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Abstract: The paper presents three cooperative control strategies with application to the problem of lake 
system control. The control system is implemented by a distributed set of communicating agents that use 
fuzzy logic rules to compute the control decisions. In order to improve the global control performance, 
each agent sends the control context to its neighbours. The information included in the context and the 
manner the context exchange is made establish the control strategy: implicit cooperation, coordination 
and explicit cooperation. Improving the control performance involves more terms in premises of the 
fuzzy logic control rules, increasing the number of logic rules. Hierarchical fuzzy architectures are used 
to diminish the number of rules for different methods. The unknown fuzzy logic control rules are 
obtained offline by the generic genetic approach. The simulations results are given for the three 
cooperative control strategies and a performance comparison is made. 
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

1. INTRODUCTION 

The cooperative control strategy involves several agents that 
perform shared tasks. These tasks are based on the 
relationship between the contexts of individual agents. The 
decisions and the behavior of each agent influence the 
contexts of other agents so they have to act according to a 
consensus. The cooperative control captures those problem 
areas which imply some type of repetition of identical or non-
identical interconnected subsystems (Khatir et al. (2003)). 

Cooperative control can successfully approach 
decentralization since it allows the development of complex 
behavior based on several combined controllers in order to 
achieve the desired result (Innocenti et al. (2007)). 

The centralized control methods use one actor to control the 
whole system, whereas the distributed approach splits the 
system into several controlled subunits, each with its own 
controller. The main advantage is that when a controller fails 
or its communication is interrupted the rest of the system can 
continue to behave correctly. A subsystem with a failed 
controller or failed communication can still influence other 
subsystems. In this case, the influence of the subsystem that 
quits the cooperation is regarded as a disturbance and 
managed accordingly. 

Since each controller is responsible only for its assigned 
subsystem, the global system solution may not be optimal 
since it is composed of the local solutions. According to the 
cooperative systems strategy, the agents take into account the 
other agent behaviors or the control context with the intention 
of improving their own control performances. 

Generally, the scale of the system prevents from finding of an 
optimal solution, but it is possible to obtain a suboptimal one, 
close to the best behavior. This involves improving the local 
control decisions to fulfill the global requirements. 

The main advantages of cooperative control are as follows: 

 computational load decrease or distribution 

 control performance increase 

 increase of system reliability and flexibility 

 building a portable system that may be implemented for a 
large application domain 

One of the goals of the current approach is to obtain few and 
simple fuzzy control rules that can be implemented to fulfill 
some real-time constraints. Control rule construction can be 
performed offline, therefore methods that require large 
computational effort may be used. 

This paper is a logical extension of an earlier paper, “Implicit 
cooperative control achieved by generic genetic fuzzy logic”, 
(Leţia et al. (2010)), in which only the implicit cooperative 
strategy is thoroughly presented. The cooperative control 
structures have been presented in (Leţia et al. 2010), but only 
as a theoretical concept. As the main contribution, this paper 
introduces new various methods to implement the 
cooperative control strategies: implicit, coordinated and 
explicit cooperation. Of course, the independent and implicit 
strategies implementation from the above mentioned paper 
are put forward once again for performance comparison. 

2. RELATED WORKS 

Several studies present various distributed control systems, 
including multi-agent approaches. The focus is set on the 
fuzzy approach and various cooperation strategies. Some of 
the relevant papers are cited below. 

(Korotkich (2002)) considers a collection of many 
subsystems that solve an optimization problem by 
cooperating with each other in order to find control actions 
and criteria such that the whole system maximizes a given 
performance function. 
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(Waldock et al. (2008)) point out two cooperative strategies: 
implicit cooperation, based on the idea of building and 
maintaining a common distributed picture (which is referred 
to as “context” in this paper), and explicit cooperation, that 
implies negotiation in order to agree on a common distributed 
plan. The explicit cooperation is achieved by exploiting 
factorization in the utility function to form a factor graph. 

(Hakimi-Asiabar et al. (2009)) state that a multi-reservoir 
operation can be regarded as a multi-objective problem with 
nonlinear, non-convex and multi-modal objective functions. 
Genetic algorithms are used because of their feature of 
probabilistic search which makes them capable of solving a 
variety of complex multi-objective optimization problems, 
including non-linear, non-convex and multi-modal functions. 

(Innocenti et al. (2007)) develop control architectures for 
distributed independent asynchronous behavior of multi-
agent systems. The cooperative control allows the 
development of complex behavior based on several 
controllers combined to achieve the desired result.  

The main problems that should be approached when dealing 
with Cooperative Control of Distributed Multi-Agent 
Systems are, as stated by (Shama (2007)) in his book: 
distributed control and computation, adversarial interactions, 
uncertain evolution and complexity management. 

(Hong and Chen (2000)) propose two fuzzy learning methods 
for automatically deriving membership functions and fuzzy 
if-then rules from a set of given training examples. 
Appropriate initial membership functions are built by 
selecting relevant attributes and then simplifying the intervals 
and membership functions of each attribute to form a 
decision table. The fuzzy strategy is used for water flow and 
water level control for one basin by (Nezam et al. (2002)). 

(Chiou and Lan (2005)) concluded that logic rules and 
membership functions are two key components of a fuzzy 
logic controller. If both components are calculated 
simultaneously using genetic algorithms, a very long 
chromosome is needed, which may deteriorate performance. 
They propose a bi-level iterative evolution algorithm in 
selecting the logic rules and tuning the membership 
functions. (Buiu et al. (2003)) also use genetic fuzzy logic 
control, but for a different purpose. 

A new architecture for cooperative control implementation is 
proposed by (How et al. (2009)). 

A class of hierarchical fuzzy system with constraints on the 
fuzzy rules is conceived by (Hoffman et al. (1994) and Joo et 
al. (2007)), in order to diminish the fuzzy logic rule number. 
Other rule compression techniques are used successfully by 
(Gegov et al. (2007) and Koczy (1997)), employing simple 
ellimination of redundant rules and respectively using 
interpolation of elliminated rules to construct the lost rules 
with a certain pre-established precision. In this paper, rule 
compression is done by hierarchization of fuzzy blocks so 
that the number of decision inputs remains the same, but the 
number of fuzzy rules is reduced. 

(Klavins et al. (2004)) use the Computation and Control 
Language to construct tools for cooperative control systems. 

(Choi et al. (2009)) use more complex methods for 
cooperation implementation, mainly consensus-based auction 
algorithms.  These utilize a market-based decision strategy as 
the mechanism for task selection and use a consensus routine 
based on local communication as the conflict resolution 
mechanism to achieve agreement on the winning bid values. 

3. THE LAKE SYSTEM MODEL 

The cooperative control strategy is applied to a lake system 
such as the one presented in Figure 1. Such lake systems are 
used to supply water for human residences, farms or 
irrigation systems. The control goal is to maintain the water 
levels close to the specified (reference) values, despite the 
variable disturbances that may affect the system, such as 
environment conditions (rain, evaporation), or variable flow 
demands at the output of the downstream lake. 

Fig. 1. Lake system. 

Each controller assigned to a lake can measure the water 
level and estimate the disturbance input flow, but not from 
the upstream lakes. The agents implementing the controllers 
are able to communicate at least with a subset of other agents 
(the neighbouring agents). All agents can interchange 
information before they make their own decisions. 

In Figure 1, the data for lake Li (i=1, ..., 6) is denoted by: 

 vi the uncontrolled input flow from the environment 
(disturbance measured in m3/s ); 

 hi the current water level (measured in m); 

 ci the control signal for the output flow; 

 ui the controlled output flow (measured in m3/s); 

The discrete time model of one lake is presented in detail in 
the paper “Implicit cooperative control achieved by generic 
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genetic fuzzy logic”, (Leţia et al. (2010)) and only stated 
below for lake i, for reference. 
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In formula (1), the following notations were used: 

 ri is the reference level of lake i 

 xi(k) = ri - hi(k) is the level error at time k 

 vi(k) is the disturbance input flow  

 ui(k) is the controlled output flow  

 prev denotes the lakes located upstream of lake i 

 0
iS  and gi represent the base surface and the shape of the 

basin walls 

The lake system model is composed of six equations similar 
to (1), considering the links between lakes. The steady state 
gives the nominal values of the variables vi and ui. 

4. CONTROL SYSTEM PHILOSOPHY 

The control problem is to calculate the value ui(k) such that 
the level error xi(k) is cancelled in the minimum possible time 
and remains as small as possible at steady state. 

As an extension of the cooperative control categories 
presented by (Waldock et al. (2008)) in their paper, three 
cooperative control strategies are implemented in this paper: 

 implicit cooperative control, 

 coordinated cooperation and 

 explicit cooperative control. 

The difference between these methods consists of the 
information used for calculating the control actions and 
whether an agreement is reached in the calculation process. 

The agents share context information by means of a 
communication system. They perform shared tasks, where 
the tasks depend on the relationship between the contexts of 
individual agents. The control and cooperative functions are 
performed by the agents associated to each lake. 

4.1. Agent structure 

Unlike the general multiagent architecture (for example, the 
one presented by (Innocenti et al. (2007)), the proposed 
architecture uses identical control units (agents), where each 
agent is usually composed of: 

 sensing components (sensors), 

 communication component and 

 control component. 

Each agent has a Context Constructor component that builds 
the control context using the measured or communicated 
information. The agent control context is composed of local 
state (process measurements) plus other information, such as: 

 constraints, 

 measured or estimated disturbances, and their predictions 
(disturbance forecasts), 

 operator input (setpoints, requirements or other 
recommendations), 

 inferenced and statistical information from the past, 

 information communicated by other agents (state 
measurements, control decisions or intentions, etc.) and 

 the intended control action for the next step. 

The type of information included in the context and used for 
the calculation of the control action determines the 
cooperative control strategy. 

The key contribution of this component is the replacement of 
state-based control by the context-based control. 

4.2. The control task 

The agents perform the shared task of minimizing the global 
performance function (2). The problem is in fact a multi-
objective problem (Hakimi-Asiabar (2009)), but here all the 
objectives are integrated into a single function (2). 
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In formula (2), pi is the priority of each lake, N corresponds 
to the number of lakes and K to the time control horizon. 
Thus, a performant controller should minimize the level total 
error, despite the disturbances (vi) that may occur.  

Due to the distribution, only local levels can be directly 
measured by the agents, but the calculated control commands 
have to take into account the other agent behaviors (context 
information) as well, as described below.  

4.3. Control system architecture 

The control structure for implicit cooperative control strategy 
can be seen in Figure 2. The agents communicate local 
context information and then calculate the control actions in 
one single step. No agent is thus aware of the control decision 
of any other agent. 

 

Fig. 2. Implicit cooperative control. 

The coordinated cooperative control structure is presented in 
Figure 3. Unlike the case of implicit cooperative control, the 
exchanged information can include controller decisions, not  

 



46                                      CONTROL ENGINEERING AND APPLIED INFORMATICS 
 

 

just context information. Apart from being a simple 
intermediate of information exchange, the coordinator can 
also apply logic rules to process data that is to be transmitted 
to each controller (agent), in a unitary way, as presented by 
(How (2009)) for his cooperative control architecture. 

The chronology of activities in one sample period is as 
follows: the context constructor takes process measurements 
and sends this information to the controller. Each controller 
calculates the information that is to be sent to the coordinator 
(which may include the intended control actions, but not the 
final control actions). The coordinator processes data from all 
controllers and provides the results to each controller. Based 
on this new information, each controller calculates the final 
control action, which is applied to the process. 

 

Fig. 3. Coordinated cooperative control. 

The system layout for explicit cooperative control can be 
seen in Figure 4. This is the most specialized type of 
cooperative control and implies explicit communication and 
cooperation between agents in an unspeciffied number of 
steps (iterations). 
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control 
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ActuatorsSensors

Plant (Environment)

control 
signals

measure-
ments
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Controller N

Context constructor
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Fig. 4. Explicit cooperative control. 

The context constructor first builds the initial context by 
taking process measurements and other possible external 
information (from the operator, etc). The context can be then 
sent directly to other controllers or can be first processed in a 
certain way. The controller calculates the intended control 
action and sends it to other controllers. In response, they 
communicate their new option regarding this or their own 
control action. An iterative message exchange process takes 
place at which end the controllers reach an agreement about 
what control action should be used at the present moment.  

 

Message exchange can imply controller options, considering  
how much each controller gives up as utility and how much it  
accepts as cost. Powerful strategies can be used here, 
including game theory strategies. A major concern to look 
after is avoiding infinite loops in the cooperation process. 

4.4. The fuzzy approach 

In all strategies, fuzzy logic is used to build the control action 
(Leţia et al. (2010)). When constructing the context, each 
agent calculates the fuzzy logic values of the variables xi(k) 
and vi(k), which are denoted by xi and vi respectively. The 
mentioned fuzzy logic variables take values in the discrete 
universe {H-, L-, Z, L+, H+} (with H, L, Z meaning high, low 
and zero). Each agent calculates the control action ui as fuzzy 
value using one or more IF…THEN… inferences, according 
to the employed strategy. 

The membership function of xi is presented in Figure 5 and is 
similar to the membership functions presented by (Nezam et 
al. (2002)). Standard triangular shaped membership functions 
are used for vi and ui. The fuzzy values are centered around 

the nominal values of the variables, namely ii rx 0 , 0
iv , 0

iu . 

The discrete universe for ui is {E-, H-, M-, L-, Z, L+, M+, H+, 
E+} (with E meaning extreme high and M medium). All 
membership functions have been established apriori. 

 

Fig. 5. Water level membership functions. 

4.5. The generic genetic algorithm 

The fuzzy logic control sets are calculated offline by 
employing generic genetic algorithms, using the set of all 
possible combinations of disturbances. This approach is 
similar to using only the upper level of the genetic fuzzy 
controller proposed by (Chiou et al (2005)). Another set of 
relevant disturbances was used to test the system behavior 
and evaluate the control performances.  

The genotype is set according to the fuzzy rules used by the 
employed strategy. The length of the chromosome is equal to 
the number of fuzzy rules required by the control strategy and 
the genes correspond to the elements of the rule matrix (see 
Leţia et al. (2010)) The alleles are chosen from the elements 
of the discrete universe for ui, unless specified otherwise. 

When evaluating each chromosome, the system must be 
simulated starting from each possible initial (fuzzy) state, 
such that the discrete universe is entirely covered, using each 
possible set of disturbances. The simulation is performed by 
running the system composed of 6 equations of the form (1) 
in a loop spanning across the time horizon K. The 
performance of the control strategy is evaluated using the 
fitness function of the form (2). 
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5. INDEPENDENT CONTROLLERS 

As a standard for control performance, independent control is 
also considered. An independent controller takes into account 
only the local error (state) xi and the measured/estimated 
disturbance vi. The fuzzy logic formula is: 

)()()( iiiiii UuTHENVvXxIF      (3)

where Xi and Vi take values in the discrete universe.  

Formula (3) leads to 25 logic rules for one lake, which can be 
arranged in matrix form (Leţia et al. (2010)). Note that lakes 
{1, …, 5} can be controlled using the same logic rules, but 
another set of rules must be used for lake 6 since v6 is an 
output flow. The fuzzy logic control sets are constructed 
offline using the generic genetic algorithm described above. 

6. IMPLICIT COOPERATIVE CONTROL 

The implicit cooperative control structure is represented in 
Figure 2. This is the case when the agents send each other 
information about the error, disturbance or previous control 
decisions, but not about the current control actions. The 
reason is that the previous control decisions ui(k) are 
available, but not the next ui(k+1) control action. The sending 
of the previous control action to neighbors can improve the 
estimation of the disturbances and also the control 
performances. 

Each agent sends the coordination vector [xi, vi], and then, 
having received the equivalent information from other agents, 
calculates the output command with the fuzzy logic formula: 
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where Xi and Vi take values in the discrete universe. 

The number of necessary fuzzy logic rules of the form (4) is 
5N·5N = 512. Due to the huge number of rules, the formula (4) 
is not practically applicable, thus the number of rules must be 
reduced to a reasonable level by suitable methods.  

Method 1: The controller of the lake Li takes into account the 
state xi, the disturbance vi and the state of another neighbor 
lake Lj considered strongly influenced by the control 
decisions taken for the lake Li. For this problem, Lj is 
considered the downstream lake for lake Li.The fuzzy logic 
control rules are of the form: 

)()()()( iijjiiii UuTHENXxVvXxIF      (5)

To avoid the effect of dimensionality a hierarchical structure 
was used (Joo et al. 2007), which is presented in Figure 6. 

 

Fig. 6. Hierarchical fuzzy structure for implicit control 
(method 1) 

The number of necessary rules is 25 (for block Li) and 45 (for 
the block Ci). They have the form: 
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The controller of Lake 6 is the same as for the independent 
control, since Lake 6 has no downstream lake. 

Method 2: The controller of lake Li improves its control 
decisions using the disturbance of lake Lj. The rules are: 
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As in the previous case, the number of rules is diminished by 
a hierarchical structure, which is presented in Figure 7. 

The blocks Ri, Rj and Ci implement fuzzy rules with the form 
according to their inputs and outputs. The necessary number 
of control rules is 25 for block Ri, 25 for Rj, and 81 for the 
block Ci. 

 

Fig. 7. Hierarchical fuzzy structure for implicit control 
(method 2) 

As with Method 1, the controller of Lake 6 is in fact an 
independent controller, since there is no downstream lake. 

Method 3: The construction of controllers that use the errors 
of three neighbor lakes and their own level error is based on 
the formula (8), but hierarchical structures can also be used. 
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Using similar structures many other control algorithms can be 
constructed. The chosen input variables and their number 
affect the control performances. 

7. COORDINATED COOPERATIVE CONTROL 

The coordinated cooperative control structure is represented 
in Figure 3. This is the case when the agents can send 
information about state and disturbance or even previous 
control decisions, but not about the current control actions. 
The reason for this is that, during a certain sampling period, 
the previous control decisions ui(k) are available, but the next 
control actions ui(k+1) are not. Nevertheless, the controller 
can also send information about the intended control actions. 
Sending of the previous and/or intended control actions to the 
coordinator and then to the neighbors can improve 
disturbance estimation and control performance.  

The chronology of the events that take place in one time step 
has been described in subsection 4.3. The implementation of 
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the coordinated cooperative control using fuzzy control 
blocks is described below. 

First, each controller calculates the information ai that is sent 
to the coordinator, based on the information available in the 
local context. The coordinator takes the fuzzy values ai from 
each cotroller and calculates the coordination vector [bi] 
using the fuzzy logic rules: 
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Each coordination value bi is sent to the appropriate 
controller. The controllers then calculate the control actions, 
based on the local error (state) xi, the disturbance vi, and the 
new information bi, with the fuzzy logic rule: 

)()()()( iiiiiiii UuTHENBbVvXxIF    (10)

On the general case, ai and bi can also be vectors. Depending 
on the implementation, the ai may include information about 
the disturbance, water level, previous or intended control 
action for lake i, or even the way that controller i wants the 
upstream controllers to behave, by setting upper and lower 
bounds on the outputs of the upstream lakes. These bounds 
can be sent by means of the vector ai. Similarly, bi can 
represent processed information that is to be sent to controller 
i about the state of the downstream lakes, the recommeded 
output of the upstream lakes, etc. Note that ai and bi may also 
contain different types of data for different controllers. 

If 5 fuzzy levels are considered for ai and bi, the number of 
necessary fuzzy logic rules of the form (9) for the coordinator 
is N·5N = 6·56 and of the form (10) for each controller is 53 = 
125. As for implicit control, the use of fuzzy inferences (9) 
and (10) is not possible due to the huge number of rules 
needed. This requires some diminishing con-structions, to 
reduce this number down to a reasonable level. 

Method 1: For this particular method, it is considered that 
each value ai is actually a vector that represents the water 
quantity in the lake and has two components: xi and vi. 

In order to reduce the number of rules for the coordinator, 
some pre-processing of the values ai must be performed. The 
values xg and vg, are calculated with the formulas (11), where 
xi and vi are the components of the vector ai. 
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The quantitiy xg represents approximatively the total water 
quantity accumulated in the system, and vg the water quantity 
that is about to enter in the system. The coefficient αi 
represents the volume of lake i, at the nominal water level, 
relative to the total volume of the lake system, and βi is the 
reciprocal of the surface of lake i, at the nominal water level. 
The reason for taking the reciprocal of the surface is that vg 
actually represents the expected rise of the water level 
because of input vi. Also, since v6 is an output flow, β6 is 
considered negative. 

The membership functions for xg and vg are obtained by 
substituting the fuzzy levels of xi and vi into formulas (11).  

The structure in Figure 8 is thus used for the coordinator, and 
the coordinator fuzzy logic control rules from (9) are now of 
the form (12). 

)()()( gggggg BbTHENVvXxIF    (12)

The quantities bi are replaced by a single parameter, bg, 
which contains information about the distribution of water in 
the system. The membership functions for bg are not 
important, since bg is an input parameter in the controller 
structure (Figure 9) and is never defuzziffied. 

 

Fig. 8. Coordinator structure (coordinated control, method 1) 

The number of controller fuzzy logic rules (10) is diminished 
using the structure from Figure 9 (see Joo et al. 2007), where 
each block implements appropriate fuzzy inferences. 

 

Fig. 9. The hierarchical structure for each controller 
(coordinated control, method 1) 

The necessary number of control rules is 25 for block G (for 
the coordinator), 25 for block Li and 81 for block Rg (for each 
controller). Since bg and ui′ are variables on 9 fuzzy levels, 
the block Rg must have 81 logic rules. In order to reduce this 
number further, it can be considered that bg and ui are first 
defuzzyfied according to the 9 fuzzy levels and re-fuzzyfied 
on 5 new fuzzy levels: {H-, L-, Z, L+, H+}. The membership 
functions are standard and tuned accordingly: the value of ui

H 
must be identical in the two fuzzy universes. Block Rg has 
thus only 25 logic rules. 

Note that lakes {1, …, 5} can be controlled using the same 
logic rules, but another set of rules must be used for lake 6. 

Method 2: Each controller first calculates the quantity ai as 
the intended control action ui′, using the independent control 
equation (3). The quantity ai that is sent to the coordinator is 
a vector that contains ui′ and the water level xi. 

The coordinator then calculates for each controller a 
recommended control action ui″, considering the intended 
control actions of each controller and its effect on the levels 
of other lakes. The coordinator implements formula (13), 

)"()()'( iijjii UuTHENXxUuIF    (13)

where j is the lake that has the highest sensibility to the 
output of lake i (i.e. the lake that is downstream from i). Note 
that the form of the premise for the logic rules is different for 
each ui″ that is to be calculated. The recommended output ui″ 
is then sent to each controller as bi. 
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Using the recommandation ui″, each controller calculates the 
control action ui using the formula (14), which can be also 
organized in a hierarchical structure (Figure 10) in order to 
reduce the number of logic rules. 

)()"()()( iiiiiiii UuTHENUuVvXxIF    (14)

The number of new logic rules needed to implement the 
controllers using this method is 25 for block Si and 81 for the 
block Ui, which can be reduced to 25 using the same 
defuzzyfication and re-fuzzyfication strategy as for method 1.  

Lakes {1, ..., 5} can be controlled using the same logic rules, 
whereas lake 6 uses the the independent control strategy, 
since the output of lake 6 does not affect any other lake. 

 

Fig. 10. Reduced controller structure (coordinated control, 
method 2) 

The number of logic rules for the coordinator (equation (13)) 
is 45 and can be reduced to 25 using the previously described 
strategy. The same rules can be used in relation to each lake, 
but better precision may be achieved using custom rules for 
each lake. 

8. EXPLICIT COOPERATIVE CONTROL 

The explicit cooperative control strategy presented in Figure 
4 is representative for the idea of cooperative control. 
According to this strategy, the control actions ui(k), are 
calculated for each time sample k in an iterative process in 
many steps, using information from all agents. Agents 
cooperate and negotiate over what control action they should 
apply to the process in the next time step. The process of 
negotiating a speciffic value involves explicit communication 
and cooperation between the agents that are interested in that 
value. To a certain extent, the explicit cooperative strategy is 
similar to the coordinated strategy with the remark that here, 
each agent has some coordinator behavior included. The 
coordinator is thus distributed into each individual controller. 

The chronology of the steps by which the controllers 
calculate the control actions is presented below. The variable 
ai denotes the coordination value that controller i calculates 
and distributes to each interested controller. For each step, 
the general fuzzy logic implementation is given below for the 
lake control system problem. 

 Step 1: each controller i calculates ai and sends it to the 
appropriate (interested) controllers:  

)()()( iiiiii AaTHENVvXxIF    (15)

 Step 2: based on the information aj, each controller i 
updates the value of ai and sends it again to other 
controllers. 

)()()(

)()(

11 i
new
inn

iiii

AaTHENAaAa

VvXxIF






  (16)

Step 2 is repeated until the difference between ai and its 
updated value is small enough (see condition (17), ε being a 
small number which measures performance). 

 new
ii aa   (17)

Before the next iteration, the initialization new
ii aa   must 

be made. 

 Step 3: based on the information aj (j = 1..6), each 
controller calculates the control action ui (equation (18)). 

)()()(

)()(

11 iinn

iiii

UuTHENAaAa

VvXxIF





  (18)

Typically, ai contains information about the intended control 
action, but on the general case, ai can be a vector containing 
upper and lower bounds for the control action, critical signals 
or information that other controllers must be aware of, etc. As 
an extension, it can be considered that not all controllers see 
the same information about the unit i.  

As already mentioned, special care must be taken to ensure 
that the algorithm does not reach infinite loop (i.e. condition 
(17) is validated at certain iteration). One of the possible 
strategies involves genetic algorithms, solving the 
convergence problem by elliminating individuals that reach 
infinite loop. Because infinite loop might not always be  
correctly detected, a possible approach is to elliminate the 
individual that has not fulfilled condition (17) in a maximum 
of 10 to 20 iterations. This should not be regarded as a 
performance measure but rather as an elimination criterion.  

If we consider that ai is the intended control action (on 9 
fuzzy levels), then implementing the control problem with 
fuzzy logic rules of the form (15), (16) and (18) requires 
25+25·9N+25·9N = 25+50·96 fuzzy rules. As for the other 
strategies, this number must be diminished to a reasonable 
level for implementation, using the methods presented below. 

Method 1: Instead of using an intermediate coordination 
variable ai in the logic rules, the intended control action ui 
can be used, thus elliminating step 3. 

Moreover, for lake i, not all information from all lakes is 
relevant, but only that related to the immediately downstream  
and upstream lakes, denoted ↓ and ↑. The steps of the explicit 
cooperative control strategy, for lake i, are rewritten below. 

 Step 1: each controller i calculates the intended control 
action ui according to the independent strategy (3) and 
sends it to the lakes denoted by ↓ and ↑. 

  Step 2: Based on the information about the desired control 
action of the upstream and downstream lakes, each lake i 
calculates the new intended control action using formula 
(19). At this step, lake i should “observe” if the controller of 
the downstream lake is trying to fill or empty the lake and  

 



50                                      CONTROL ENGINEERING AND APPLIED INFORMATICS 
 

 

help it in the process, if possible, by delivering controlled 
output to the lake downstream. The desired output of the 
upstream lake is used in order to better approximate the total 
input in lake i. 

)(

)()()()(

i
new
i

iiii

UuTHEN

UuUuVvXxIF



    (19)

Step 2 is repeated until the condition equivalent to (17) is 
validated for each lake i, for ε = 5%·ri. Step 3 being elim-

inated, the control action of lake i is the last value of new
iu . 

In order to reduce the number of logic rules, formula (19) can 
be organized hierarchically as shown by Figure 11. The 
quantity vi+u↑ is the total input in lake i and is evaluated in 
the discrete universe Ui since it is equal to total output at 
nominal values. If there are two lakes directly upstream of 
lake i, then the sum of the two outputs is considered when 
calculating u↑. If there is no upstream lake (as it is the case 
for lakes 1, 2 and 4), u↑ is simply omitted. 

 

Fig. 11. Controller structure – explicit cooperative control, 
method 1, step 2 

Using this method, the total number of new necessary logic 
rules is reduced to 45+81 = 126 for each lake. Lake 6 has no 
downstream lake and it is controlled by using the same 
strategy, but without using block Ci in step 2 (u6’ has the role 
of u6

new). Moreover, the quantity v6 is always taken as 
negative, since v6 is an output. 

The drawback of this method is that the communication 
between controllers only takes place in an informative way. 
No controller can send information about its option regarding 
the output of other controllers. 

Method 2: Each controller communicates information about 
its intended control action to the downstream lake, so it can 
adjust its own control action to cope with the given input, or 
propose new intended control action for the upstream lake. 
Using this method, the variable ai is a vector that contains the 
lower and upper bounds for the control action. The idea is to 
reduce the interval within the bounds at each iteration. Agent 
i communicates with the upstream and downstream agent. 

Denote by j
ia min,  and j

ia max,  the lower and upper bounds for 

the control action of lake i, as calculated by lake j. Most 
often, j=i, but in special situations a downstream lake can 
propose bounds for the output of the upstream lake. Also, 
notations ↑ and ↓ are used. Below is a rewriting of the steps 
of the explicit cooperative control strategy, for lake i. 

 Step 1: each controller i calculates the interval in which 
its own control action should be in order to cope with its 
inputs and water level. The upper and lower limits are 
calculated according to formula (20). Note that the  

discrete universe Ai has 9 fuzzy levels, since it refers to  
bounds on the output flow ui. 

)();()()( max,min, i
i
ii

i
iiiii AaAaTHENVvXxIF    (20)

 Step 2: Based on the information regarding the control 
action bounds of the upstream lake, each controller i 
updates its own control action bounds. If controller i 
cannot cope with the water flow from the upstream lake, 

given by 
 min,

a  and 
 max,

a , it might want to modify 

these bounds, calculating ia min,
 and ia

max,
. These latter 

quantities are thus included in the conclusion of 
inference (21). Of course, the first strategy should be to 
modify its own bounds and then propose new bounds for 
the upstream controller. 

Since a controller is not the only one responsible for 
modifying its control action bounds (the downstream 

controller might also do this, by 
min,ia  and 

max,ia ), it is 

mandatory that these bounds are included in the premise of 
the formula (21).  
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  (21)

If at certain iteration, the upstream controller calculates its 
own control action interval and also controller i establishes 
new bounds for the controller upstream, the interval taken for 
the next iteration is the intersection of the two intervals. 

Step 2 is repeated until condition (22) and the equivalent min 
form are validated for each lake i. The variable k represents 
the iteration. 

 )()1( maxmax kaka ii   (22)

Another possible condition for ending the loop is (23). In 
both cases, ε can be taken as ε = 5%·ri.  

 minmax
ii aa   (23)

 Step 3: based on the control context and the last 
calculated lower and upper bounds for the control action 
of the upstream lake, each controller calculates the exact 
value of its control action ui*, according to formula (24) 
and Figure 12a). The value of the control action is then 
trimmed according to (42) by the block Ti from Figure 

12a) to the previously calculated interval  i
i

i
i aa max,min, , , 

resulting ui. 

)*()(
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
 max,

a


 avgi av ,

i
ia max,

i
ia min,

i
ia max,

i
ia min,

 

Fig. 12. Controller structure - explicit cooperative control, 
method 2, step 3. a) general controller structure, b) reduced 
controller structure 

A simplifyed structure must be used for lakes that are the 
most upstream or the most downstream. For lakes 1,2 and 4, 

the quantities 
 min,a , 

 max,a , ia
min,

, ia max,
 should be 

omitted from the structure. For lake 6, 
min,ia  and 

max,ia  

should be omitted. 

The structure of the algorithm as presented here requires a 
total number of 2·52+4·52·94+52·92 = 658.418 logic rules for 
each lake. The use of genetic algorithms to find the control 
rules is excluded due to the large number of rules. Some 
diminishing constructions must be used, as described below. 

Instead of using the fuzzy inference from (21), the lower and 
upper bounds of the control action could be calculated 
separately. The reduced structure for the lower bound (Figure 
13) uses the fuzzy block Ai

min to reduce the number of rules 
by considering the lower limit on the total input flow in lake 

i, 


min,
avi . The block Ai

min implements the fuzzy inference 

(26). Instead of calculating ia
min,

 directly, one output of the 

block Ai
min represents the total minimum input flow that lake i 

can accept and is denoted *
min)( i

i av  . Based on the outputs 

of block Ai
min, the allowed lower limit for the output of the 

upstream lake ia min,
 is then calculated in block Ti, by 

subtracting the known input vi, as shown in (27). Similar 
procedure is used for calculating the upper limit of ai. 




min,
avi

*
min,

i
ia

*
min)( i

i av 


min,ia

i
ia min,
ia min,

iv

 

Fig. 13. Reduced controller structure for the lower bound of 
ai  (similar for upper bound) – explicit cooperative control, 
method 2, step 2 
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The limits on the control action bounds, *
min,

i
ia and *

max,
i
ia  

must be then trimmed to the interval  
max,min, , ii aa  by the 

block Ti, according to (27) its equivalent max form. The 

excess on *
min,

i
ia  and *

max,
i
ia  relative to 

min,ia  and  


max,ia represents the amount of water that lake i is not 

allowed to eject, therefore the same quantity must not be 
permitted to the upstream lake.  
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At step 3, instead of the structure from Figure 12a) one could 
use the structure in Figure 12b), employing the same 
technique from step 2. The value most probably close to 

u  

is calculated as:  

2
max,min,
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



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




aa
a avg

   (28)

Using the diminishing constructions described here, the 
number of necessary fuzzy logic rules is reduced to 
2·52+2·5·9 + 5·9 = 185. 

Note that for i=6, in all fuzzy inferences above (where 
applicable), the quantity vi must always be taken with a 
minus, since v6 is an ouput flow. 

9. TESTS AND RESULTS 

All simulations were carried out using the lake system 
presented in Figure 1. In order to make the results 
reproducible, the lake parameters are listed in Table 1. 

Table 1.  The parameters of the lakes used in simulation 

lake S0 ri 
0
iv  0

iu   ii hg  pi 

1 10 12 0.2 0.2 1 1 
2 25 8 0.2 0.2 2 1 
3 30 15 0.1 0.5 1 3 
4 22 7 0.15 0.15 1.4 1 
5 25 12 0.15 0.3 1 3 
6 40 12 0.4 1.2 1.5 7 

The previous algorithms have been tested separately with the 
same set of disturbances. The disturbances were selected 
offline to resemble a period of high precipitations (v increases 
with 30%-40% for 200 samples) followed by a steady period 
(v=0% for 200 samples) and then by a period of relative 
drought (v decreases with 10% for another 200 samples). The 
variation of disturbance v6 is considered opposite to the 
others, since v6 is an output flow. The simulations were 
initialized with zero error (xi=0) and were carried out until 
steady state was reached for each lake. 

The results are displayed in Table 2, including relative peak 
error in water level and also information regarding the 
duration of the computation process. The highest peak errors 
for each control method are bolded. The steady state error 
was under 2% for each method. The fuzzy rules found for 
control are not displayed in this paper due to lack of space. In 
general, the all lakes are controlled using the same set of 
logic rules, except for lake 6, which has different rules. 
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Table 2.  The results of the tests for each control strategy 

 Peak errors [%] GA exec. 
time Method \ lake 1 2 3 4 5 6 

Independent 0.9 2 6.5 2.3 3.7 5.1 3min 
Implicit coop. 1 4.8 4.7 6 4.2 4.7 2.6 8h 21min 
Implicit coop. 2 4.8 4.7 6.3 5.9 4.4 2.7 20h 9min 

Coordinated coop. 1 3 2.8 5.1 2.6 4.1 3.7 26h 32min 
Coordinated coop. 2 2.5 3 5 3 4.4 4.4 47h 34 min

Explicit coop. 1 0.2 0.4 0.3 2 1.5 1.3 131h 5 min
Explicit coop. 2 1 2.1 2 2.5 2.4 2.4 292h 

As expected, the independent controllers provide the lowest 
control performance (the peak error of water level of Lake 6 
– which has the highest priority – is about 5%, and not the 
largest one, see Table 2). 

Somewhat better results are achieved when using the implicit 
cooperative control strategy: the peak error for Lake 6 is 
under 3%, and the highest peak error – for Lake 3 – is lower 
than the corresponding error for independent control, see 
Table 2). Both implicit control strategies provide similar 
performance. 

Even better results can be achieved using the coordinated 
control approach: the largest peak error for both methods is a 
little over 5%, and the peak error of lake 6 is a bit larger than 
for previous methods, but the overall performance is 
improved. Both cooperative control methods give similar 
performance, but computation process takes longer than for 
implicit cooperative control. 

Best performance is observed – as expected – at the explicit 
cooperative control strategy. Although the computation 
process takes a very large amount of time, the results show 
that the efforts are not in vain. The highest peak error in 
water level is less than 2% for Method 1 and less than 2.5% 
for Method 2 (see Table 2).  

Also note that explicit cooperative control – Method 1 
achieves better performance than Method 2. This must be 
because in Method 2, the exact intention of the upstream 
controllers is not known; only some guidelines are provided 
by means of the lower and upper limits. Although the 
distance between the two limits should decrease when 
iterating step 2, it was observed that error is introduced in the 
system at step 3, where a very coarse approximation is made 

regarding the upstream control action, by calculating 
 avga , . 

10. CONCLUSIONS 

The system was tested under very hard conditions. Generally, 
the control outputs were found to have relatively few 
variations, thus reducing the actuator stresses.  However, this 
was not programmed explicitly. The results show that 
performance and rule computation time generally increase 
with method complexity. 

It is interesting to note that errors under 2% are irrelevant as 
far as the hypothetical supervisor of the system is concerned: 
2% is the upper limit of the zero – error fuzzy level, as seen 
from the level membership function in Figure 5. This is the 
reason for which the steady state error of 2% can also be 
considered zero in fuzzy terms. When the error is zero (i.e. 

2% or less), a zero disturbance generally yields zero control 
action (according to the control rules), therefore a steady state 
error of 2% or less cannot be rejected. 

New control methods can be created by adding other 
variables in the decision context, such as constraints on the 
control variable ui, predictions on the global disturbance 
value (given by an operator), or even past values of the 
control actions of neighbouring lakes (considering the slow 
dynamics of the lake system). 

The fuzzy logic control algorithms (that are executed online) 
are simple and their execution durations are short. This 
makes them applicable to microcontrollers fulfilling the real-
time constraints. Also, the volumes of data interchanged by 
controllers are small and the required transmission band is 
feasible for practical implementation.  
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