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Abstract: Robocup competition is an international event for research on fully autonomous robot control 
and related subject like: Artificial intelligence, Image processing, robot path planning, and obstacle 
avoidance. In this paper new practical software based methods for control, analysis, decision making and 
trajectory of an autonomous robot in Middle Size Soccer Robot league (MSL) are presented. In a robots 
soccer game, the environment is highly competitive and dynamic. In order to work in the dynamically 
changing environment, the software of a soccer robot system should have the features of flexibility, real-
time control and adaptation. For this purpose, we utilize the sensor data fusion method in the control 
system parameters, self localization and world modelling. A vision-based self-localization and the 
conventional odometry systems are fused for robust self-localization. The methods have been tested in 
the many Robocup competition field middle size robots. This paper has tried to focus on description of 
areas such as omni directional mechanisms, omni-vision sensor for object detection, robot path planning, 
multimedia database management system for sophisticated offline analysis and other subjects related to 
mobile robot’s software. The results are satisfactory which has already been successfully implemented in 
ADRO RoboCup team. This project is still in progress and some new interesting methods are described 
in the current report. 
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1. INTRODUCTION 

Robotic soccer games had been popular with educational 
institutions around the world since the inauguration of the 
Robocup competition in 1997. This initiative provide a good 
platform for artificial intelligence, software control 
techniques and Multi Agent research, dealing with issues 
such as cooperation by distributed control, neural networks, 
genetic algorithms, decision tree, decision making, fuzzy 
logic [1]. In the context of RoboCup, the Middle Size League 
(MSL) is one of the most challenging. In this league, each 
team is composed of up to 5 robots with maximum size of 
50x50cm base, 80cm height and a maximum weight of 40Kg, 
playing in a field of 18x12m. The rules of the game are 
similar to the official FIFA rules, with required changes to 
adapt for the playing robots . Each robot is autonomous and 
has its own sensorial means. They can communicate among 
them, and with an external computer acting as a coach, 
through a wireless network. This coach computer cannot have 
any sensor; it only knows what is reported by the playing 
robots. The agents should be able to evaluate the state of the 
world  

and make decisions suitable to fulfil the cooperative team 
objective. ADRO Middle Size project started in 2005, 
coordinated by the Electrical and Computer Department and 
involves many students working on several areas for building 
the mechanical structure of the robot, its hardware 
architecture and controllers and the software development in 
areas such as image analysis and processing, sensor and 
information fusion, reasoning and control. In 2007 we ranked 
2nd place Middle Size Soccer Robot League in 2nd 
International China-Open Robocup Competitions, the China-
Open is one of the, Asia’s major RoboCup event. In 2008 we 
achieved the First Place in the 3rd International Iran-Open 
Competitions.  

In this paper, at first we will describe the general hardware 
and software design of the ADRO Robocup team and after 
that focus on our scientific approaches in sensor fusion, 
learning and analysis, finally, concludes this paper [2][3]. 

 

2. HARDWARE ARCHITECTURE 

Every fully autonomous robot of “ADRO” is equipped with 
an omni-directional vision system, a normal camera as front 
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vision, and an electromagnetic kicking device. The robot is 
controlled by a notebook PC is demonstrated in figure 1. The 
chassis of the robot is designed as a frame construction where 
there is the electronic circuit board, batteries, kicking device, 
motor controller and notebook PC. The omni-directional 
vision system and the normal camera are on the top of the 
framework. (fig.1) 

Fig. 1 3-wheeled omni-directional mobile robot with an 
omni-directional vision system, a normal camera and a 
kicking device, and is controlled by a notebook PC. 

2.1 Omni directional wheels 

Omni directional robots usually use special wheels. These 
wheels are known as omni directional poly roller wheel. The 
omni-directional movement system consists of omni-
directional wheels, DC motors, a drive shafting system and a 
controller. Although three such wheels are sufficient for the 
robot to move omni-directionally, a fourth wheel can provide 
redundancy in motion and control [1][3][4].  

Our Robot structure includes three omni directional wheels 
for motion system and three small free wheels as feedback 
mechanism where shaft encoders are mounted on, as shown 
in figure 2. (fig.2) 

 

 

 

 

 

 

 

 

Fig.2   Three omni directional wheels act as actuators while 
three free wheels are for feedback. 

2.2 Omni directional Vision system 

Since the beginning of mobile robot manufacturing, the map 
building was one of the most addressed problems by 
researchers. Several researchers used Omni directional vision 
for robot navigation and map building [2]. Because of the 
wide field of view in Omni directional sensors, the robot does 
not need to look around using moving parts (cameras or 

mirrors) or turning the moving parts [5]. The Omni-
directional vision system consists of a hyperbolic mirror, a 
firewire colour digital camera (Basler Digital Camera) and a 
regulation device. The mirror can make the resolution of the 
images of the objects near the robot on the field constant and 
make the distortion of the images of the objects far from the 
robot small in vertical direction (fig.3). Searching through 
different articles and catalogues from various mirror-making 
companies; we found that they used the following hyperbolic 
curve for their omni directional vision mirror [6].    

 

                                                                                           (1)  

               

However, this equation is suitable for the mirror with large 
size and wide view. For our soccer player robot, we need an 
image with a diameter of 4m on the field, so to achieve a 
compact mirror with wide view, the above curve scaled down 
by a factor of 2.5 to yields:  
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Fig 3. hyperbolic mirror and the typical panoramic image 
captured. 

3.ROBOT KINEMATICS 

Using omni directional wheels, the schematic view of robot 
kinematics can be shown as follows (fig.4) [6], where   is the 
robot center of mass,     is defined as the vector connecting O  
to the origin and D  is the drive direction vector of each 
wheel. 

 

 

 

 

 

 

 

 

 

Fig. 4 Robot kinematics diagram 
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The positions vectors           with respect to the local 
coordinates centered at the robot center of mass are given as: 
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 The drive directions can be obtained by: 
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Where, L is the distance of wheels from the robot center of 
mass (O).  

Using the above notations, the wheel position and velocity 
vectors can be expressed with the use of rotation matrix 

)(R as: 
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The vector  T
O YXP   is the position of the center of mass 

with respect to Cartesian coordinates.  

The angular velocity of each wheel can be expressed as: 

i
T
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Where, r is the system wheel radius of odometry.  

Substituting for 
iV  from equation (9) yields: 
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Note that the second term in the right hand side is the 
tangential velocity of the wheel.  

On the other hand, this tangential velocity is equal to: 
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                                       (12) 
From the kinematics model of the robot, it is clear that the 
wheel velocity is a function of linear and angular velocities of 
robot center of mass, i.e.: 

                                                                                         (13) 

 

or in short: 
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where L is the distance of wheels from the robot center of 
gravity (O) and  r is the main wheel radius [6],[7]. 

 

3. ROBOT DYNAMICS 

Linear and angular momentum balance for the robot may be 
written as: 
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where 
..

OP  is the acceleration vector, if  if is the magnitude of 
the force produced by the ith motor, m is the mass of the 
robot and J is its moment of inertia about its center of gravity. 
Assuming no-slip condition, the force generated by a DC 
motor is described by: 

VUf                                                                      (16) 

where,  3,2,1),(  itVV i
 is the velocity of each wheel. The 

constants α and β are motor characteristic coefficients and 
can be determined either from experiments or from motor 
catalogue.[8] 

Note that  3,2,1),(  itUU i
 is the voltage applied by 

supplier to the DC motors. Substituting equation (13) into 
equation (12) yields: 
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This system of differential equations may be written in the 
matrix form as: 
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4.ROBOT SOFTWARE 

We have developed a software system to fully utilize the 
hardware abilities. In this section introduces software parts 
contain: image processing algorithm, position controller 
architecture, world model construction, artificial 
intelligence, trajectory, and network and team strategy from 
a viewpoint of software system. (fig.5) 

 

 

 

 

 

 

 

 

 

 

Fig 5. Block diagram of the Robot Software 

During the dribble, the robot adjusts its direction toward the 
opponent goal and dribbles with the fastest possible speed. 
The support robot takes a position behind and near to the 
robot with the ball. The support robot fetches the ball only 
when the ball is near to the support robot. The defence robot 
is located between the ball and own goal. The defence robot 
doesn’t actively approach when the ball is far.  In our team 
strategy three states are allotted to the team robots: attack, 
defence, and intercept. The robots autonomously choose to 
activate each of the roles [9]. (fig.6) 

 

 

 

 

 

 

 

 

 

 

Fig 6. Behaviour hierarchy suggested for robot soccer 

4.1 Image processing algorithm 

Utilizing a digital camera, each time the computer on each 
robot performs the processing of the current frame and 
calculates the position, direction and velocity of the robot. It 
also determines the position and velocity of the opponent 

robots as well as the position and velocity of the ball (fig.7).  
The algorithm used to find objects is optimized to process 
the maximum number of frames. First it searches the pixels 
by swiping them with certain steps, when it finds a desired 
one and detects that object, saves its coordinates so the next 
time it can start back with the same point about. We are 
trying to evaluate new methods to find some kinds of objects 
based on pattern recognition to reduce the effect of changing 
the colours on algorithm. The image processor receives its 
data through fire wire port connected to a Basler digital 
video camera with the speed of 20 to 30 frames per second 
[1][5]. 

 

 

 

 

 

 

 

 

 

Fig 7. Vision Systems, Object detection (Goals, Flag Spots, 
Ball)  

4.2 World model construction 

Although each agent tries to extract the real world map as 
accurate as possible, but “noisy data” and “non-global 
optimized” algorithms reduce the reliability of processed 
data. The world model module receives different data sets 
from every agent. Each data set contains different 
environmental information like self, ball and opponents’ 
positions. Each data carries a ‘confidence’ factor; a larger 
confidence factor means a more reliable piece of 
information. The most recent data sets are then chosen for 
data fusion, in which the following rules and facts are 
applied: 

 Closer object are of more accuracy. 

 Objects further than a specific distance could be 
said to be totally inaccurate. (This distance is 
experimentally known)  

This new world model contains information about the 
objects which may not have been seen by each agent 
correctly and also enhances approximations of all 
environmental information. The constructed world model is 
then sent back to all agents so they will have a better view of 
the world around them. 

The interaction between the modules on different machines 
is provided by a communication protocol which bundles 
commands and parameters generating command packets and 
interprets the incoming packets for other modules. In the 
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following, each layer, its interface and parameters will be 
discussed in details [10][11]. (fig.8) 

 

 

 

 

 

 

 

 

 

Fig 8. World model construction and artificial intelligent 
structure 

4.3 Artificial intelligence 

In this section the AI part of the software is briefly 
introduced. There are three distinct layers: AI Core, Role 
Engine and Behaviour Engine. AI Core receives the 
computed field data from world modelling unit and 
determines the play state according to the ball, opponents 
and our robots positions. Considering the current game 
strategy, determination of the play state is done by fuzzy 
decision-making to avoid undesirable and sudden changes of 
roles or behaviours. Then AI Core sends a set of roles to 
Role Engine to be assigned to the robots. Because there are 
instances in which the image-processing unit cannot see the 
ball, a memory is implemented in the AI Core for the 
position of ball that specifies which robot owns the ball. 
Since there is a relationship between new roles and old roles, 
roles are changed in a manner that robots never experiment 
sudden changes in roles (for example the role never changes 
from defence to attack in next cycle). Role Engine receives a 
set of roles from AI Core and provides the Behaviour 
Engine with a set of behaviours for robots. Twin or triple 
roles are implemented so that the robots really cooperate 
with each other to do their roles. Behaviours are the building 
blocks of the robot's performance which includes simple 
actions like rotating, or getting the ball and etc. The 
Behaviour Layer is the lowest layer in our architecture. This 
layer receives a sequence of behaviours along with some 
parameters from the upper layer (Role Engine) and executes 
the essential subroutines in order to accomplish certain 
behaviour. These subroutines use world model information 
and trajectory data in order to perform necessary movements 
[12]. 

4.4 Robot Self Localization 

Our self localization method is based on detection of white 
lines in field. Because according to MSL rule no flag and no 
colour goals exist in field since Robocup 2008, now the 
white line points are the only visual information that could 
be used as landmarks for robot’s self localization. So our 

vision system tracks all white lines that exist only in the 
region field colour (green) and robots use a digital compass 
(MTi-sensor) for the robot heading reference. After this 
section we try to convert the acquired white line point into 
the real world distance map. (fig.9) 

Fig 9: The field lines detection and self localization. 

We employ a Monte Carlo Localization (MCL) method. For 
our algorithm, the field model is a Cartesian coordinate 
system with the origin at the centre of the field. The robot’s 
state is represented by a vector  TyxX ,,   which consists 
of a position  YX , and   an orientation. We provided the 
algorithm, which detects only orientation, made the posture 
  ingredient known in MCL, and planned the dimension 
reduction of the state vector. The orientation detection is 
explained further below. For localizing, we have to construct 
the posterior density  tt yyxp ...| 1

 from the state of a robot  
tx  

and the sensor data 
ty  at the current time t . In the particle 

filter methods, a probability density is represented by a set 
of N random samples (Particle). The method proceeds in 
two phases. 

In the first phase we predict a current state of the robot. That 
is specified as a conditional density  11...|  ttt uxxp   from 
the previous state 

1tx  and a control input
1tu . The 

predictive density is obtained by the following integral. For 
our algorithm, we set the control input 

1tu  as odometry data 
and add it to each particle. 

                                                                                         (21)
    

 

In the second phase we update the density according to the 
sensor data

ty  . The likelihood of 
ty  at state 

tx  is 
represented as           . The posterior density is obtained 
using Bayes theorem. 

 

                                                                           (22) 

 

Sensor data ty  is distance to the field line. The state is 
compared to ty   and the likelihood is updated of each 
particle. After that, weighted particles are normalized and re-
sampled. Re-sampling is done according to the weight of 
each particle: new particles are generated around the 
particles that have high likelihood. In the Robocup soccer 
field most constituents are straight lines or perpendicular 
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segments of lines. The robot’s orientation is detected by 
searching for inclination of the straight line ingredients in 
the circumference seen from the robot. We solved the false 
detection by using compass sensor for this problem. Our self 
localization algorithm is a one of the very fast and effective 
algorithm to track robot’s localization, and it only takes 
several milliseconds to finish the localization computation 
for one frame image. Adro has developed and implemented 
three separate Omni directional wheels coupled with shaft 
encoders placed 60 ° apart of the main driving wheels. Free 
shaft rotation and the flexible connection to the structure 
ensures minimum slippage and firm contact of these wheels 
to the ground, all these result in a great improvement in 
output precision. In order to avoid the remaining cumulative 
error, odometry system parameters can be initialized every 
time the vision could calculate the position reliably [13][14]. 

4.5 Trajectory 

Since the motion trajectory of each robot is divided into 
several median points that the robot should reach them one 
by one in a sequence the output obtained after the execution 
of AI will be a set of position and velocity vectors. So the 
task of the trajectory will be to guide the robots through the 
opponents to reach the destination. The routine used for this 
purpose is the potential field method (also an alternative new 
method is in progress which models the robot motion 
through opponents same as the flowing of a bulk of water 
through obstacles) [14]. In this method different electrical 
charges are assigned to our robots, opponents and the ball. 
Then by calculating the potential field of this system of 
charges a path will be suggested for the robot. At a higher 
level, predictions can be used to anticipate the position of 
the opponents and make better decisions in order to reach 
the desired vector. In our path planning algorithm, an 
artificial potential field is set up in the space; that is, each 
point in the space is assigned a scalar value. The value at the 
goal point is set to be 0 and the value of the potential at all 
other points is positive. The potential at each point has two 
contributions: a goal force that causes the potential to  

 

 

 

 

 

 
Fig 10. Goal force (Attractive potential to the goal) 
  

increase with path distance from the goal, and an obstacle 
force that increases in inverse proportion to the distance to 
the nearest obstacle boundary. In other words, the potential 
is lowest at the goal, large at points far from the goal, and 
large at points next to obstacles. If the potential is suitably 
defined, then if a robot starts at any point in the space and 
always moves in the direction of the steepest negative 

potential slope, then the robot will move towards the goal 
while avoiding obstacles. The numerical potential field path 
planner is guaranteed to produce a path even if the start or 
goal is placed in an obstacle.  

                                                       (23) 

If there is no possible way to get from the start to the goal 
without passing through an obstacle then the path planner 
will generate a path through the obstacle, although if there is 
any alternative then the path will do that instead. For this 
reason it is important to make sure that there is some 
possible path, although there are ways around this restriction 
such as returning an error if the potential at the start point is 
too high. The path is found by moving to the neigh boring 
square with the lowest potential, starting at any point in the 
space and stopping when the goal is reached [8][15][16]. 
(fig.10) 

4.6 Multimedia database 

In Dynamic environment, some of images, video and audio 
saves in multimedia database to use in offline analysis for 
better detecting objects. Various architectures are being 
examined to design and develop a Multimedia Database 
Management System (MMDBMS). In our approach, the 
architecture, illustrated in Figure 11, is the tight coupling, 
that the DBMS manages both the multimedia databases as 
well as the metadata (fig.11). This includes query 
processing, transaction management, metadata management, 
storage management, and security and integrity 
management.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 11. Tight coupling approach 

Image processing has dealt with areas such as detecting 
abnormal patterns which deviate from the norm, retrieving 
images by content, and pattern matching (fig.12).  The main 
question here is what in image mining? How does it differ 
from image processing? One can say that while image 
processing is focusing on detecting abnormal patterns as 
well as retrieving images, image mining is all about finding 
unusual patterns. Therefore, one can say that image mining 
deals with making associations between different images 
from large image databases. Note that detecting unusual 
patterns is not the only outcome of image mining. There has 

Multimedia Database

MM-DBMS: 
Integrated Data Manager 

and File Manager 

User Interface 



  

been work to identify recurring themes in images, both at the 
level of raw images and with higher-level concepts. Mining 
video data is even more complicated than mining image 
data. One can regard video to be a collection of moving 
images, much like animation. The important areas include 
developing query and retrieval techniques for video 
databases, including video indexing, query languages, and 
optimization strategies [17][18]. (fig.13)  

 

 

 

 

 

 

 

 

 
Fig 12. Iconic data with semantic and database objects 

There are two key advances needed before multimedia data 
mining will become a reality: 1- mining techniques that 
model order as a key part of the data. Too much is lost when 
the sequence of multimedia is ignored. The two approaches 
to mining ordered data, time series and event sequences, are 
not adequate for multimedia. 

 

 

 

 

 
 
 
 
 
 
 
 
 
Fig 13. Event-Based Video Data  

One idea is to capture order in the results, e.g., discovered 
patterns could include "pattern1 before pattern2". 2- The 
ability to compare objects that are represented differently. 
Pictures taken from different angles, or a photograph and a 
line drawing, both capture similar information. However, the 
different representations will lead data mining algorithms to 
overestimates the differences between the objects. If an 
algorithm recognizes many similarities in the data about two 
objects, it is likely that the objects are similar. However, 
dissimilar data does not imply that objects are different-
differences between the ways data is captured may cause 
similar objects to be represented by very different sets of 

data. Mining techniques must handle this disparity [19][20]. 
(fig.14) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 14. Video mining system 

 

5. CONCLUSION 

The performance of our robot team in Iran-Open Robocup 
competitions (1st place) (fig.15) showed that the 
combination of methods and techniques described in this 
paper are led to a successful soccer player team. In our 
robot, omni directional navigation system, omni-vision 
system and a novel control and analysis based on 
MMDBMS have been combined to create a comprehensive 
omni directional robot. The idea of separating odometry 
sensors from the driving wheels was successfully 
implemented. Three separate omni directional wheels 
coupled with shaft encoders placed apart of the main driving 
wheels. The result was reducing errors such as slippage in 
the time of acceleration. Combination of odometry and 
vision led to a more accurate and reliable self-localization 
algorithm.  

 

 

 

 

 

 

 

 

Fig 15. ADRO middle size soccer robot team in Robocup 
competition 
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