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Abstract: This paper deals with robust stabilization of nonlinear systems represented by uncertain and 
disturbed switched Takagi-Sugeno fuzzy systems. First, stabilization of uncertain switched fuzzy systems 
is considered without external disturbances. A stabilization criterion is proposed as sufficient Linear 
Matrix Inequality (LMI) conditions. These ones allow designing a switched parallel distributed 
compensation fuzzy control law based on a candidate switched Lyapunov function. Then, an extension to 
systems subject to external disturbances is provided based on a H-infinity criterion. To illustrate the 
effectiveness of the proposed stabilization criterion and controller design approaches, a designed 
numerical example is studied and some simulations are provided. 
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

1. INTRODUCTION 

With the growing complexity of some control engineering 
problems, control techniques drawn from linear theory have 
shown their limits. Among nonlinear theory, new control 
approaches have appeared in the last decades such as hybrid 
or fuzzy techniques. 

A hybrid dynamical system (HDS) consists of continuous (or 
discrete) time dynamics associated with discrete events 
following some logical or decision-making rules. For 
instance, power transmission and distribution, constrained 
robotic systems and intelligent vehicle highway systems may 
be considered as HDS. Among HDS, switched linear systems 
have attracted extensive research, see e.g. (Chiou (2006),  
Daafouz et al. (2002), Fang et al. (2004), Hetel et al. (2006), 
Mansouri et al. (2008), Liberzon et al. (2009), Ni et al. 
(2008)). To obtain stability conditions, two techniques are 
usually employed. Some authors consider the dwell time 
concept (Liberzon et al. (2009), Chiou (2006), Chiou (2006)). 
In these works, authors proved that, when the linear 
subsystems are Hurwitz, the overall switched system is stable 
if the time between consecutive switching is sufficiently 
large. The second technique, generally based on Lyapunov 
theory, aims at designing a control law able to stabilize the 
overall linear switched system without considering a 
particular switching law (Hetel et al. (2006), Mansouri et al.  
(2008)). Note that, all these studies consider HDS described 
as a collection of linear systems switching together. 
However, stability and stabilisation issue for nonlinear 

switched systems has been seldom treated in the literature 
(Hespanha and Morse (1999), Palm and Driankov (1998)). 

Independently to the works on HDS, other studies have 
focussed on fuzzy modelling and control approaches. Starting 
from basic fuzzy control techniques (Mamdani et al. (1974)), 
the last three decades have shown Takagi-Sugeno (T-S) fuzzy 
modelling and control techniques arising (Takagi and Sugeno 
(1985), Tanaka and Wang (2001)). Indeed, T-S fuzzy models 
have then attracted interest when dealing with nonlinear 
systems. These are constituted by a set of linear models 
interconnected by fuzzy membership functions. Thus, using a 
convenient convex polytopic transformation, a T-S model can 
match exactly an affine (bounded) nonlinear system in a 
compact set of the state space (Tanaka and Wang (2001)). 
Based on the polytopic structure of T-S models, the merit of 
T-S fuzzy control approaches is that they make possible the 
extension of some linear concept to the case of nonlinear 
systems (Tanaka and Wang (2001), Sala et al. (2005), 
Bouarar et al. (2007), (2010), Zerar et al. (2008), Mansouri et 
al. (2009), Lendek et al. (2010)). Nevertheless, an inherent 
drawback remains since the number of fuzzy rules of a TS 
model increase exponentially with the number of 
nonlinearities constituting the matched nonlinear system 
(Delmotte et al. (2008)). This makes fuzzy controller design 
and implementation difficult as the complexity of the 
nonlinear system to be controlled increases. 

To outline the problem of rules explosion in T-S modelling, 
some authors have proposed to combine the merit of switched  
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systems with T-S ones to deal with nonlinear control 
problems (Othake et al. (2002), Othake et al. (2006), Lam 
(2009)). To do so, partitioning the state space of a nonlinear 
system allows defining a switched nonlinear system. Then, 
inside each partition, a T-S model can be obtained. So, as 
stated in (Yang and Zhao (2007)), the resulting switched T-S 
system inherits some essential features of hybrid systems and 
maintains all the information and knowledge representation 
capacity of fuzzy systems. Few papers have studied 
stabilization issues of switched fuzzy systems based on 
quadratic approaches (Palm and Driankov (1998), Lam, 
(2009), Yand et al. (2008), Ojleska and Stojanovski (2008), 
Yang and Zhao (2007)) or switching Lyapunov function 
(Othake et al. (2002), Othake et al. (2006)). Note that these 
studies only consider nominal systems and so, they are 
irrelevant when dealing with robustness of the designed 
controller. Therefore, a robust controller design has been 
proposed in (Yang and Zhao (2007)) for uncertain switched 
T-S systems. Nevertheless, in the latter study, a classical 
quadratic Lyapunov approach has been employed leading to 
conservative results since it needs to check the existence of a 
common Lyapunov matrix for a set of linear matrix 
inequalities (LMI) constraints. Following the work on 
switched linear systems (Dafouz et al. (2002), Fang et al. 
(2004)), less conservative LMI conditions for T-S switched 
systems have been provided by employing switched 
Lyapunov function (Othake et al. (2006)). The aim of this 
paper is then to extend these works to the case of robust 
switched fuzzy Parallel Disturbed Compensation (PDC) 
controller design for the class of uncertain and disturbed 
switched T-S fuzzy systems.  

The paper is organized as follows. In the first section, the 
class of uncertain and disturbed switched T-S fuzzy systems 
is depicted as well as the considered switched PDC control 
law and switched Lyapunov candidate function are presented. 
After some useful lemmas and notations, the second section 
presents the main result: a stabilization criterion is proposed 
as LMI conditions for uncertain switched T-S systems. Then, 
this result is extended to the class of uncertain switched fuzzy 
system subject to external disturbances using a H  criterion. 

Finally, a simulation example, followed by a conclusion, is 
provided to illustrate the efficiency of the proposed 
approaches. 

2. PROBLEM STATEMENT 

2.1 From a nonlinear system to its switched fuzzy 
representation: 

Consider the following nonlinear system: 

          

             

x t f x t f x t x t

g x t g x t u t d x t t

  

   


   (1) 

where  1 2( ) ( ) ( ) ( ) n
nx t x t x t x t  ,  

       1 2
m

mu t u t u t u t     and   pt   are 

respectively the state, the input and the external disturbances 

vectors.    n nf x t  ,    n mg x t   are nonlinear 

matrices defining the nominal part of (1).    n nf x t    

and    n mg x t    represent Lebesgue measurable 

structural uncertainties due, for instance, to modelling 

approximations. The quantity     d x t t , with 

   n pd x t  , represent external disturbances to the state 

dynamics. 

Following the way proposed in (Othake et al. (2002)) for 
nominal systems, using the sector nonlinearity (SNL) 
approach (Tanaka and Wang (2001)) and a convenient state 
space partitioning, the uncertain and disturbed nonlinear 
system (1) can be rewritten as an uncertain and disturbed 
switched Takagi-Sugeno model described as follows: 

            
      

1 1

qrQ

q qi qi qi
q i

qi qi qi

x t v x t h x t A A t x t

B B t u t G t

 

  

   


 (2) 

where Q  denotes the number of partitioned regions of the 

state space and qr  is the number of rules in each region. 
n n

qiA  , n m
qiB   and n p

qiG   are constant matrices 

with appropriate dimensions for all 1,...,i r  and 1,...,q Q . 

The matrices   n n
qiA t   ,   n m

qiB t    represent the 

uncertain norm-bounded (lebesgue measurable) matrices 
which can be rewritten such that: 

   
   

qi aqi a aqi

qi bqi b bqi

A t H F t N

B t H F t N

 

 

 (3) 

where aqiH , bqiH , aqiN  and bqiN  are known real matrices of 

appropriate dimension,  aF t  and  bF t  are unknown 

normalized functions satisfying respectively    T
a aF t F t I  

and    T
b bF t F t I .  

Moreover, in (2),    0qih x t   are the fuzzy membership 

functions verifying the convexes sum propriety 

  
1

1
qr

qi
i

h x t


  and   qv x t  are the switched laws defined 

by: 

  
   
   

1 2

1 2

1 region , , ,

0 region , , ,

q q q nq

q

q q q nq

if x t R s s s
v x t

if x t R s s s

  





 (4) 

Consider the state vector       1 ... nx x xt t t , the thq  

region  1 2, , ,q q q nqR s s s  follows: 

 
 

1 0
, 1,...,

0 0
k

kq
k

if x t
s k n

if x t

   
 (5) 
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To illustrate this modelling approach, based on the switched 
laws (4), the state space partitions of a second order switched 

T-S system leads to four regions  1 2,q q qR s s  depicted in 

Fig.1. 

Note that, using the modelling methodology proposed by 
(Othake et al. (2002)), the switched T-S system (2) represents 
exactly the nonlinear system (1) on a compact set of the state 
space. That is to say that the robust controller design 
proposed in the sequel is valid on the whole state space if the 
nonlinearities of the uncertain system (1) are bounded (global 
SNL) or, in the contrary, on a restricted region (local SNL), 
see (Ohtake et al. (2002)) for more details. 

1x

2x

 1 1,1R 2 0,1R

 3 0,0R  4 1,0R

 

Fig. 1. Example of a second order state space partition. 

To lead to the LMI conditions proposed in the next section, 
an extended state space system can be employed (Othake et 
al. (2006)). Following this way, let us consider a stable 
autonomous linear system such that: 

   ˆ ˆx t Cx t  (6) 

where        1 2ˆ ˆ ˆ ˆ n
nx t x t x t x t     is a state 

vector and n nC   is a Hurwitz matrix. 

Let      ˆx t x t x t     be an extended state vector, (2) can 

be extended with (6) leading to: 

            
      

1 1

qrQ

q qi qi qi
q i

qi qi qi

x t v x t h x t A A t x t

B B t u t G t

 

  

   

   

 
  (7) 

with 
0

0
qi

qi

A
A

C

 
  
 

 , 
0

0 0
qi

qi

A
A

 
   

 
 , 

0
qi

qi

B
B

 
  
 

 , 

0
qi

qi

B
B

 
   

 
  and 

0
qi

qi

G
G

 
  
 

 . 

Note that, qiA  and qiB   can be rewritten as follow: 

   
   

qi aqi a aqi

qi bqi b bqi

A t H F t N

B t H F t N

 

 

  

    

with 0aqi aqiH H   
  , 0bqi bqiH H   

  , 
0
aqi

aqi

N
N

 
  
 

  and 

0
bqi

bqi

N
N

 
  
 

 .  

Note that, as shown in (Ohtake et al. (2006)), to lead to LMI 
conditions, it is convenient to choose n nC I    where   

is an arbitrary positive scalar and n n
n nI 
   is a unit matrix. 

Moreover, the trajectories of (2) with the initial state 

  00x x  are equal to the first n  trajectories of (7) with the 

initial state   0 10 0
TT T

nx x     . 

Remark: The proposed control approach is dedicated to 
nonlinear systems (1) (instead of switched nonlinear ones) by 
rewriting them as switched TS systems (2). Other studies 
were focused on switched nonlinear systems regarded as sets 
of TS systems switching together, see e.g. (Guelton et al. 
(2010), Jabri et al. (2011)). 

2.2 Switched PDC controller and switched Lyapunov 
candidate: 

Now, in order to stabilize the switched T-S systems (7),  
consider the following switched Parallel Distributed 
Compensation (PDC) control law Ohtake et al. (2006)): 

         
1 1

qrQ

q qi qi q
q i

u t v x t h x t K E x t
 

    (8) 

where 2m n
qiK R   are the gain matrices and 2 2n n

qE R   are 

non singular matrices defined such that: 

   

   

1 1

2 2

1 1

1 1

2 2

1 1

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1

1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0

q q

q q

r q r q

rq rq

q
q q

q q

r q r q

rq rq

s s

s s

s s

s s
E

s s

s s

s s

s s

 

 

 
  
 
 

 
    
 

 
 
 

 
 

  

 
 

         
 

 
 
 

         
 

 

 (9) 

with kqs , for 1,...,k n , defined above in (5).  

Substituting (8) into (7), one obtains the following closed-
loop uncertain and disturbed system :  

          
       

1 1

qrQ

q qi qi qi
q i

qi qi qj q qi

x t v x t h x t A A t

B B t K E x t G t

 

  

   

  

  
  (10) 

The goal is now to design the matrices qiK , for 1,...,i r  and 

1,...,q Q , ensuring the stability of the closed loop system 

(10). The following results will be obtained through the use 
of a candidate switched Lyapunov function given by: 
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  

       
       

       

1 1 11 21 1

2 2 12 22 2

1 2

,    , , ,

,    , , ,

        

,    , , ,

T
n

T
n

T
Q Q Q Q nQ

x t P x t x t R s s s

x t P x t x t R s s s
V x t

x t P x t x t R s s s

 



 

 

   

   



   

 (11) 

where 2 2n n
qP  , for 1,...,q Q , are positive definite real 

matrices. 

Note that, to guarantee the continuity of the candidate 
Lyapunov function (11) on region boundaries (Liberzon and 
Morse (2009)), qP  can be rewritten such that: 

T
q q qP E PE  (12) 

where P  is a definite positive matrix with qE  defined above. 

Let us assume that for each instant t , only one region can be 
activated, thus (11) can be rewritten as: 

      
1

Q
T T

q q
q

V x t x t E PE x t


     (13) 

Therefore, if there exist 0P   such that (13) is strictly 
decreasing, the closed loop system (10) is stable. The main 
result will be provided in the next section in terms of LMIs. 

2.3 Notations and Lemmas: 

The following notations will be used in the sequel to clarify 
the mathematical expression: 

     
1 1

qrQ

vh q qi qi
q i

A v x t h x t A
 

  ,   
1

,
Q

v q q
q

E v x t E


 

     
1 1

q qr r

h h i i i i
i i

X Y h x t X h x t Y
 

  
     
  
  . 

Note that, assuming only one region is allowable at each 
instant. Thus one has:  

        
1 1 1

Q Q Q

v v q q q q q q q
q q q

X Y v x t X v x t Y v x t X Y
  

  
   
  
    

As usual, a star (*) indicates a transpose quantity in a matrix. 
The time t  will be omitted when there is no ambiguity. I  
denote identity matrices with appropriate dimensions. 

Moreover, the following lemmas will be used in the sequel to 
derive relaxed LMI stability conditions. 

Lemma 1 (Tuan et al. (2001)). The inequality : 

     
1 1

0
q qr r

i j ij
i j

h z t h z t
 

   (14) 

is verified if, for all 1,...,i r  and 1,...,j r , j i : 

0ii   (15) 

and 

 1 1
0

1 2ii ij ji
qr

    


 (16) 

Lemma 2 (Zhou and Khargonedkar (1988)). Let us consider 
X  and Y  two matrices of appropriate dimensions, there 

exists a positive scalar 0   such that : 

1T T T TX Y Y X X X Y Y       (17) 

 

2. ROBUST LMI BASED SWITCHED CONTROLLER 
DESIGN 

In this section, one firstly proposes to study the stabilisation 
of the system (2) without considering external disturbances 
(i.e.   0t  ). Using the above defined notations, the closed 

loop uncertain switched T-S system is given as follows: 

        vh vh vh vh vh vx t A A B B K E x t             (18) 

Sufficient LMI conditions for the design of a switched 
controller (8) guaranteeing the stability of (18) are proposed 
in the following theorem. 

Theorem 1. The uncertain switched fuzzy system (2) without 
external disturbances (   0t  ) is GAS (globally 

asymptotically stabilized) using the PDC switched fuzzy 
control law (8) if there exist the matrices 0TX X  , qiM , 

the scalars 0qi  , 0qi   satisfying the following LMIs for 

all 1,...,q Q , , 1,..., qi j r  and i j  : 

0ii   (19) 

and 

 1 1
0

1 2ii ij ji
qr

     


 (20) 

with 

     1,1

1

* *

0

0

qij

qij aqi q qi

bqj qj qj

N E X I

N M I






 
 

   
  

 and 

 1,1 1T T T T T T
qij q qi q q qi q qi qj q q qj qi

T T T T
qi q qi qi q qj q qj qj q

XE A E E A E X M B E E B M

E H H E E H H E 

     

 

   
 

Then, the switched PDC controller gain matrices are obtained 
through the bijective change of variables 1

qi qiK M X  . 

Proof. Consider the Lyapunov candidate (13), the closed 
loop system is asymptotically stable if 

        0T T T T
v v v vx t E PE x t x t E PE x t        (21) 

Considering (18), inequality (21) is verified for all  x t  if: 

    
     0

T
T

vh vh vh vh vh v v v

T
v v vh vh vh vh vh v

A A B B K E E PE

E PE A A B B K E

    

      

   

   
 (22) 
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Multiplying left by T
vE  and right by 1

vE , (22) becomes: 

   
   1 0

T TT T T T
v vh vh v vh vh vh v

v vh vh v v vh vh vh

E A A E P K B B E P

PE A A E PE B B K





    

      

   

   
 (23) 

which can be rewritten in its extended form considering (3) 
as: 

   
   

1

1

0

T T T T T T
v vh v v vh v vh vh v v vh vh

T T T T T
v avh a avh v v avh a avh v

T T T T T
vh bvh b bvh v v bvh b bvh vh

E A E P PE A E K B E P PE B K

E N F t H E P PE H F t N E

K N F t H E P PE H F t N K

 

 

  

 

  

   
   

   
 (24) 

Let us consider 1X P , left and right multiplying (24) by 
X , one obtains : 

   
   

1

1

0

T T T T T T
v vh v v vh v vh vh v v vh vh

T T T T T
v avh a bvh v v avh b avh v

T T T T T
vh bvh b bvh v v bvh b bvh vh

XE A E E A E X M B E E B M

XE N F t H E E H F t N E X

M N F t H E E H F t N M

 

 

  

 

  

   
   

   
 (25) 

Recall that    T
a aF t F t I  and    T

b bF t F t I , applying 

lemma 2 and the Schur complement, (25) is verified if: 

     1,1

1

* *

00

0

vhh

vhh avh q vh

bvh vh vh

N E X I

N M I






 
    
  




 (26) 

with  
 1,1 1T T T T T T
vhh v vh v v vh v vh vh v v vh vh

T T T T
vh v vh vh v vh v vh vh v

XE A E E A E X M B E E B M

E H H E E H H E 

     

 

   
   

 

Finally, applying Lemma 1 on (26), the proof is completed.  ■ 

Now, the purpose is to extend theorem 1 to the design of 
robust controllers (8) stabilizing uncertain switched T-S 
systems (2) subject to external disturbances (   0t  ). To 

do so, the following H  criterion is employed to minimize 

the effect of the external disturbances on the state dynamics: 

       2

0 0

tf tfT T
x t Wx t dt t t dt      (27) 

where 2 2n nW   is a weighting positive definite real matrix 
and   is the disturbances attenuation level.  

The result is summarized in the following theorem. 

Theorem 2. The uncertain switched fuzzy system (2) subject 
to external disturbances is GAS using the PDC switched 
fuzzy control law (8) if there exist the matrices 0TX X  , 

qiM , the scalars 0qi  , 0qi   and 0   satisfying the 

following LMIs for all 1,...,q Q , , 1,..., qi j r  and i j  : 

Minimize   such that : 

0ii   (28) 

and 

 1 1
0

1 2ii ij ji
qr

    


 (29)  

with 

   
1 1

2

* *

0 0 0 0

0 0 0

qij

qqij
T T

qi q q

E X W

G E PE I

 

 
    
  


 and qij  

defined in theorem 1. 

Therefore, the robust switched PDC controller gain matrices 
are obtained using the bijective change of variables 

1
qi qiK M X   and the designed control law ensures a H  

performance   . 

Proof. Consider the Lyapunov candidate function (13) and 
the H  criterion given in (27). The close loop system (10) is 

stable and the H  performance   is guaranteed if: 

       
        0

T T T T
v v v v

T T

x t E PE x t x t E PE x t

x t Rx t t t 



  

    

 
 (30) 

Considering the same steps as for the proof of theorem 1, 
(30) is verified for all  x t  and  t  if: 

 
2

*
0

0 0
vhh
T T

vh v v

W

G E PE I
  

   
  (31) 

with vhh  defined in (26) (proof of theorem 1) and 
1 0 0

0 0 0

0 0 0

T
v vXE RE X

W

  
   
  

. 

Then, applying the Schur complement, (31) is verified if: 

   
1 1

2

* *

00 0 0

0 0 0

vhh

vhh v
T T

vh v v

E X W

G E PE I

 

 
    
  

 (32) 

Finally, applying lemma 2, one obtains the LMI stability 
conditions proposed in theorem 2. This ends the proof. ■ 

3. NUMERICAL EXAMPLE 

Let us consider the following uncertain nonlinear system 
inspired from the nominal one given in Ohtake et al. (2006)): 

       
         

             
         

1 2 1

2

2 1

2

0.05

0.02 0.05

0.0375

0.015 0.0375

a

a b

a

a b

x t x t F t x t

F t x t F t u t t

x t f x g x u t F t x tt t

F t x t F t u t t





 


  


  
   




 (33) 

with  1 ,x d d   and  2 ,x d d  , 0.5d  , 

  3 3 2 2
1 2 1 2 1 2 1 2 1 25 5 3f x x x x x x x x x x x          

and      1 20.7g x x t x t   . 
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The state space partition is chosen as in Fig.1 with four 
regions  1 1,1R ,  2 0,1R ,  3 1,0R  and  4 0,0R . Thus, the 

considered switched law is defined by: 

   1 2
1

1 if 0 d, 0 d

0 otherwise

x x
v x t

   
 


 

   1 2
2

1 if   d 0, 0 d

0 otherwise

x x
v x t

    
 


 

   1 2
3

1 if     0 d, d 0

0 otherwise

x x
v x t

    
 


 

and  

   1 2
4

1 if  d 0, d 0

0 otherwise

x x
v x t

     
 


. 

Using the sector nonlinearity approach (Tanaka and Wang 
(2001)) and the previous state partition, the nonlinear system 
(33) can be constructed as an uncertain switched TS disturbed 
system given by: 

            
      

1 1

Q r

q qi qi qi
q i

qi qi qi

x t v x t h x t A A t x t

B B t u t G t

 

  

   


 (34) 

with 11 13

0 1

-0.246 -0.246
A A

 
   

 
, 

12 14

0 1

-1.25 -1.25
A A

 
   

 
, 21 23

0 1

-1.952 -0.246
A A

 
   

 
, 

22 24

0 1
 

0.75 -1.25
A A

 
   

 
, 31 33

0 1

-0.246 -1.952
A A

 
   

 
,  

32 34

0 1

-1.25 0.75
A A

 
   

 
 41 43

0 1

-1.952 -1.952
A A

 
   

 
, 

42 44

0 1

0.75 0.75
A A

 
   

 
, 

 11 12 41 42 0 -0.45B B B B    ,  

 13 14 43 44 0 -0.7B B B B    , 

 21 23 31 32 0 -0.7B B B B    , 

 22 24 33 34 0 -0.95B B B B    , 

11 12 21 22 31 32 41 42

1

1
G G G G G G G G

 
         

 
 and the 

external disturbances defined by    qi aqi aqiA t H F t N   and 

   qi bqi bqiB t H F t N   with, for 1,..., 4q   and 1,.., 4i  , 

 0.2 0.15
T

aqi bqiH H   and  0.25 0.1aqi bqiN N  .  

Recall that , 1,..., 4qE q  , are defined in (9) and lead, for the 

considered partition, to: 

1

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

E

 
 
 
 
 
 

, 2

0 0 1 0

0 1 0 0

1 0 0 0

0 0 0 1

E

 
 
 
 
 
 

,  

3

1 0 0 0

0 0 0 1

0 0 1 0

0 1 0 0

E

 
 
 
 
 
 

, 4

0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

E

 
 
 
 
 
 

. 

The membership functions are given by   qi qi qih x t w   

with: 

     1 2
1 2

11 13 1 2

1.25 1.25
,  , 0,0

1.004 1.004

1                                   otherwise

f x x x
x x

x x

 
    




 

     1 2
1 2

12 14 1 2

0.246 0.246
 , , 0,0

1.004 1.004

0                                                      otherwise

x x f x
x x

x x

  
    




 

     1 2
1 2

21 23 1 2

0.75 1.25
 , , 0,0

2.702 1.004

1                                   otherwise

f x x x
x x

x x

 
     




 

     1 2
1 2

22 24 1 2

1.952 0.246
, , 0,0

2.702 1.004

0                                           otherwise

x x f x
x x

x x

  
     




 

     1 2
1 2

31 33 1 2

1.25 0.75
, , 0,0

1.004 2.702

1                                    otherwise

f x x x
x x

x x

 
    




 

     1 2
1 2

32 34 1 2

0.246 1.952
, , 0,0

1.004 2.702

0                                          otherwise

x x f x
x x

x x

  
    




 

     1 2
1 2

41 43 1 2

0.75 0.75
, , 0,0

2.702 2.702

1                                    otherwise

f x x x
x x

x x

 
     




 

     1 2
1 2

42 44 1 2

1.952 1.952
, , 0,0

2.702 2.702

0                                         otherwise

x x f x
x x

x x

  
     




  

and 13 14 43 44 1 21 4w w w w x x     , 

11 12 41 42 1 24w w w w x x    ,  

21 22 31 32 1 24 1w w w w x x     ,  

1 2
23 24 33 34

1.4
.

0.25

x x
w w w w

 
     

In order to be able to apply the above proposed theorems, the 
extended form of (34) is built by adding a stable linear  

 



46                                      CONTROL ENGINEERING AND APPLIED INFORMATICS 
 

system (6) with C I  . Hence, the augmented switched 
fuzzy system yields: 

            
      

1 1

Q r

q qi qi qi
q i

qi qi q

x t v x t h x t A A t x t

B B t u t G t

 

  

   

   

 
 (35) 

with 11 13

0 1 0 0

-0.246 -0.246 0 0

0 0 1 0

0 0 0 1

A A

 
 
  
 
 

 

  ,  

12 14

0 1 0 0

-1.25 -1.25 0 0

0 0 1 0

0 0 0 1

A A

 
 
  
 
 

 

  , 

21 23

0 1 0 0

-1.952 -0.246 0 0

0 0 1 0

0 0 0 1

A A

 
 
  
 
 

 

  , 

22 24

0 1 0 0

0.75 -1.25 0 0
 

0 0 1 0

0 0 0 1

A A

 
 
  
 
 

 

  , 

31 33

0 1 0 0

-0.246 -1.952 0 0

0 0 1 0

0 0 0 1

A A

 
 
  
 
 

 

  , 

32 34

0 1 0 0

-1.25 0.75 0 0

0 0 1 0

0 0 0 1

A A

 
 
  
 
 

 

  ,  

41 43

0 1 0 0

-1.952 -1.952 0 0

0 0 1 0

0 0 0 1

A A

 
 
  
 
 

 

  , 

42 44

0 1 0 0

0.75 0.75 0 0

0 0 1 0

0 0 0 1

A A

 
 
  
 
 

 

  , 

11 12 41 42

0

0.45

0

0

B B B B

 
     
 
 
 

    , 

13 14 43 44

0

0.7

0

0

B B B B

 
     
 
 
 

    , 

21 23 31 32

0

0.7

0

0

B B B B

 
     
 
 
 

    ,  

22 24 33 34

0

0.95

0

0

B B B B

 
     
 
 
 

     and for 1,2q   and  

1,.., 4i  , 

1

1

0

0

iqG

 
 
 
 
 
 

 , 

0.2

0.15

0

0

aqi bqiH H

 
 
  
 
 
 

   

and  0.25 0.1 0 0aqi bqiN N   .  

In order to show the efficiency of theorem 1, let us consider 
the system (2) without external disturbances (i.e.   0t  ). 

The Matlab LMI toolbox is used to solve the LMI conditions 
leading to the synthesis of a switched fuzzy controller given 
by: 

5.358 3.198 3.268 3.360

3.198 5.308 3.340 3.149
P=

3.268 3.340 5.899 3.704

3.360 3.149 3.704 5.884

 
 
 
 
 
 

, 

 11 = 6.334 6.204 6.206 5.992K , 

 12 = 4.514  4.360 5.721 5.524K , 

 13 = 4.432 4.532 4.167 4.016K , 

 14 = 2.748 2.759 3.714 3.581K , 

 21 = 4.274 4.521 3.115 4.389  K , 

 22 = 4.008 3.152 5.692 4.116  K , 

 23 = 3.225  3.653 2.026 3.301  K , 

 24 = 2.904 2.196 4.492 2.981K , 

 31 = 4.356 3.905 4.427 2.845  K , 

 32 = 3.358 3.959 4.491 5.888K , 

 33 = 3.276 2.806 3.181 1.698  K , 

 34 = 2.479 3.034 3.454 4.964K , 

 41 = 5.802 5.563 4.421 4.328K , 

 42 = 5.707 5.467 8.029 8.100  K , 

 43 = 3.688 3.533 2.270 2.281  K  

and  44 3.924 3.750  5.941 6.216K  . 

A simulation has been performed with the initial states 

   0 0.3 0.3
T

x    . The close-loop dynamics, the control 

signal and the switched Lyapunov function evolutions are 
depicted respectively in Fig.2, Fig.3 and Fig.4. These show a 
stable behaviour. 
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Fig. 2. Phase plan of the closed-loop uncertain switched 
fuzzy system. 

0 1 2 3 4 5
-12

-10

-8

-6

-4

-2

0

2

Time(s)

u(
t)

 

Fig. 3. Control law evolution of the closed-loop uncertain 
switched fuzzy system. 
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Fig. 4. Lyapunov function evolution of the closed-loop 
uncertain switched fuzzy system. 

Let us now consider (33) subject to external disturbances 

 t . Then, using the Matlab LMI toolbox to solve the LMI 

conditions proposed in the theorem 2, one obtains: 

9.071 6.780 6.996 7.123

6.780 8.947 6.943 7.032
0

6.996 6.943 9.560 7.419

7.123 7.032 7.419 9.844

P

 
 
  
 
 
 

, 

 11 = 10.924 10.707 10.990 11.147K ,  

12 =[9.749 9.531 10.990 11.147 ]K , 

13 =[7.022 7.048 6.692 6.787 ]K , 

 14 = 5.601 5.628 6.692 6.787K , 

 21 = 10.916 10.890 9.570 11.394K , 

 22 = 10.916 9.715 12.732 11.394K , 

 23 = 6.639 7.152 4.872 6.927K , 

 24 = 6.639 7.152 4.872 6.927K , 

 31 = 10.916 10.641 11.163 9.522K , 

 32 = 9.741 10.641 11.163 12.685K , 

 33 = 7.041 6.501 6.823 5.045K , 

 34 = 5.620 6.501 6.823 8.868K , 

 41 = 10.674 10.552 9.326 9.474K , 

 42 = 10.674 10.552 12.487 12.637K , 

 43 = 6.526 6.451 4.766 5.018K , 

 44 = 6.526 6.451 8.589 8.841K   

and with the disturbance attenuation level 1.932  . 

A simulation has been performed with the initial states 

   0 0.4 0.4
T

x     and a disturbance  t  chosen as an 

uncorrelated Gaussien white noise with a variance equal to 
0.1. The close-loop dynamics, the switched law and the 
control signal are depicted respectively in Fig.6, Fig.7 and 
Fig.8. One more time, they show, as expected, a stable 
behaviour. 
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Fig. 5. State’s dynamics of the closed-loop uncertain and 
disturbed system, ( 1x ) dotted line, ( 2x ) solid line. 
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Fig. 6. Switched law evolution of the closed-loop uncertain 
switched fuzzy disturbed system. 
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Fig. 7. Control law evolution of the closed-loop uncertain 
switched fuzzy disturbed system. 
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Fig. 8. Lyapunov function evolution of the closed-loop 
uncertain switched fuzzy disturbed system. 

4. CONCLUSION 

In this paper, the stabilization of a class of nonlinear systems 
represented by uncertain and disturbed switched Takagi-
Sugeno fuzzy systems has been studied. The interest of this 
approach is to benefit from the well-known information of T-
S systems with association to the characteristic of the 
switched systems. Moreover, to cope with uncertainties and 
external disturbances, LMI conditions for robust switched 
fuzzy PDC controller design have been obtained based on 
switched quadratic Lyapunov function and a H criterion. 

Finally, a numerical example has been provided to illustrate 
the efficiency of the proposed switched fuzzy PDC controller 
design methodology. 
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