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Abstract: Based on the fluid-flow model of TCP dynamics a new control structure relying on a modified 
Smith predictor is proposed for which some design procedures ensuring robust stability are presented. 
The simplest design solution has in view the cancellation of the plant poles in the ideal case by an 
appropriate PID controller constituted by the components of the modified Smith predictor. Another 
solution consists in the application of Coefficient Diagram Method which mainly allows the simultaneous 
design of the characteristic polynomial of the closed-loop system and of the controller on the basis of 
some sufficient stability conditions. 
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1. INTRODUCTION 

The Internet is a shared resource, where the users compete for 
a finite network bandwidth. Too many user demands can 
cause congestion, which in turn leads to long queuing delays 
and/or packet loss. In this respect the main problem of the 
Internet traffic, which needs theoretical/practical solutions, is 
to prevent its congestion. The mechanism for flow and 
congestion control on the Internet, built and developed 
following heuristic arguments, is the Active Queue Manage-
ment (AQM) for Transmission Control Protocol (TCP) flows. 
Nevertheless, due to the variable transmission delays, which 
have a negative impact on the feedback control stability, and 
to the rapid changes in Internet traffic, AQM/TCP does not 
generally work as well as when it was designed. Many 
researchers have addressed these problems in different ways 
(Mascolo (1999), Gunnarsson (2000), Mascolo (2000), 
Hollot et al. (2001), Hollot et al. (2002), Low et al. (2002), 
Ryu et al. (2003), Cela et al. (2005), Rafe’ et al. (2007), Al-
Hammouri (2008), De Cicco et al. (2011), Tolaimate and 
Elalami (2011)). Their main objective is to maintain local 
stability for arbitrary network delays, link capacities, and 
routing topologies. 

In this paper, based on the fluid-flow model of TCP 
dynamics developed in (Misra et al. (2000)), a new control 
structure for AQM/TCP flows is proposed. The controller 
includes a modified Smith predictor (Hamamci et al. (2001)) 
for which some design procedures ensuring robust stability 
are presented. 

2. FLUID-FLOW MODELS OF TCP BEHAVIOUR 

According to the fluid-flow model of TCP (Misra et al. 
(2000), Hollot et al. (2002)), its dynamic behaviour is 

described by the following system of nonlinear time-variant 
differential equations: 
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where  
 ( ) [0, ]w t w  (with const. 0w  ) is the average 

TCP window size (in packets),  
 ( ) [0, ]q t q  (with const. 0q   ) is the average 

queue length (in packets),  
 ( ) [0, ]r t r  (with const. 0r   ) is the round-trip 

time,  
 ( ) [0, ]c t c  (with const. 0c   ) is the link 

capacity,  

 ( ) [0, ]n t n  (with const. 0n   ) is the load factor,  

 ( ) [0,1]p t   is the probability of packets mark, and  

 0pT   is the propagation delay. 

To linearize equations of model (1) around a constant 
operating point 0 0 0( , , )w q p  we obtain first the non-linear 

time-invariant differential equations according to following 
hypotheses: operating point 0 0 0( , , )w q p  satisfies (1) and 

( ) const.,n t N   ( ) const.c t C  ; if ( )r t  appears as an 

argument of a function we consider ( ) const.r t R  ; 
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2
0 00 2;w w p    

0 00 / , /pq w RC N R T q C     . 

Hence, denoting by 
0 0,w w w q q q       the perturbed 

state variables and by 
0p p p    the perturbed control, all 

about the operating point 0 0 0( , , )w q p , we obtain the 

following results: 
‒ the system of nonlinear time-invariant equations 

associated to (1) and (2): 
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‒ and respectively, the system of linearized time-invariant 
equations associated to (3): 
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For practical purposes, the linearized model (4) may be 
decomposed in a nominal part (containing the delay, the 
window dynamics and the queue dynamics), which may be 
taken as plant model for the TCP behaviour, and a high 
frequency residual which may be treated as model 
uncertainties. Applying the Laplace transform to equations 
(4), after some manipulations / substitutions of equations, it 
results the block-diagram given by Fig. 1, where 
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is the transfer function of the linearized model (4) without 
delay (window dynamics and queue dynamics) and 

2

2 3

2
( ) (1 )RsN s

H s e
R C

   (6) 

is the transfer function expressing the high frequency 
residual. 

The block-diagram of Fig. 1 evidences an input delayed 
system with model uncertainties under multiplicative form 
and also the role of the operating points 

0 0,p q . 
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Fig. 1. Block-diagram of the linearized TCP dynamics 

3. CONTROLLER BASED ON MODIFIED SMITH 
PREDICTOR FOR TCP DYNAMICS 

The implementation of the modified Smith predictor 
(Hamamci et al. (2001)) with the nonlinear TCP dynamics 
(1), evidencing also the role of the operating points 

0 0,p q , is 

shown in Fig. 2, where 
refq  is the queue reference generating 

0q . The nonlinear TCP dynamics does not include the sign 

(‒1) existing in the second term of the first equation of (1). 
Nevertheless, this sign is taken into consideration by the 
block [‒1] situated before the nonlinear TCP dynamics. The 
modified Smith predictor includes: 
 ‒ the controller transfer functions 

1 2 3( ), ( ), ( )C s C s C s , 

 ‒ the nominal models ˆ ( )P s  of ( )P s  and R̂se   of Rse  . 

For the linearized TCP dynamics given in Fig. 1 and for the 
perturbed variables , ,refq p q   , the block-diagram 

corresponding to the system of Fig. 2 is given in Fig. 3. 

It is easy to see that in the ideal case, i.e. for 
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ˆ ˆ( 1)( 1)
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 (7) 

by some simple block-diagram manipulations the system 
with modified Smith predictor represented in Fig. 3 is 
equivalent to the system represented in Fig. 4. 
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Fig. 2. Implementation of the modified Smith predictor with 
the nonlinear TCP dynamics 
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Fig. 3. Implementation of the modified Smith predictor with 
the linearized TCP dynamics 
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Fig. 4. Ideal block-diagram corresponding to Fig. 3 and to (7) 
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The ideal block-diagram represented in Fig. 4 and its input ‒ 
output (closed-loop) transfer function  

ˆ1 2 3
0 1 3

2 3

ˆ( ) ( ) ( )ˆ ( ) ( ) ( ) [ ]
ˆ1 ( ) ( ) ( )

RsC s C s P s
G s C s C s e

C s C s P s
  


 (8) 

evidence the elimination of the delay exponential R̂se   

from the closed-loop and from the denominator of 0
ˆ ( )G s . 

These facts confirm the essential feature of the modified 
Smith predictor in the ideal case. Notice here that the stability 
properties of the ideal closed-loop system are concentrated in 
the denominator of 0

ˆ ( )G s .  

4. DESIGN OF CONTROLLER ENSURING ROBUST 
STABILITY 

To design the controller (based on modified Smith predictor) 
included in the system given in Fig. 4), we have to synthesize 
the transfer functions 

1 2 3( ), ( ), ( )C s C s C s .  

1( )C s  has to be chosen for the system depicted in Fig. 2, 

which must realise 
refq q  in the steady state regime. 

2 3( ), ( )C s C s  must be designed such that to ensure the 

asymptotic stability in the ideal case (7) and, more important, 
its robustness for slight modelling mismatch with respect to 
the ideal case (7). 

4.1. Robustness results  

It is well known (Palmor (1980, 2000)) that for slight 
modelling mismatch with respect with the ideal case (7), the 
non-ideal closed-loop system may go unstable. For the 
purposes of this paper, let us remind some definitions and 
theorems regarding the modified Smith predictor. 

Definition 1 
A system that is asymptotically stable in the ideal case but 
became unstable for infinitesimal-modelling mismatches is 
called a practically unstable system.  
In the contrary case, it is called a practically stable system.  

In order to formulate some known results let us define the 
following ideal closed-loop transfer function 

2 3

2 3

ˆ( ) ( ) ( )
( ) ,

ˆ1 ( ) ( ) ( )

C s C s P s
Q s

C s C s P s



 (9) 

which corresponds to the ideal closed-loop system depicted 

in Fig. 4, but without the delay exponential R̂se  . 

Theorem 1  
For the system with a Smith predictor to be closed-loop 
practically stable, it is necessary that: 

lim ( ) 1 / 2 .Q j     (10) 

Remark 1 
If only mismatches in the propagation delay R  are 
considered, then condition (10) is sufficient as well.  

Remark 2 
For ( )Q s  to satisfy condition (10), it must be at least a proper 

rational function. If it is strictly proper, then the system is 
practically stable.  

Supposing that condition (10) is satisfied, it still remains to 
distinguish between two possible cases: (a) the design is 
stability-wise, completely insensitive to mismatches in the 
propagation delay R ; (b) there is a finite maximum 
mismatch in the propagation delay R  below which the 
system remains stable. Let us denote the mismatch of the 
propagation delay by 

ˆR R R   .  (11) 

Theorem 2  
(a) The closed-loop system is asymptotically stable for any 

R  if 

( ) 1 / 2 0.Q j      (12) 

(b) If 

( ) 1 0 and lim ( ) 1/2 ,Q j Q j        (13) 

then there exists a finite positive ( )mR  such that the closed-

loop system is asymptotically stable for all ( )mR R   .  

Remark 3 
A rough (and frequently conservative) estimate of ( )mR  is 

given by  

0( ) /(3 ) ,mR      (14) 

where 
0  is the pulsation above which ( ) 1/ 2Q j  .  

4.2. PID controller for cancellation of plant poles 

The simplest solution for the design of controller components 

2 3( ), ( )C s C s  has in view the cancellation of the plant poles 

in the ideal case (7) by considering an adequate PID 
controller. In this case let us adopt  

2 3
1

ˆ 1
( ) , ( ) 1,
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C s C s Ts

a s


     (15) 

i.e. the PID controller 

2 3
1 1 1 1

ˆ ˆ ˆ( 1)( 1) 1
( ) ( ) .

Rs Ts R T RT
C s C s s

a s a a s a

  
      (16) 

With (7) and (16), transfer function (9) becomes 

1

( ) .
k

Q s
a s k




  (17) 

Controller parameter 1a  may be calculated with 

1 / 3sa kt   (18) 

where 
st  is the prescribed settling time of the closed-loop 

step response. 

Remark 4 
According to (17) and to the robustness results presented in 
4.1, it follows that, by using the pole cancelling PID 
controller (16), the closed-loop system given in Fig. 3 is: 
 - practically stable;  
 - asymptotically stable for all 0/(3 )R    , with  
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0 3 3 / st  .   (19) 

4.3. Application of Coefficient Diagram Method (CDM)  

CDM (Manabe (1998), Kim and Manabe (2001), Hamamci et 
al. (2001), Manabe (2002a, 2002), Öcal at al. (2009)) mainly 
allows the simultaneous design of the characteristic 
polynomial of the closed-loop system and of the controller on 
the theoretical basis of sufficient stability conditions of 
(Lipatov and Sokolov (1978)). 

y

controller 

1( )A s  

( )B s  

( )F s  
refy

 ‒ + 
( )G s  

 
Fig. 5. Block-diagram for CDM  

The basic block-diagram of CDM is shown in Fig. 5 (in our 
approach is taken without any disturbances), where refy  is 

the reference input, y  is the output, ( )G s  is the known plant 

expressed by  

( )
( )

( )

N s
G s

D s
   (20) 

( ( ), ( )N s D s  being known polynomials), and ( ),A s  ( )B s  and 

( )F s  represent the unknown controller with ( )A s  ‒ the 

denominator polynomial, ( )B s  ‒ the numerator feedback 

polynomial, and ( )F s  ‒ the reference transfer function. 

According to Fig. 5, the closed-loop transfer function has the 
following form: 

0

( )
( ) ( )

( ) ( ) ( ) ( )

N s
G s F s

A s D s B s N s



,  (21) 

where  

( ) ( ) ( ) ( )A s D s B s N s   (22) 

is the closed-loop characteristic polynomial. 

 a. Target characteristic polynomial and stability indices 

A possibility to design the controller is to follow the 
algebraic procedure under the matching condition. This 
consists in synthesizing first a target characteristic 
polynomial  

0 00
( )

n k
kk

D s d s


 ,  (23) 

according to some design prescriptions. Let us introduce the 

stability indices , 0,k k n  , the time constant  , and the 

stability limits , 1, 1k k n    , by the following relations: 

2
01 0 1 0 1 0/( ), 1, 1,k k k nd d d k n         ,  (24) 

01 00/d d  ,  (25) 

1 11/( 1/ ), 1, 1k k k k n  
     .  (26) 

Accordingly, from (24), (25) it follows that the coefficients 

0 , 1,kd k n , of target characteristic polynomial 0 ( )D s  may 

be expressed in terms of 00d ,   and 
i  by 

00
0 1

1

, 1, .
k

k k k j
jj

d
d k n


 



 


  (27) 

 b. Sufficient conditions based on stability indices 

Using the stability indices, (Lipatov and Sokolov (1978)) 
formulated the following conditions, which, although only 
sufficient conditions, are much simpler as the well-known 
necessary and sufficient conditions. 

Theorem 3 
Polynomial 

0 ( )D s  is Hurwitzian (i.e. system (21) is 

asymptotically stable) if one of the following two sets of 
conditions holds: 

1 1.4656, 1, 2k k k n      ;  (28) 

1.12374 , 2, 2k k k n     .   (29) 

Theorem 4 
Polynomial 0 ( )D s  is non-Hurwitzian (i.e. system (21) is 

unstable) if the following set of conditions holds: 

1 1, or some 1, 2k k f k n      .   (30) 

Conditions (28), (29) can be graphically expressed in CD as it 
is shown in (Manabe (1998), Kim and Manabe (2001), 
Manabe (2002a, 2002b), Kim et al. (2002)). In CDM, 
sufficient conditions (29) are mainly used because they are 
also almost necessary conditions. At the same time, sufficient 
conditions (28) show that they are fulfilled for 

1.4656, 1, 2k k n    . It follows that using 

[1.5, 4], 1,k k n   , in (27) a Hurwitzian target characteristic 

polynomial 0 ( )D s  may be synthesized. Based on these 

background, for a target closed-loop transfer function defined 
by  

00
0

0

( )
( )T

d
G s

D s
 ,  (31) 

(Manabe (1998, 2002b) proposed the following standard 
form of the stability indices and of the time constant 
respectively: 

1 2,5 , 2 , 2, 1k k n     ,  (32) 

/ 2.3095st  ,  (33) 

where 
st  is the prescribed settling time of the target closed-

loop system. Setting (32) and (33) ensure that the step 
response of the closed-loop system has almost no overshoot 
and the same transient behaviour irrespective to n . 

To cover other concrete situations, some different standard 
forms have been proposed in (Kim and Kim (1999)). 
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 c. Controller design under the matching condition 

First, by replacing (32) and (33) into (27), a Hurwitzian target 
characteristic polynomial (23) can be calculated and adopted 
as starting point of the controller design. Then, equating (22) 
and (23), the following Diophantine equation may be stated: 

0( ) ( ) ( ) ( ) ( )A s D s B s N s D s  ,  (34) 

where 
0( ), ( ), ( )D s N s D s  are given, and ( ), ( )A s B s  are the 

unknown controller polynomials. Equation (34) is the 
instrument of the algebraic design of ( ), ( )A s B s  under the 

matching condition. This equation has a unique solution if  

deg ( ) deg ( ) 1B s D s  ,  (35) 

deg ( ) deg ( )A s B s .  (36) 

( )F s  has to be chosen such that to obtain  

0 0( ) ( )TG s G s ,  (37) 

from which, according to (21), (31) and (34) it results: 

00( )
( )

d
F s

N s
 . (38) 

Now, for the equivalent block-diagram of Fig. 4 (with (7) and 

excepting ˆ
[ ]Rse  ), after comparing it with that one given in 

Fig. 5, the following identifications may be stated: 

1
1 2 3( ) ( ), ( ) ( ), ( ) ( )C s F s C s A s C s B s   ,  (39) 

ˆ
ˆ( ) ( )

ˆ ˆ( 1) ( 1)

k
G s P s

Rs Ts
 

 
,  (40) 

2ˆ ˆ ˆ ˆ( ) , ( ) ( ) 1N s k D s RT s R T s     .  (41) 

With (40), Diophantine equation (34) becomes: 

2
0

ˆˆ ˆ ˆ ˆ[ ( ) 1)] ( ) ( ) ( )RTs R T s A s kB s D s     .  (42) 

First, according to (35), (36), with (37), (41), it follows that 
deg ( ) 1B s  , deg ( ) 1A s  . Correspondingly,  

1
2 1 0 3 1 0( ) ( ) , ( ) ( )C s A s a s a C s B s b s b         (43) 

may be adopted. According to (23), (27), (32) and (33) the 
target characteristic polynomial may be stated as: 

3 2
0 03 02 01 00

2
01 00 02 00

3
03 00

( ) ,

( / 2.3095) , ( / 2.3095) / 2.5,

( / 2.3095) /(12.5),

s s

s

D s d s d s d s d

d t d d t d

d t d

   

 



  (44) 

where 
1 22,5, 2    and   depends on settling time 

st  

according to (33). 

Under these circumstances, the solution of Diophantine 
equation (42), with (43) which contains the unknown 
coefficients 0 1 0 1, , ,a a b b , can be uniquely obtained by solving 

the equivalent linear equation: 

1 03

0 02

1 01

0 00

ˆ ˆ 0 0 0

ˆ ˆ ˆ ˆ 0 0
.

ˆˆ ˆ1 0

ˆ0 1 0

RT a d

R T RT a d

b dR T k
b dk

                               

  (45) 

Using (7), (9) and (43) it follows that 

1 0

1 0 1 0

ˆ( )
( ) .

ˆˆ ˆ( )( 1)( 1) ( )

k b s b
Q s

a s a Rs Ts k b s b




    
  (46) 

Remark 5 
According to the robustness results presented in 4.1 and to 
(46), it follows that by the design under the matching 
condition the closed-loop system given in Fig. 5 is  
 - practically stable; 
 - asymptotically stable for any R  if condition (12) with 

(45), (46) is met. 

If condition (13) with (45), (46) is met, then there exists a 
finite positive ( )mR  such that the closed-loop system is 

asymptotically stable for all ( )mR R   .  

 d. Controller design with coefficient shaping on the 
coefficient diagram (CD) 

CDM may be also applied following the coefficient shaping 
on the CD. In many cases, a lower order controller may be 
designed under matching condition. Nevertheless, practically, 
if certain controller parameters have to depend on other ones 
as design conditions (like that ones related to robust stability 
presented in paragraph by 4.1 or in Remark 5), it is not too 
easy to solve the problem analytically. This means that the 
existence of a solution can not be guaranteed. For such 
situations, using CDM, the problem can be dealt with by 
adjusting i  and   to obtain a feasible solution (Kim and 

Manabe (2001)). In the design process, the resulting 
characteristic polynomial is easily drawn by moving up and 
down as much as the controller’s parameter in the same order. 
Therefore, it can be directly seen by CD how much the overall 
system is sensitive to parameter adjustments. For the 
coefficient shaping it is to make the curve characteristic 
polynomial coefficients to be a smoothly concave shape and 
the controller parameters may be immediately obtained from 
the CD (Kim and Manabe (2001)).  

5. CONCLUSION 

In this paper a new controller using a modified Smith 
predictor for AQM supporting TCP flows is proposed for 
which some design procedures ensuring robust stability are 
presented. Among these procedures, the simplest is the 
classical PID controller for cancellation of plant poles. As a 
future work and according to the structure depicted in Fig. 2, 
it remains to evaluate and illustrate by simulation:  
 (a) the effectiveness and qualities of the design 
procedures presented in this paper; 
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 (b) the impact of the propagation delay on the 
performances of the non-ideal closed loop system. 
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