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A New Design Method of Mismatched Smith Predictor (optimisation approach)  

 

Abstract: This paper presents a new design method of mismatched Smith predictor for delayed systems. 
It concerns an optimal controller parameters tuning and a system modelling. The method is based on the 
resolution of a multi-objective optimisation problem which consists in finding the parameters of a 
controller and a system model that minimises two objective functions: the modelling and the tracking 
errors. As the two objectives functions are minimised simultaneously, therefore both the controller and 
the model parameters act together for a fast convergence of the optimal problem.  The second advantage 
of the method is that both the controller and the system model structures can be chosen by the user 
according to the real plant dynamic. The method is applied to several typical delayed processes and the 
results are compared with those of other methods in order to illustrate its efficiency.  
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1. INTRODUCTION 

The control of dead time systems still the subject of many 
researches until today, this is due to the fact that many 
industrial processes (especially petrochemical ones) exhibit 
an inherent time delay. The well-known Smith predictor 
method is successfully applied on the delayed systems in the 
case of perfect match modelling of the actual (real) process. 
Unfortunately in the mismatched case, the method suffer 
from a sensitivity problem which can lead to instability 
and/or very poor closed loop performances (Zhang and Xu 
(2001)). Recently, the mismatched Smith predictor case has 
been the focus of many important research works, such 
(Zhang and Xu (2001), Wang et al. (2000), Zhang et al. 
(2002), Lee et al. (1999), Sourdille and O’Dwyer (1999) and 
Kristiansson and B. Lennartson (2001)) In (Zhang and Xu 
(2001)), an analytical design method of the controller is 
proposed, but over its simplicity, the efficiency of this 
method depends strongly on the good choice of a tuning 
parameter (scalar called λ). Another strategy given by (Wang 
et al. (2000)), (Zhang et al. (2002)) proposes a new control 
scheme, using a simple primary controller and a deliberately 
mismatched model in order to enhance the performances of 
the actual (real) system. The mentioned methods are 
organised in two steps: the first one is the process modelling 
and the second one is the design of a primary controller based 
on the free part of the model obtained in the first step. This 
paper will propose a controller designing method, based on 
the Smith predictor control scheme of (Wang et al. (2000), 
via the resolution of a multi-objective optimisation problem. 
The idea is to find the parameters of both the model and the 
controller in the same time that minimises the modelling and 
the tracking errors. These two objective functions are chosen 

because in the Smith predictor classical method, the 
controller is designed in the inner loop for the free delay 
process model, so more the modelling errors are small, better 
will be the performances for the outer loop including the real 
plant. In the other hand, the minimisation of the tracking 
error is the main goal of any control law. The first advantage 
of the method presented in this paper, is that the two 
objectives functions are minimised simultaneously so 
therefore, both the controller and the model parameters act 
together to find an optimal solution (the best performances). 
The second important advantage, is that the controller and the 
model structures are flexible and can be imposed by the user; 
this allows more possibilities to solve the optimisation 
problem and therefore to reach the desired feedback 
performances. 

2. OVERVIEW OF THE SMITH PREDICTOR CONTROL 

SCHEME 

The so-called Smith predictor (Smith (1959)), is the most 
commonly used controller design method for the systems 
with time delay; it is based on the following control scheme: 
 

 
 
 
 
 
 
 
 

 
Fig. 1.  Smith predictor control scheme 

Sofiane Gherbi*, Moussa Sedraoui**, Abderrazek Lachouri*, Lamine Mehennaoui*  

*Faculty of Technology, Electrical Engineering Department, 20 août 1955 University Skikda, BP:26 Route El 
hadaiek, Skikda, Algeria 

(e-mail: sgherbi@gmail.com, alachouri@yahoo.fr, lmehennaoui@yahoo.fr) 
**Faculty of Technology, Electrical Engineering Department, 08 mai 1945 University Guelma, Algeria 

(e-mail: msedraoui@gmail.com) 

d 

K Gp 

G0 
sLe 0  +

+

+
++ y  r 

_

--

em 

model 

Real plant    Controller 



22                                      CONTROL ENGINEERING AND APPLIED INFORMATICS 
 

With: r is the reference signal, d is the disturbance signal and 
em is the modelling error. 

As one can see, the primary controller K is designed based on 

the nominal delay free part 0G  of the plant model: sLeG 0

0

 , 

this prevents all difficulties due to the delay term (especially 
the non-minimum phase effect). 
Let us write out the transfer function from the output y to the 
input r: 
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We denote that the characteristic equation contains the 
modelling error term:  
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This means that a minor modelling error (perfect match case), 
leads to a delay free characteristic equation which avoid all 
difficulties that the delay term can introduce. Unfortunately, a 
perfect model of the real plant is rarely obtained; this is for 
what the smith predictor method suffers from the poor 
robustness performances. 

3. THE PROPOSED METHOD DESCRIPTION 

In order to resolve the robustness problem of the Smith 
predictor method, we use the following modified smith 
predictor control scheme introduced by (Wang et al. (2000)): 
 
 

 
 
 
 
 
  
 
 
 

 
Fig. 2.  Modified Smith predictor control scheme 
 

With: ex is the tracking error. 
As we can see in this figure, the model delay free part Go is 
partitioned in two parts as follow: 
 
G0 = g01g02                                                                            (3) 
 
With g01 is chosen as a first order transfer function: 
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This choice is particularly interesting, because the controller 
will be designed based on a first order transfer function 

model which considerably facilitates the design procedure. 
Reminds  g02 which can be chosen as follow: 
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With: n is the order of the transfer function of the free part of 
the model Go, it is generally chosen n = 2  (most of real 
processes can be modelled by a second order plus delay 
transfer function). 

3.1  Optimisation problem formulation 

The main goal of any controller design procedure is to 
minimise as possible the tracking error. As the controller is 
designed based on the first order part of the model transfer 
function g01(s) (figure.2), let us write out the controller input 
signal in the frequency plan:  
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If we suppose that the modelling error em is minimal (optimal 
modelling), then for a unit step input r, ex(s) is given by: 
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The problem is then: how to find the optimal controller 
parameters that minimises the tracking error, this is a 
frequency domain nonlinear optimisation problem. The 
resolution of this optimisation problem can be much more 
efficient, if we find a model of transfer function that the 
frequency dynamics meets as closely as possible the real 
process ones, because as we said before: a minimal modelling 
error considerably simplify the closed loop transfer function 
(em≈0 see figure.2), helping in the end to find the optimal 
controller parameters that minimise the tracking error.  

In order to illustrate the method, let us use a filtered PID 
controller structure given by: 
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The idea is then to find simultaneously the optimal model 
transfer function parameters (K0, T0 and the delay L0) and the 
PID controller parameters (Kp, Ti, Td, the filter coefficient is 
taken by default N = 10), which minimises both the 
modelling error em(s) and the tracking errors ex(s). Actually, 
it’s like if we had transformed the mismatch Smith predictor 
problem in a perfect match one, enhancing of course the 
closed loop transfer function stability and performances.  
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We note that we can use other transfer function models (if the 
given ones are not appropriate for the system), but we must 
always put the first part g01(s) as a first order transfer 
function, we can also choose any controller structures (PID, 
PI or PD... or others), if the PID is not appropriate for the 
system. This allows more flexibility and gives more 
possibilities to the controller designer. 

The optimisation problem described below is a multi- 
objective frequency domain optimisation problem (Eckart et 
al. (2003)), (Marler and Arora (2004)). Mathematically, it can 
be assessed like following: 
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This approach guaranties a minimal tracking error and also 
the robustness of the closed loop transfer function, thanks to 
the minimal modelling error. 

The optimisation problem (9) can be solved by different 
software’s as MATLAB, SCILAB etc. 

3.2 Generalisation of the method 

As we said before, the method can be generalised for any 
delayed systems, using any controller structures, we have just 
to adapt the system model according to the design 
methodology described above, i.e.: decomposition of the 
system model in two parts, with the first one in the first order 
transfer function form). Thus the optimisation problem (9) 
can be generalised as follow:  
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This type of optimal problems can be resolved using recent 
software’s packages, like the optimisation toolbox of 
MATLAB®. 

4. ILLUSTRATIVE EXAMPLES 

In this section, the proposed method will be applied to three 
typical delayed processes, using a PID controller structure. 
The optimisation toolbox (Optimisation toolbox (2001)), 
(especially minimax routine) of MATLAB® software, is used 
to find both the optimal model and the controller parameters, 
by resolving the optimisation problem (9). The simulation 
results will be compared with those of Wang’s method 
(Wang et al. (2000)).  

The three chosen delayed processes presents particular 
difficulties for the control problem, indeed: 

The first process is represented by a five order plus delay 
transfer function given by: 
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The second one is represented by an unstable zero five order 
plus delay transfer function, given by: 
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The third one is a multiple lag process, given by: 
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Note that Wang’s method employs a second order plus delay 
systems models, respectively given by: 
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And the controllers are respectively given by: 
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As explained before, the application of the proposed method 
gives an optimal second order plus delay models, respectively 
given by: 
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The obtained optimal PID controllers are respectively given 
by: 
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4.1. Time responses results 
 
4.1.1 Step time and disturbance rejection 
 

The following figures, shows the step time responses and the 
disturbance rejections of 20% of a unit step setpoint (for the 
first and the second systems, introduced at time: t = 40 sec, 
for the third one at time: t = 50 sec), with the proposed 
method compared to Wang’s one: 

 
Fig. 3.  Step time response and disturbance rejection of the 
first system with the two methods 

 
Fig. 4. Step time response and disturbance rejection of the 
second system with the two methods 

 
Fig. 5.  Step time response and disturbance rejection of the 
Third system with the two methods 

     4.1.2 Tracking and modelling errors dynamics 

The following figures shows the time domain dynamics 
behaviour of the tracking error (ex) and the modelling error 
(em), for the three systems with the proposed method 
compared to the Wang’s one  

 
Fig. 6. Tracking error dynamics of the first system with both 
methods 

 
Fig.7 . Modelling error dynamics of the first system with both 
methods 
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Fig.8 . Tracking error dynamics of the second system with 
both methods 

 
Fig. 9.   Modelling error dynamics of the second system with 
both methods 
 

 
Fig. 10.  Tracking error dynamics of the third system with 
both methods 

 

 
Fig. 11.  Modelling error dynamics of the third system with 
both methods 
 
The preceding figures shows a better step time responses 
(faster rise time and disturbance rejection) and a smaller 
tracking and modelling errors for the proposed method in 
comparison with Wang’s method, this confirm the relevance 
of the proposed approach. 

5. ROBUSTNESS ENHANCEMENT 

Further of the perturbation rejection presented below, we will 
introduce some robustness margins, respectively: the gain 
margin, the phase margin, the modulus margin and the delay 
margin. This robustness margins allows us to measure the 
robustness enhancement of each method. The following 
figure presents a classical feedback system loop: 
 
 
 
 
 
 
 
 
 
Fig. 12. Classical feedback loop 
 
With: b is the perturbation signal introduced by the 
measuring sensor. 
Define the robustness margins as (Ogata, (2010)), (De 
Larminat, (1996)), (Chen, (1993)):        

5.1.  The gain margin 

The gain margin is the measure of how much the open loop 
gain can change before system become unstable. 
Its value (in decibels), is given by: 
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Where:  wp is the phase crossover frequency: the frequency at 
which the phase angle of the open-loop transfer function 
equals –180°. 

5.2.  The phase margin 

The phase margin is the measure of how much the open loop 
phase can change before system become unstable. 
Its value (in degrees), is given by: 
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Where:  is the angle of the open-loop transfer function at 
the gain crossover frequency (the frequency at which the 
magnitude of the open loop transfer function, is unity). 

5.3. The Modulus margin 

The modulus margin (Litrico and Georges (1999)) is a useful 
robustness indicator of the closed loop system, it is equal to 
the inverse of the Hinfinity norm of the system output 
sensibility, i.e.: the minimum distance between the open loop 
Nyquist plot and the critical point (-1,1800). 
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With:  
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5.4. The Delay margin 

The delay margin is the maximum time delay τ which allows 
the closed loop of the disturbed process to remain stable, it is 
given by: 
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Where: Q is the phase margin of the open loop system and wp 
is the phase crossover frequency. 

5.5. Robustness margin for Smith predictor scheme 

       As the robustness margins are measured using the open 
loop transfer function (let us call it: L = K.G), we can obtain 
it from the closed loop transfer function given by the 
equation (1), let us call it T:  
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The following tables show the robustness margins of the 
three systems with the two methods: 
 

            Table.1  Robustness margins (Wang’s method) 

 
                Table.2. Robustness margin (Proposed method) 

 
We denote that the robustness margins are globally satisfying 
(substantially the same for both methods), however the 
proposed method gives better modulus margins. 

6. CONCLUSION 

A new control method of delayed systems based on a 
modified Smith predictor control scheme is presented in this 
paper; the approach can be applied at any delayed processes 
with any controller structures. The method is founded on the 
resolution of a multi-bjective optimisation problem. The 
simulation results for different typical delayed systems shows 
a good closed loop performances and robustness compared to 
those of other methods. 
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