
CEAI, Vol.14, No.3, pp. 43-53, 2012 Printed in Romania

Cooperative Control achieved by Generic Genetic Fuzzy Logic

Octavian Cuibus , Tiberiu Leţia

Technical University of Cluj-Napoca, Cluj-Napoca, Romania,
(e-mail: octavian.cuibus@ aut.utcluj.ro, tiberiu.letia@aut.utcluj.ro)

Abstract: The paper presents three cooperative control strategies with application to the problem of lake
system control. The control system is implemented by a distributed set of communicating agents that use
fuzzy logic rules to compute the control decisions. In order to improve the global control performance,
each agent sends the control context to its neighbours. The information included in the context and the
manner the context exchange is made establish the control strategy: implicit cooperation, coordination
and explicit cooperation. Improving the control performance involves more terms in premises of the
fuzzy logic control rules, increasing the number of logic rules. Hierarchical fuzzy architectures are used
to diminish the number of rules for different methods. The unknown fuzzy logic control rules are
obtained offline by the generic genetic approach. The simulations results are given for the three
cooperative control strategies and a performance comparison is made.

Keywords: distributed control, cooperative control, generic genetic algorithms, hierarchical fuzzy control.



1. INTRODUCTION

The cooperative control strategy involves several agents that
perform shared tasks. These tasks are based on the
relationship between the contexts of individual agents. The
decisions and the behavior of each agent influence the
contexts of other agents so they have to act according to a
consensus. The cooperative control captures those problem
areas which imply some type of repetition of identical or non-
identical interconnected subsystems (Khatir et al. (2003)).

Cooperative control can successfully approach
decentralization since it allows the development of complex
behavior based on several combined controllers in order to
achieve the desired result (Innocenti et al. (2007)).

The centralized control methods use one actor to control the
whole system, whereas the distributed approach splits the
system into several controlled subunits, each with its own
controller. The main advantage is that when a controller fails
or its communication is interrupted the rest of the system can
continue to behave correctly. A subsystem with a failed
controller or failed communication can still influence other
subsystems. In this case, the influence of the subsystem that
quits the cooperation is regarded as a disturbance and
managed accordingly.

Since each controller is responsible only for its assigned
subsystem, the global system solution may not be optimal
since it is composed of the local solutions. According to the
cooperative systems strategy, the agents take into account the
other agent behaviors or the control context with the intention
of improving their own control performances.

Generally, the scale of the system prevents from finding of an
optimal solution, but it is possible to obtain a suboptimal one,
close to the best behavior. This involves improving the local
control decisions to fulfill the global requirements.

The main advantages of cooperative control are as follows:

 computational load decrease or distribution

 control performance increase

 increase of system reliability and flexibility

 building a portable system that may be implemented for a
large application domain

One of the goals of the current approach is to obtain few and
simple fuzzy control rules that can be implemented to fulfill
some real-time constraints. Control rule construction can be
performed offline, therefore methods that require large
computational effort may be used.

This paper is a logical extension of an earlier paper, “Implicit
cooperative control achieved by generic genetic fuzzy logic”,
(Leţia et al. (2010)), in which only the implicit cooperative
strategy is thoroughly presented. The cooperative control
structures have been presented in (Leţia et al. 2010), but only
as a theoretical concept. As the main contribution, this paper
introduces new various methods to implement the
cooperative control strategies: implicit, coordinated and
explicit cooperation. Of course, the independent and implicit
strategies implementation from the above mentioned paper
are put forward once again for performance comparison.

2. RELATED WORKS

Several studies present various distributed control systems,
including multi-agent approaches. The focus is set on the
fuzzy approach and various cooperation strategies. Some of
the relevant papers are cited below.

(Korotkich (2002)) considers a collection of many
subsystems that solve an optimization problem by
cooperating with each other in order to find control actions
and criteria such that the whole system maximizes a given
performance function.

44 CONTROL ENGINEERING AND APPLIED INFORMATICS

(Waldock et al. (2008)) point out two cooperative strategies:
implicit cooperation, based on the idea of building and
maintaining a common distributed picture (which is referred
to as “context” in this paper), and explicit cooperation, that
implies negotiation in order to agree on a common distributed
plan. The explicit cooperation is achieved by exploiting
factorization in the utility function to form a factor graph.

(Hakimi-Asiabar et al. (2009)) state that a multi-reservoir
operation can be regarded as a multi-objective problem with
nonlinear, non-convex and multi-modal objective functions.
Genetic algorithms are used because of their feature of
probabilistic search which makes them capable of solving a
variety of complex multi-objective optimization problems,
including non-linear, non-convex and multi-modal functions.

(Innocenti et al. (2007)) develop control architectures for
distributed independent asynchronous behavior of multi-
agent systems. The cooperative control allows the
development of complex behavior based on several
controllers combined to achieve the desired result.

The main problems that should be approached when dealing
with Cooperative Control of Distributed Multi-Agent
Systems are, as stated by (Shama (2007)) in his book:
distributed control and computation, adversarial interactions,
uncertain evolution and complexity management.

(Hong and Chen (2000)) propose two fuzzy learning methods
for automatically deriving membership functions and fuzzy
if-then rules from a set of given training examples.
Appropriate initial membership functions are built by
selecting relevant attributes and then simplifying the intervals
and membership functions of each attribute to form a
decision table. The fuzzy strategy is used for water flow and
water level control for one basin by (Nezam et al. (2002)).

(Chiou and Lan (2005)) concluded that logic rules and
membership functions are two key components of a fuzzy
logic controller. If both components are calculated
simultaneously using genetic algorithms, a very long
chromosome is needed, which may deteriorate performance.
They propose a bi-level iterative evolution algorithm in
selecting the logic rules and tuning the membership
functions. (Buiu et al. (2003)) also use genetic fuzzy logic
control, but for a different purpose.

A new architecture for cooperative control implementation is
proposed by (How et al. (2009)).

A class of hierarchical fuzzy system with constraints on the
fuzzy rules is conceived by (Hoffman et al. (1994) and Joo et
al. (2007)), in order to diminish the fuzzy logic rule number.
Other rule compression techniques are used successfully by
(Gegov et al. (2007) and Koczy (1997)), employing simple
ellimination of redundant rules and respectively using
interpolation of elliminated rules to construct the lost rules
with a certain pre-established precision. In this paper, rule
compression is done by hierarchization of fuzzy blocks so
that the number of decision inputs remains the same, but the
number of fuzzy rules is reduced.

(Klavins et al. (2004)) use the Computation and Control
Language to construct tools for cooperative control systems.

(Choi et al. (2009)) use more complex methods for
cooperation implementation, mainly consensus-based auction
algorithms. These utilize a market-based decision strategy as
the mechanism for task selection and use a consensus routine
based on local communication as the conflict resolution
mechanism to achieve agreement on the winning bid values.

3. THE LAKE SYSTEM MODEL

The cooperative control strategy is applied to a lake system
such as the one presented in Figure 1. Such lake systems are
used to supply water for human residences, farms or
irrigation systems. The control goal is to maintain the water
levels close to the specified (reference) values, despite the
variable disturbances that may affect the system, such as
environment conditions (rain, evaporation), or variable flow
demands at the output of the downstream lake.

Fig. 1. Lake system.

Each controller assigned to a lake can measure the water
level and estimate the disturbance input flow, but not from
the upstream lakes. The agents implementing the controllers
are able to communicate at least with a subset of other agents
(the neighbouring agents). All agents can interchange
information before they make their own decisions.

In Figure 1, the data for lake Li (i=1, ..., 6) is denoted by:

 vi the uncontrolled input flow from the environment
(disturbance measured in m3/s);

 hi the current water level (measured in m);

 ci the control signal for the output flow;

 ui the controlled output flow (measured in m3/s);

The discrete time model of one lake is presented in detail in
the paper “Implicit cooperative control achieved by generic

CONTROL ENGINEERING AND APPLIED INFORMATICS 45

genetic fuzzy logic”, (Leţia et al. (2010)) and only stated
below for lake i, for reference.

   )()(

)()()(
)()1(

0 kxrkxrgS

kukvku
kxkx

iiiiii

iiprev
ii 


 (1)

In formula (1), the following notations were used:

 ri is the reference level of lake i

 xi(k) = ri - hi(k) is the level error at time k

 vi(k) is the disturbance input flow

 ui(k) is the controlled output flow

 prev denotes the lakes located upstream of lake i

 0
iS and gi represent the base surface and the shape of the

basin walls

The lake system model is composed of six equations similar
to (1), considering the links between lakes. The steady state
gives the nominal values of the variables vi and ui.

4. CONTROL SYSTEM PHILOSOPHY

The control problem is to calculate the value ui(k) such that
the level error xi(k) is cancelled in the minimum possible time
and remains as small as possible at steady state.

As an extension of the cooperative control categories
presented by (Waldock et al. (2008)) in their paper, three
cooperative control strategies are implemented in this paper:

 implicit cooperative control,

 coordinated cooperation and

 explicit cooperative control.

The difference between these methods consists of the
information used for calculating the control actions and
whether an agreement is reached in the calculation process.

The agents share context information by means of a
communication system. They perform shared tasks, where
the tasks depend on the relationship between the contexts of
individual agents. The control and cooperative functions are
performed by the agents associated to each lake.

4.1. Agent structure

Unlike the general multiagent architecture (for example, the
one presented by (Innocenti et al. (2007)), the proposed
architecture uses identical control units (agents), where each
agent is usually composed of:

 sensing components (sensors),

 communication component and

 control component.

Each agent has a Context Constructor component that builds
the control context using the measured or communicated
information. The agent control context is composed of local
state (process measurements) plus other information, such as:

 constraints,

 measured or estimated disturbances, and their predictions
(disturbance forecasts),

 operator input (setpoints, requirements or other
recommendations),

 inferenced and statistical information from the past,

 information communicated by other agents (state
measurements, control decisions or intentions, etc.) and

 the intended control action for the next step.

The type of information included in the context and used for
the calculation of the control action determines the
cooperative control strategy.

The key contribution of this component is the replacement of
state-based control by the context-based control.

4.2. The control task

The agents perform the shared task of minimizing the global
performance function (2). The problem is in fact a multi-
objective problem (Hakimi-Asiabar (2009)), but here all the
objectives are integrated into a single function (2).

 
 


N

i

K

k
ii kxpJ

1 0

2)((2)

In formula (2), pi is the priority of each lake, N corresponds
to the number of lakes and K to the time control horizon.
Thus, a performant controller should minimize the level total
error, despite the disturbances (vi) that may occur.

Due to the distribution, only local levels can be directly
measured by the agents, but the calculated control commands
have to take into account the other agent behaviors (context
information) as well, as described below.

4.3. Control system architecture

The control structure for implicit cooperative control strategy
can be seen in Figure 2. The agents communicate local
context information and then calculate the control actions in
one single step. No agent is thus aware of the control decision
of any other agent.

Fig. 2. Implicit cooperative control.

The coordinated cooperative control structure is presented in
Figure 3. Unlike the case of implicit cooperative control, the
exchanged information can include controller decisions, not

46 CONTROL ENGINEERING AND APPLIED INFORMATICS

just context information. Apart from being a simple
intermediate of information exchange, the coordinator can
also apply logic rules to process data that is to be transmitted
to each controller (agent), in a unitary way, as presented by
(How (2009)) for his cooperative control architecture.

The chronology of activities in one sample period is as
follows: the context constructor takes process measurements
and sends this information to the controller. Each controller
calculates the information that is to be sent to the coordinator
(which may include the intended control actions, but not the
final control actions). The coordinator processes data from all
controllers and provides the results to each controller. Based
on this new information, each controller calculates the final
control action, which is applied to the process.

Fig. 3. Coordinated cooperative control.

The system layout for explicit cooperative control can be
seen in Figure 4. This is the most specialized type of
cooperative control and implies explicit communication and
cooperation between agents in an unspeciffied number of
steps (iterations).

Controller 1

Context constructor

Communicator

Actuators

...

Sensors

measure-
ments

control
signals

ActuatorsSensors

Plant (Environment)

control
signals

measure-
ments

Control subsystem 1 Control subsystem N

Controller N

Context constructor

Communicator

Fig. 4. Explicit cooperative control.

The context constructor first builds the initial context by
taking process measurements and other possible external
information (from the operator, etc). The context can be then
sent directly to other controllers or can be first processed in a
certain way. The controller calculates the intended control
action and sends it to other controllers. In response, they
communicate their new option regarding this or their own
control action. An iterative message exchange process takes
place at which end the controllers reach an agreement about
what control action should be used at the present moment.

Message exchange can imply controller options, considering
how much each controller gives up as utility and how much it
accepts as cost. Powerful strategies can be used here,
including game theory strategies. A major concern to look
after is avoiding infinite loops in the cooperation process.

4.4. The fuzzy approach

In all strategies, fuzzy logic is used to build the control action
(Leţia et al. (2010)). When constructing the context, each
agent calculates the fuzzy logic values of the variables xi(k)
and vi(k), which are denoted by xi and vi respectively. The
mentioned fuzzy logic variables take values in the discrete
universe {H-, L-, Z, L+, H+} (with H, L, Z meaning high, low
and zero). Each agent calculates the control action ui as fuzzy
value using one or more IF…THEN… inferences, according
to the employed strategy.

The membership function of xi is presented in Figure 5 and is
similar to the membership functions presented by (Nezam et
al. (2002)). Standard triangular shaped membership functions
are used for vi and ui. The fuzzy values are centered around

the nominal values of the variables, namely ii rx 0 , 0
iv , 0

iu .

The discrete universe for ui is {E-, H-, M-, L-, Z, L+, M+, H+,
E+} (with E meaning extreme high and M medium). All
membership functions have been established apriori.

Fig. 5. Water level membership functions.

4.5. The generic genetic algorithm

The fuzzy logic control sets are calculated offline by
employing generic genetic algorithms, using the set of all
possible combinations of disturbances. This approach is
similar to using only the upper level of the genetic fuzzy
controller proposed by (Chiou et al (2005)). Another set of
relevant disturbances was used to test the system behavior
and evaluate the control performances.

The genotype is set according to the fuzzy rules used by the
employed strategy. The length of the chromosome is equal to
the number of fuzzy rules required by the control strategy and
the genes correspond to the elements of the rule matrix (see
Leţia et al. (2010)) The alleles are chosen from the elements
of the discrete universe for ui, unless specified otherwise.

When evaluating each chromosome, the system must be
simulated starting from each possible initial (fuzzy) state,
such that the discrete universe is entirely covered, using each
possible set of disturbances. The simulation is performed by
running the system composed of 6 equations of the form (1)
in a loop spanning across the time horizon K. The
performance of the control strategy is evaluated using the
fitness function of the form (2).

CONTROL ENGINEERING AND APPLIED INFORMATICS 47

5. INDEPENDENT CONTROLLERS

As a standard for control performance, independent control is
also considered. An independent controller takes into account
only the local error (state) xi and the measured/estimated
disturbance vi. The fuzzy logic formula is:

)()()(iiiiii UuTHENVvXxIF  (3)

where Xi and Vi take values in the discrete universe.

Formula (3) leads to 25 logic rules for one lake, which can be
arranged in matrix form (Leţia et al. (2010)). Note that lakes
{1, …, 5} can be controlled using the same logic rules, but
another set of rules must be used for lake 6 since v6 is an
output flow. The fuzzy logic control sets are constructed
offline using the generic genetic algorithm described above.

6. IMPLICIT COOPERATIVE CONTROL

The implicit cooperative control structure is represented in
Figure 2. This is the case when the agents send each other
information about the error, disturbance or previous control
decisions, but not about the current control actions. The
reason is that the previous control decisions ui(k) are
available, but not the next ui(k+1) control action. The sending
of the previous control action to neighbors can improve the
estimation of the disturbances and also the control
performances.

Each agent sends the coordination vector [xi, vi], and then,
having received the equivalent information from other agents,
calculates the output command with the fuzzy logic formula:

)()()(

)()(

11

11

iiNN

NN

UuTHENVvVv

XxXxIF







 (4)

where Xi and Vi take values in the discrete universe.

The number of necessary fuzzy logic rules of the form (4) is
5N·5N = 512. Due to the huge number of rules, the formula (4)
is not practically applicable, thus the number of rules must be
reduced to a reasonable level by suitable methods.

Method 1: The controller of the lake Li takes into account the
state xi, the disturbance vi and the state of another neighbor
lake Lj considered strongly influenced by the control
decisions taken for the lake Li. For this problem, Lj is
considered the downstream lake for lake Li.The fuzzy logic
control rules are of the form:

)()()()(iijjiiii UuTHENXxVvXxIF  (5)

To avoid the effect of dimensionality a hierarchical structure
was used (Joo et al. 2007), which is presented in Figure 6.

Fig. 6. Hierarchical fuzzy structure for implicit control
(method 1)

The number of necessary rules is 25 (for block Li) and 45 (for
the block Ci). They have the form:

)()()'(

)'()()(

iijjii

iiiiii

UuTHENXxUuIF

UuTHENVvXxIF


 (6)

The controller of Lake 6 is the same as for the independent
control, since Lake 6 has no downstream lake.

Method 2: The controller of lake Li improves its control
decisions using the disturbance of lake Lj. The rules are:

)()()(

)()(

iijjjj

iiii

UuTHENVvXx

VvXxIF




(7)

As in the previous case, the number of rules is diminished by
a hierarchical structure, which is presented in Figure 7.

The blocks Ri, Rj and Ci implement fuzzy rules with the form
according to their inputs and outputs. The necessary number
of control rules is 25 for block Ri, 25 for Rj, and 81 for the
block Ci.

Fig. 7. Hierarchical fuzzy structure for implicit control
(method 2)

As with Method 1, the controller of Lake 6 is in fact an
independent controller, since there is no downstream lake.

Method 3: The construction of controllers that use the errors
of three neighbor lakes and their own level error is based on
the formula (8), but hierarchical structures can also be used.

)()()(

)()(

iillkk

jjii

UuTHENXxXx

XxXxIF





(8)

Using similar structures many other control algorithms can be
constructed. The chosen input variables and their number
affect the control performances.

7. COORDINATED COOPERATIVE CONTROL

The coordinated cooperative control structure is represented
in Figure 3. This is the case when the agents can send
information about state and disturbance or even previous
control decisions, but not about the current control actions.
The reason for this is that, during a certain sampling period,
the previous control decisions ui(k) are available, but the next
control actions ui(k+1) are not. Nevertheless, the controller
can also send information about the intended control actions.
Sending of the previous and/or intended control actions to the
coordinator and then to the neighbors can improve
disturbance estimation and control performance.

The chronology of the events that take place in one time step
has been described in subsection 4.3. The implementation of

48 CONTROL ENGINEERING AND APPLIED INFORMATICS

the coordinated cooperative control using fuzzy control
blocks is described below.

First, each controller calculates the information ai that is sent
to the coordinator, based on the information available in the
local context. The coordinator takes the fuzzy values ai from
each cotroller and calculates the coordination vector [bi]
using the fuzzy logic rules:

)(;);(

)()(

11

11

nn

nn

BbBbTHEN

AaAaIF







(9)

Each coordination value bi is sent to the appropriate
controller. The controllers then calculate the control actions,
based on the local error (state) xi, the disturbance vi, and the
new information bi, with the fuzzy logic rule:

)()()()(iiiiiiii UuTHENBbVvXxIF  (10)

On the general case, ai and bi can also be vectors. Depending
on the implementation, the ai may include information about
the disturbance, water level, previous or intended control
action for lake i, or even the way that controller i wants the
upstream controllers to behave, by setting upper and lower
bounds on the outputs of the upstream lakes. These bounds
can be sent by means of the vector ai. Similarly, bi can
represent processed information that is to be sent to controller
i about the state of the downstream lakes, the recommeded
output of the upstream lakes, etc. Note that ai and bi may also
contain different types of data for different controllers.

If 5 fuzzy levels are considered for ai and bi, the number of
necessary fuzzy logic rules of the form (9) for the coordinator
is N·5N = 6·56 and of the form (10) for each controller is 53 =
125. As for implicit control, the use of fuzzy inferences (9)
and (10) is not possible due to the huge number of rules
needed. This requires some diminishing con-structions, to
reduce this number down to a reasonable level.

Method 1: For this particular method, it is considered that
each value ai is actually a vector that represents the water
quantity in the lake and has two components: xi and vi.

In order to reduce the number of rules for the coordinator,
some pre-processing of the values ai must be performed. The
values xg and vg, are calculated with the formulas (11), where
xi and vi are the components of the vector ai.








i
iig

i
iig

vv

xx





 (11)

The quantitiy xg represents approximatively the total water
quantity accumulated in the system, and vg the water quantity
that is about to enter in the system. The coefficient αi
represents the volume of lake i, at the nominal water level,
relative to the total volume of the lake system, and βi is the
reciprocal of the surface of lake i, at the nominal water level.
The reason for taking the reciprocal of the surface is that vg
actually represents the expected rise of the water level
because of input vi. Also, since v6 is an output flow, β6 is
considered negative.

The membership functions for xg and vg are obtained by
substituting the fuzzy levels of xi and vi into formulas (11).

The structure in Figure 8 is thus used for the coordinator, and
the coordinator fuzzy logic control rules from (9) are now of
the form (12).

)()()(gggggg BbTHENVvXxIF  (12)

The quantities bi are replaced by a single parameter, bg,
which contains information about the distribution of water in
the system. The membership functions for bg are not
important, since bg is an input parameter in the controller
structure (Figure 9) and is never defuzziffied.

Fig. 8. Coordinator structure (coordinated control, method 1)

The number of controller fuzzy logic rules (10) is diminished
using the structure from Figure 9 (see Joo et al. 2007), where
each block implements appropriate fuzzy inferences.

Fig. 9. The hierarchical structure for each controller
(coordinated control, method 1)

The necessary number of control rules is 25 for block G (for
the coordinator), 25 for block Li and 81 for block Rg (for each
controller). Since bg and ui′ are variables on 9 fuzzy levels,
the block Rg must have 81 logic rules. In order to reduce this
number further, it can be considered that bg and ui are first
defuzzyfied according to the 9 fuzzy levels and re-fuzzyfied
on 5 new fuzzy levels: {H-, L-, Z, L+, H+}. The membership
functions are standard and tuned accordingly: the value of ui

H
must be identical in the two fuzzy universes. Block Rg has
thus only 25 logic rules.

Note that lakes {1, …, 5} can be controlled using the same
logic rules, but another set of rules must be used for lake 6.

Method 2: Each controller first calculates the quantity ai as
the intended control action ui′, using the independent control
equation (3). The quantity ai that is sent to the coordinator is
a vector that contains ui′ and the water level xi.

The coordinator then calculates for each controller a
recommended control action ui″, considering the intended
control actions of each controller and its effect on the levels
of other lakes. The coordinator implements formula (13),

)"()()'(iijjii UuTHENXxUuIF  (13)

where j is the lake that has the highest sensibility to the
output of lake i (i.e. the lake that is downstream from i). Note
that the form of the premise for the logic rules is different for
each ui″ that is to be calculated. The recommended output ui″
is then sent to each controller as bi.

CONTROL ENGINEERING AND APPLIED INFORMATICS 49

Using the recommandation ui″, each controller calculates the
control action ui using the formula (14), which can be also
organized in a hierarchical structure (Figure 10) in order to
reduce the number of logic rules.

)()"()()(iiiiiiii UuTHENUuVvXxIF  (14)

The number of new logic rules needed to implement the
controllers using this method is 25 for block Si and 81 for the
block Ui, which can be reduced to 25 using the same
defuzzyfication and re-fuzzyfication strategy as for method 1.

Lakes {1, ..., 5} can be controlled using the same logic rules,
whereas lake 6 uses the the independent control strategy,
since the output of lake 6 does not affect any other lake.

Fig. 10. Reduced controller structure (coordinated control,
method 2)

The number of logic rules for the coordinator (equation (13))
is 45 and can be reduced to 25 using the previously described
strategy. The same rules can be used in relation to each lake,
but better precision may be achieved using custom rules for
each lake.

8. EXPLICIT COOPERATIVE CONTROL

The explicit cooperative control strategy presented in Figure
4 is representative for the idea of cooperative control.
According to this strategy, the control actions ui(k), are
calculated for each time sample k in an iterative process in
many steps, using information from all agents. Agents
cooperate and negotiate over what control action they should
apply to the process in the next time step. The process of
negotiating a speciffic value involves explicit communication
and cooperation between the agents that are interested in that
value. To a certain extent, the explicit cooperative strategy is
similar to the coordinated strategy with the remark that here,
each agent has some coordinator behavior included. The
coordinator is thus distributed into each individual controller.

The chronology of the steps by which the controllers
calculate the control actions is presented below. The variable
ai denotes the coordination value that controller i calculates
and distributes to each interested controller. For each step,
the general fuzzy logic implementation is given below for the
lake control system problem.

 Step 1: each controller i calculates ai and sends it to the
appropriate (interested) controllers:

)()()(iiiiii AaTHENVvXxIF  (15)

 Step 2: based on the information aj, each controller i
updates the value of ai and sends it again to other
controllers.

)()()(

)()(

11 i
new
inn

iiii

AaTHENAaAa

VvXxIF






 (16)

Step 2 is repeated until the difference between ai and its
updated value is small enough (see condition (17), ε being a
small number which measures performance).

 new
ii aa (17)

Before the next iteration, the initialization new
ii aa  must

be made.

 Step 3: based on the information aj (j = 1..6), each
controller calculates the control action ui (equation (18)).

)()()(

)()(

11 iinn

iiii

UuTHENAaAa

VvXxIF





 (18)

Typically, ai contains information about the intended control
action, but on the general case, ai can be a vector containing
upper and lower bounds for the control action, critical signals
or information that other controllers must be aware of, etc. As
an extension, it can be considered that not all controllers see
the same information about the unit i.

As already mentioned, special care must be taken to ensure
that the algorithm does not reach infinite loop (i.e. condition
(17) is validated at certain iteration). One of the possible
strategies involves genetic algorithms, solving the
convergence problem by elliminating individuals that reach
infinite loop. Because infinite loop might not always be
correctly detected, a possible approach is to elliminate the
individual that has not fulfilled condition (17) in a maximum
of 10 to 20 iterations. This should not be regarded as a
performance measure but rather as an elimination criterion.

If we consider that ai is the intended control action (on 9
fuzzy levels), then implementing the control problem with
fuzzy logic rules of the form (15), (16) and (18) requires
25+25·9N+25·9N = 25+50·96 fuzzy rules. As for the other
strategies, this number must be diminished to a reasonable
level for implementation, using the methods presented below.

Method 1: Instead of using an intermediate coordination
variable ai in the logic rules, the intended control action ui
can be used, thus elliminating step 3.

Moreover, for lake i, not all information from all lakes is
relevant, but only that related to the immediately downstream
and upstream lakes, denoted ↓ and ↑. The steps of the explicit
cooperative control strategy, for lake i, are rewritten below.

 Step 1: each controller i calculates the intended control
action ui according to the independent strategy (3) and
sends it to the lakes denoted by ↓ and ↑.

 Step 2: Based on the information about the desired control
action of the upstream and downstream lakes, each lake i
calculates the new intended control action using formula
(19). At this step, lake i should “observe” if the controller of
the downstream lake is trying to fill or empty the lake and

50 CONTROL ENGINEERING AND APPLIED INFORMATICS

help it in the process, if possible, by delivering controlled
output to the lake downstream. The desired output of the
upstream lake is used in order to better approximate the total
input in lake i.

)(

)()()()(

i
new
i

iiii

UuTHEN

UuUuVvXxIF



  (19)

Step 2 is repeated until the condition equivalent to (17) is
validated for each lake i, for ε = 5%·ri. Step 3 being elim-

inated, the control action of lake i is the last value of new
iu .

In order to reduce the number of logic rules, formula (19) can
be organized hierarchically as shown by Figure 11. The
quantity vi+u↑ is the total input in lake i and is evaluated in
the discrete universe Ui since it is equal to total output at
nominal values. If there are two lakes directly upstream of
lake i, then the sum of the two outputs is considered when
calculating u↑. If there is no upstream lake (as it is the case
for lakes 1, 2 and 4), u↑ is simply omitted.

Fig. 11. Controller structure – explicit cooperative control,
method 1, step 2

Using this method, the total number of new necessary logic
rules is reduced to 45+81 = 126 for each lake. Lake 6 has no
downstream lake and it is controlled by using the same
strategy, but without using block Ci in step 2 (u6’ has the role
of u6

new). Moreover, the quantity v6 is always taken as
negative, since v6 is an output.

The drawback of this method is that the communication
between controllers only takes place in an informative way.
No controller can send information about its option regarding
the output of other controllers.

Method 2: Each controller communicates information about
its intended control action to the downstream lake, so it can
adjust its own control action to cope with the given input, or
propose new intended control action for the upstream lake.
Using this method, the variable ai is a vector that contains the
lower and upper bounds for the control action. The idea is to
reduce the interval within the bounds at each iteration. Agent
i communicates with the upstream and downstream agent.

Denote by j
ia min, and j

ia max, the lower and upper bounds for

the control action of lake i, as calculated by lake j. Most
often, j=i, but in special situations a downstream lake can
propose bounds for the output of the upstream lake. Also,
notations ↑ and ↓ are used. Below is a rewriting of the steps
of the explicit cooperative control strategy, for lake i.

 Step 1: each controller i calculates the interval in which
its own control action should be in order to cope with its
inputs and water level. The upper and lower limits are
calculated according to formula (20). Note that the

discrete universe Ai has 9 fuzzy levels, since it refers to
bounds on the output flow ui.

)();()()(max,min, i
i
ii

i
iiiii AaAaTHENVvXxIF  (20)

 Step 2: Based on the information regarding the control
action bounds of the upstream lake, each controller i
updates its own control action bounds. If controller i
cannot cope with the water flow from the upstream lake,

given by 
 min,

a and 
 max,

a , it might want to modify

these bounds, calculating ia min,
 and ia

max,
. These latter

quantities are thus included in the conclusion of
inference (21). Of course, the first strategy should be to
modify its own bounds and then propose new bounds for
the upstream controller.

Since a controller is not the only one responsible for
modifying its control action bounds (the downstream

controller might also do this, by 
min,ia and 

max,ia), it is

mandatory that these bounds are included in the premise of
the formula (21).

)();();();(

)()()(

)()()(

max,min,max,min,

max,min,max,

min,



















AaAaAaAaTHEN

AaAaAa

AaVvXxIF

ii
i

i
ii

i
i

iiii

iiii

 (21)

If at certain iteration, the upstream controller calculates its
own control action interval and also controller i establishes
new bounds for the controller upstream, the interval taken for
the next iteration is the intersection of the two intervals.

Step 2 is repeated until condition (22) and the equivalent min
form are validated for each lake i. The variable k represents
the iteration.

)()1(maxmax kaka ii (22)

Another possible condition for ending the loop is (23). In
both cases, ε can be taken as ε = 5%·ri.

 minmax
ii aa (23)

 Step 3: based on the control context and the last
calculated lower and upper bounds for the control action
of the upstream lake, each controller calculates the exact
value of its control action ui*, according to formula (24)
and Figure 12a). The value of the control action is then
trimmed according to (42) by the block Ti from Figure

12a) to the previously calculated interval  i
i

i
i aa max,min, , ,

resulting ui.

)*()(

)()()(

max,

min,

ii

iiii

UuTHENAa

AaVvXxIF











 (24)

)*,max(

)*,min(
min

max

iii

iii

auu

auu




 (25)

CONTROL ENGINEERING AND APPLIED INFORMATICS 51


 min,a

 max,

a


 avgi av ,

i
ia max,

i
ia min,

i
ia max,

i
ia min,

Fig. 12. Controller structure - explicit cooperative control,
method 2, step 3. a) general controller structure, b) reduced
controller structure

A simplifyed structure must be used for lakes that are the
most upstream or the most downstream. For lakes 1,2 and 4,

the quantities 
 min,a , 

 max,a , ia
min,

, ia max,
 should be

omitted from the structure. For lake 6, 
min,ia and 

max,ia

should be omitted.

The structure of the algorithm as presented here requires a
total number of 2·52+4·52·94+52·92 = 658.418 logic rules for
each lake. The use of genetic algorithms to find the control
rules is excluded due to the large number of rules. Some
diminishing constructions must be used, as described below.

Instead of using the fuzzy inference from (21), the lower and
upper bounds of the control action could be calculated
separately. The reduced structure for the lower bound (Figure
13) uses the fuzzy block Ai

min to reduce the number of rules
by considering the lower limit on the total input flow in lake

i, 


min,
avi . The block Ai

min implements the fuzzy inference

(26). Instead of calculating ia
min,

 directly, one output of the

block Ai
min represents the total minimum input flow that lake i

can accept and is denoted *
min)(i

i av  . Based on the outputs

of block Ai
min, the allowed lower limit for the output of the

upstream lake ia min,
 is then calculated in block Ti, by

subtracting the known input vi, as shown in (27). Similar
procedure is used for calculating the upper limit of ai.




min,
avi

*
min,

i
ia

*
min)(i

i av 


min,ia

i
ia min,
ia min,

iv

Fig. 13. Reduced controller structure for the lower bound of
ai (similar for upper bound) – explicit cooperative control,
method 2, step 2

))(();(

)()(

*
min

*
min,

min,

i
i

ii
i
i

iiii

UavAaTHEN

UavXxIF










 (26)

The limits on the control action bounds, *
min,

i
ia and *

max,
i
ia

must be then trimmed to the interval  
max,min, , ii aa by the

block Ti, according to (27) its equivalent max form. The

excess on *
min,

i
ia and *

max,
i
ia relative to 

min,ia and


max,ia represents the amount of water that lake i is not

allowed to eject, therefore the same quantity must not be
permitted to the upstream lake.

*
min,min,

*
min,min,

min,min,
*

min,min,min,min,
*

min,

*
min

*
min,

;

;

;)(

iii
i

i
i

i
i
i

i
i

ii
i

i
i

i
i

i
i

aaaaELSE

aaaaaTHENaaIF

vava
















 (27)

At step 3, instead of the structure from Figure 12a) one could
use the structure in Figure 12b), employing the same
technique from step 2. The value most probably close to

u

is calculated as:

2
max,min,

,












aa
a avg

 (28)

Using the diminishing constructions described here, the
number of necessary fuzzy logic rules is reduced to
2·52+2·5·9 + 5·9 = 185.

Note that for i=6, in all fuzzy inferences above (where
applicable), the quantity vi must always be taken with a
minus, since v6 is an ouput flow.

9. TESTS AND RESULTS

All simulations were carried out using the lake system
presented in Figure 1. In order to make the results
reproducible, the lake parameters are listed in Table 1.

Table 1. The parameters of the lakes used in simulation

lake S0 ri
0
iv 0

iu  ii hg pi

1 10 12 0.2 0.2 1 1
2 25 8 0.2 0.2 2 1
3 30 15 0.1 0.5 1 3
4 22 7 0.15 0.15 1.4 1
5 25 12 0.15 0.3 1 3
6 40 12 0.4 1.2 1.5 7

The previous algorithms have been tested separately with the
same set of disturbances. The disturbances were selected
offline to resemble a period of high precipitations (v increases
with 30%-40% for 200 samples) followed by a steady period
(v=0% for 200 samples) and then by a period of relative
drought (v decreases with 10% for another 200 samples). The
variation of disturbance v6 is considered opposite to the
others, since v6 is an output flow. The simulations were
initialized with zero error (xi=0) and were carried out until
steady state was reached for each lake.

The results are displayed in Table 2, including relative peak
error in water level and also information regarding the
duration of the computation process. The highest peak errors
for each control method are bolded. The steady state error
was under 2% for each method. The fuzzy rules found for
control are not displayed in this paper due to lack of space. In
general, the all lakes are controlled using the same set of
logic rules, except for lake 6, which has different rules.

52 CONTROL ENGINEERING AND APPLIED INFORMATICS

Table 2. The results of the tests for each control strategy

 Peak errors [%] GA exec.
time Method \ lake 1 2 3 4 5 6

Independent 0.9 2 6.5 2.3 3.7 5.1 3min
Implicit coop. 1 4.8 4.7 6 4.2 4.7 2.6 8h 21min
Implicit coop. 2 4.8 4.7 6.3 5.9 4.4 2.7 20h 9min

Coordinated coop. 1 3 2.8 5.1 2.6 4.1 3.7 26h 32min
Coordinated coop. 2 2.5 3 5 3 4.4 4.4 47h 34 min

Explicit coop. 1 0.2 0.4 0.3 2 1.5 1.3 131h 5 min
Explicit coop. 2 1 2.1 2 2.5 2.4 2.4 292h

As expected, the independent controllers provide the lowest
control performance (the peak error of water level of Lake 6
– which has the highest priority – is about 5%, and not the
largest one, see Table 2).

Somewhat better results are achieved when using the implicit
cooperative control strategy: the peak error for Lake 6 is
under 3%, and the highest peak error – for Lake 3 – is lower
than the corresponding error for independent control, see
Table 2). Both implicit control strategies provide similar
performance.

Even better results can be achieved using the coordinated
control approach: the largest peak error for both methods is a
little over 5%, and the peak error of lake 6 is a bit larger than
for previous methods, but the overall performance is
improved. Both cooperative control methods give similar
performance, but computation process takes longer than for
implicit cooperative control.

Best performance is observed – as expected – at the explicit
cooperative control strategy. Although the computation
process takes a very large amount of time, the results show
that the efforts are not in vain. The highest peak error in
water level is less than 2% for Method 1 and less than 2.5%
for Method 2 (see Table 2).

Also note that explicit cooperative control – Method 1
achieves better performance than Method 2. This must be
because in Method 2, the exact intention of the upstream
controllers is not known; only some guidelines are provided
by means of the lower and upper limits. Although the
distance between the two limits should decrease when
iterating step 2, it was observed that error is introduced in the
system at step 3, where a very coarse approximation is made

regarding the upstream control action, by calculating 
 avga , .

10. CONCLUSIONS

The system was tested under very hard conditions. Generally,
the control outputs were found to have relatively few
variations, thus reducing the actuator stresses. However, this
was not programmed explicitly. The results show that
performance and rule computation time generally increase
with method complexity.

It is interesting to note that errors under 2% are irrelevant as
far as the hypothetical supervisor of the system is concerned:
2% is the upper limit of the zero – error fuzzy level, as seen
from the level membership function in Figure 5. This is the
reason for which the steady state error of 2% can also be
considered zero in fuzzy terms. When the error is zero (i.e.

2% or less), a zero disturbance generally yields zero control
action (according to the control rules), therefore a steady state
error of 2% or less cannot be rejected.

New control methods can be created by adding other
variables in the decision context, such as constraints on the
control variable ui, predictions on the global disturbance
value (given by an operator), or even past values of the
control actions of neighbouring lakes (considering the slow
dynamics of the lake system).

The fuzzy logic control algorithms (that are executed online)
are simple and their execution durations are short. This
makes them applicable to microcontrollers fulfilling the real-
time constraints. Also, the volumes of data interchanged by
controllers are small and the required transmission band is
feasible for practical implementation.

ACKNOWLEDGEMENT

This paper was supported by the project "Doctoral studies in
engineering sciences for developing the knowledge based
society-SIDOC” contract no. POSDRU/88/1.5/S/60078,
project co-funded from European Social Fund through
Sectorial Operational Program Human Resources 2007-2013.

REFERENCES

C. Buiu, I. Dumitrache, M. Zainea, Design And Optimization
Of A Fuzzy Logic Controller For A Simulated Autono-
mous Robot, in: CEAI, Vol 5, No 3,4, pages 55-63, 2003.

Y. C. Chiou, L. W. Lan, Genetic fuzzy logic controller: an
iterative evolution algorithm with new encoding method,
in: Fuzzy Sets and Systems 152, 2005, pp.617-635.

H. L. Choi, L Brunet, and J. P. How. Consensus-based
decentralized auctions for robust task allocation, in:
IEEE transactions on robotics, vol. 25, no. 4, august
2009, pp. 912-926

A. Gegov, N. Gobalakrishnan, Advanced inference in fuzzy
systems by rule base compression. Mathware and Soft
Computing, 14 (7), 2007, pp. 201-216. ISSN 1134-5632.

M. Hakimi-Asiabar, S. H. Ghodsypour, R. Kerachian,
Deriving operations policies for multi-objective reservoir
systems: application of self-learning genetic algorithm,
in: Applied Soft Computing, Elsevier, 2009.

F. Hoffmann and G. Pfister, Automatic design of hierarchical
fuzzy controllers using genetic algorithms, Proceedings
of The European Congress on Fuzzy and Intelligent
Technologies EUFIT’94, 1994.

T. P. Hong, J. B. Chen, Processing individual fuzzy attributes
for fuzzy rule induction, in: Fuzzy Sets and Systems 112,
Elsevier (2000) pp. 127-140.

J. How, H. L. Choi, A. Undurti, J. Redding, An intelligent
cooperative control architecture, AIAA, 2009

B. Innocenti, B. Lopez, J. Salvi, A multi-agent architecture
with cooperative fuzzy control for mobile robot,
Robotics and Automation Systems 55, 2007, Spain.

M. G. Joo and J. S. Lee. A class of hierarchical fuzzy systems
with constraints on the fuzzy rules, in: IEEE transactions
on fuzzy systems, vol. 13, no. 2, 2005, pp. 194-203.

CONTROL ENGINEERING AND APPLIED INFORMATICS 53

M. E. Khatir, E. J. Davison, Cooperative control of large
systems, in: A Post-Workshop Volume 2003 Block Island
Workshop on Cooperative Control, 2003, pp. 121-138.

E. Klavins, R. M. Murray, Distributed algorithms for
cooperative control, Sensors and Actuators Networks,
Published by IEEE CS and IEEE ComSoc, 2004.

L.T. Koczy, Size reduction by interpolation in fuzzy rule
bases, in: IEEE Transactions on Systems, Man, and
Cybernetics, Part B: Cybernetics, 1997, vol. 27, issue 1,
pp. 14-25,

V. Korotkich, On a general framework to study cooperative
system, in: Cooperative Control and Optimization,
Robert Murphy and Panos M. Pardalor (Eds.), Kluwer
Academic Publisher, 2002, pp. 121-140

T. Leţia, O. Cuibus, I. Pop, Implicit cooperative control
achieved by generic genetic fuzzy logic, in: Proceedings
of the IEEE International Conference on Automation,
Quality and Testing, Robotics, 2010, vol. 1, pp 1-6

N. Nezam, I. Dumitrache, Mamdani, Sugeno Fuzzy Systems
And Control The Output Flow Of An Equalization Basin,
in: CEAI, Vol. 4, No. 1, pp. 27-32, 2002.

J. Shamma (Editor) Cooperative control of distributed multi-
agent systems. Wiley, 2007, ISBN: 978-0-470-06031-5

A, Waldock, D. Nicholson, A. Rogers, Cooperative control
using the max-sum algorithm. in: Second International
Workshop on Agent Technology for Sensor Networks,
Estoril, Portugal, 2008.

