value P (0.002 s acquisition rate), 0.025 s average P and the 
predicted P is presented in fig. 13. The results show a one 
step ahead prediction of average P with an approximation 
error less than 1% which can be considered satisfactory 
considering the constraints imposed in the introductive 
section of this paper. 
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Fig. 10. LLM dynamic inputs normalized 
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Fig. 11. LLMi,j parameters evolution during adaptation. 
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Fig. 12. Overall model error evolution during training phase. 
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Model prediction vs. raw and mean pressure signals

 

 

Normalized raw P (2 ms aquisition rate)

Normalized mean P (25ms average)
Normalized predicted P (25ms prediction horizon)

 

Fig. 13. Graphical comparison of measured fuel pressure 
signal P (2 ms acquisition rate), mean P used for model 
training and model predicted P. 

5. CONCLUSIONS AND PERSPECTIVES 

Following the analysis of common-rail diesel hydraulic 
system, different factors were identified to be responsible of 
fuel pressure shaping and they were classified accordingly. 
Considering the complexity of the technological process, a 
solution for offline and on-line modeling and identification 
was implemented using fast Neuro-Fuzzy networks. These 
type of structures, capable to classify the operating modes of 

the system and to approximate them for the entire engine 
operating regimes, are the perfect candidates for satisfying 
the exigent requirements regarding performance and 
reliability. 

A small scale application, implementing the common rail 
prediction model and parameters adaptation, is already 
showing promising results. The adaptation of model 
parameters can be performed in a reasonable timeframe. The 
prediction of common rail fuel pressure can be preformed 
around a quasi-stationary engine working point with 
deviations under 1 MPa. Further design of the system 
identification structure will emphasize on generality and real 
time performance. An input space decomposition algorithm 
will determine the number of rules and neurons necessary for 
achieving good prediction performances for all engine 
working points. Along with the performance criteria, the 
model design will incorporate constrains related to memory 
usage and runtime. Once implemented, the common rail 
prediction model opens perspectives for model based 
predictive control. 
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